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Quantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid
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An antitrapping current scheme for quantitative phase-field model [A. Karma, Phys. Rev. Lett. 87, 115701
(2001)] is extended to solidification process in a dilute binary alloy system involving diffusion in the solid. It
is demonstrated in an asymptotic analysis that in the case of an arbitrary value of the solid diffusivity, five types
of constraints exist between interpolating functions used in the phase-field model, which need to be satisfied
simultaneously to eliminate all anomalous interface effects. Then, the authors present an appropriate form of
the antitrapping current term for the two-sided case to remove all the spurious effects. The convergence test of
the output with respect to the interface thickness was carried out for the isothermal dendrite growth process,
which demonstrates an excellent performance of the present model.
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I. INTRODUCTION

The phase-field model has emerged as an effective com-
putational tool to simulate a microstructural evolution pro-
cess during phase transition [1]. Unique to the phase-field
approach is the diffuse interface concept in which an inter-
face is not a specific entity to be described separately, but is
merely an inhomogeneous localization of the state variable
called the “phase field.” This allows one to avoid explicit
tracking of moving phase boundaries in complex patterns,
which is in marked contrast to computational methods based
on a sharp-interface description [2]. The phase-field method
has been applied to solidification processes for pure materi-
als [3] and binary [4], multicomponent, and multiphase [5]
alloy systems, demonstrating its capability of describing a
variety of microstructural pattern formations.

The phase-field model for the solidification requires sev-
eral phenomenological descriptions and assumptions to be
introduced without addressing the underlying microscopic
details of phenomena. Therefore, its output carries a quanti-
tative meaning only when the model precisely reproduces the
free-boundary problem of interest, more specifically, diffu-
sion equation, mass conservation law at the interface, and the
Gibbs-Thomson relation in the case of isothermal alloy so-
lidification which is our main concern. In the so-called
sharp-interface limit where the interface thickness W is taken
to approach zero, the phase-field model is reduced to the
free-boundary problem by holding a relation between mea-
surable quantities and the parameter of the phase-field model
[6]. However, such a sharp-interface limit model makes it
virtually impossible to describe the phenomena on experi-
mentally relevant spatial and temporal scales. This is because
W, thus computational grid spacing Ax and the time constant
for the simulation need to be quite small compared to the
typical scales of the microstructural pattern to obtain a
W-independent result [7]. Karma and Rappel demonstrated a
seminal scheme to circumvent this serious deficit [8], focus-
ing on the solidification of pure material with equal thermal
diffusivities in the solid and liquid phases (symmetric
model). They devised a model based on the thin-interface
limit analysis in which the free-boundary problem is recov-
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ered with a finite value of W in the mesoscopic scale, show-
ing the excellent computational performance of the model.

The thin-interface limit scheme has been extended to the
alloy solidification process [9]. However, it has been pointed
out that the thin-interface limit model of alloy solidification
suffers from several deficiencies [10]. Almgren carried out a
distinct thin-interface limit analysis for pure material with
unequal diffusivities in the solid and liquid phases and dem-
onstrated that in the case of asymmetric diffusivities, several
anomalous effects exist which scale with W [10]. There are
also analogous interface effects in the alloy solidification
models, such as a discontinuity of the chemical potential
across the interface (associated with abnormal solute trap-
ping effect), solute diffusion along arclength of the interface
(surface diffusion), and modification of the mass conserva-
tion condition at the interface due to interface stretching
[10]. The elimination of these effects requires several con-
straints in interpolating functions used in the model to be
satisfied simultaneously, which results in the stringent re-
striction on the model. It seems hardly possible to construct a
computationally effective model which satisfies all the re-
quirements only by elaborating appropriate forms of the in-
terpolating functions. Karma devised a novel scheme to
solve this problem in the case of the dilute alloy solidifica-
tion with zero diffusivity in the solid (one-sided model) [11].
The essential ingredient in this scheme is a phenomenologi-
cal antitrapping current term in the diffusion equation which
is nonvanishing only in the interface region. This term pro-
vides an additional degree of freedom in choosing the inter-
polating functions, enabling the elimination of all the spuri-
ous effects for the one-sided model. This model is regarded
as a quantitative phase-field model in that one can precisely
describe the free-boundary problem with a computationally
reasonable choice of W. This antitrapping current scheme has
been increasingly utilized for quantitative computation of the
solidification processes in dilute binary alloy [12-14] and
has been extended to the multiphase system [15] and multi-
component system [16].

As mentioned, the significant progress has been made in
the quantitative phase-field modeling for the alloy solidifica-
tion. However, it should be pointed out that the antitrapping
current scheme is, in a strict sense, validated only for the
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one-sided system, viz., alloy with zero diffusivity in the
solid. In most of alloy systems, the solid diffusivity is gen-
erally several orders of magnitude smaller than the liquid
diffusivity. However, in the ferrite solidification of steel, one
of the most important industrial alloys, the ratio of the dif-
fusion coefficient in solid to the one in liquid is just order of
107'-1072 [17]. Also, when an extremely slow cooling pro-
cess is considered, the one-sided alloy model cannot repro-
duce the equilibrium process but inevitably describes the
Scheil solidification process. In the multiphase system, more-
over, the assumption of zero diffusivity in the solid prevents
the diffusion controlled migration of solid-solid phase
boundaries. This makes it virtually impossible to describe,
for example, peritectic transformation process, which in-
volves the solid-solid diffusion as well as liquid-solid diffu-
sion to complete the transformation. Despite these facts, little
has been addressed regarding the quantitative phase-field
modeling for the system with arbitrary value of the solid
diffusivity. The extension of the antitrapping current scheme
to the two-sided model has been attempted in Ref. [18]. The
authors demonstrated a thin-interface limit analysis and dis-
cussed a possible form of the antitrapping current term for
the two-sided model. However, the performance of their
model has not been clarified with thorough convergence
tests. Importantly, their antitrapping current term has a sin-
gularity in the one-sided case, that is, the contribution of this
term becomes divergently large when the solid diffusivity
becomes quite small, which is inconsistent with the origi-
nally developed phase-field model for the one-sided system
[11,12]. Such a divergently large contribution in the solute
current may lead to a computational difficulty. In this regard,
it is considered that the quantitative phase-field modeling has
not been successfully generalized to the system with an ar-
bitrary value of solid diffusivity. A gap between the models
still exists for one-sided and symmetric cases and such a gap
should be appropriately bridged by a generalized model for
two-sided case.

The main objective of the present study is to develop a
quantitative phase-field model for dilute alloy solidification
with arbitrary value of solid diffusivity. For this, we extend
the antitrapping current scheme to the two-sided case and
demonstrate the antitrapping current term which enables
elimination of all the spurious interface effects. It will be
seen that the present model is precisely reduced to the pre-
viously developed symmetric and one-sided models as spe-
cial cases. The performance of the present model is investi-
gated in terms of the convergence test of the solution with
respect to the interface thickness, focusing on isothermal
dendrite growth.

The organization of this paper is as follows. First, we
specify the free-boundary problem of our interest in the next
section and discuss a general form of the phase-field model
in Sec. III, which is a starting point of the present modeling.
For clear exposition of the problem, in Sec. IV, we demon-
strate the matched asymptotic analysis for the two-sided
model where the antitrapping current term is introduced. The
detail of the matched asymptotic analysis for one-sided
model was reported in Ref. [12] and our analysis corre-
sponds to the extension of their analysis to the two-sided
case. Then, we present the phase-field model with nonzero
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solid diffusivity which is free from the anomalous effects in
Sec. V. Since lengthy explanation is devoted to mathematical
derivation of the present modeling in Secs. IV and V, we
summarize only the essential equations of the present model
required for computation in Sec. VI. The performance of this
model is discussed in Sec. VII, followed by the conclusion in
the final section.

II. FREE-BOUNDARY PROBLEM FOR ISOTHERMAL
SOLIDIFICATION

In this section, we specify the free-boundary problem of
our interest which forms a basis in the matched asymptotic
analysis given in Sec. IV. We shall consider the solidification
process of a dilute binary alloy consisting of elements A and
B with liquidus slope m and the partition coefficient k. Pro-
vided that the local equilibrium condition is satisfied at the
interface, the c*oncentration (if elegknent B at the solid side of
the interface ¢, is given as ¢, =kc, with the concentration of
element B at the liquid side of the interface c,; . The tempera-
ture at the interface satisfies the following Gibbs-Thomson
relation:

T=T,—|mlc; -TR-V,/u, (2.1)

where T, is the melting temperature of pure material A and I"
is the Gibbs-Thomson coefficient given as I'=vy-T,/AH
with surface tension vy and the latent heat of fusion per unit
volume AH. For simplicity, we do not take into account the
anisotropy of the surface tension in this section and also in
the thin-interface limit analysis of Sec. IV. In Eq. (2.1), K is
the interface curvature, V,, is the normal velocity of the in-
terface, and w is the linear kinetic coefficient. For the iso-
thermal solidification at a temperature 7, the Gibbs-
Thomson relation is rewritten as

c)lcf=1=(1-kdyik— (1 -k)BV,, (2.2)

where ¢} is the equilibrium concentration of the liquid at Ty,
expressed as ¢f=(T,,—T,)/|m|. d, is the chemical capillary
length given as

d0=F/ATO, (23)

where ATy=|m|(1-k)c{ is the solidification range. B in Eq.
(2.2) is defined as B=1/(uAT,). In the bulk phase, the con-
centration ¢ obeys the diffusion equation

dec=DN%, (2.4)

where J, represents time derivative, D; is the diffusion coef-
ficient and its subscript i with i=s, and [/ distinguishes the
solid and liquid phases, respectively. In addition, the follow-
ing condition should be satisfied to assure the mass conser-
vation at the interface:

¢/(1=k)V,= Dd,c|” = Did,c

*, (2.5)

where d,c|” and d,c|" are the spatial derivatives of the
concentration normal to the interface at the solid and liquid
sides of the interface, respectively.

For the convenience in the discussion, we introduce the
dimensionless local supersaturation u as follows:
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I
uzw, (2.6)
cS(1-k)

with j,=1 in the bulk liquid phase and j_=k in the solid
phase. Utilizing this dimensionless quantity u, Egs. (2.2),
(2.4), and (2.5), are rewritten as

w* =—dok— BV, (2.7)
du=DNu, (2.8)
[1+(1-ku*]V,= kDdul” — D;dul*, (2.9)

where u* represents the value at the interface. The matched
asymptotic analysis in Sec. IV is carried out in the light of
the free-boundary problem thus described.

II1. PHASE-FIELD MODEL

In this section, we start with a general form of the phase-
field model for the alloy solidification based on the Kim-
Kim-Suzuki (KKS) model [9]. It is first shown that in a
dilute solution system, the thermodynamic model given in
Refs. [11-13] is essentially equivalent to the KKS model.

As in the previous section, we shall consider the isother-
mal solidification in the dilute binary alloy system consisting
of elements A and B with liquidus slope m and partition
coefficient k. We introduce the phase field p specifying the
solid phase with p=1 and the liquid phase with p=0. The
interface is defined as a mixture of the solid and liquid
phases [9]. The Ginzburg-Landau-type free energy functional
of the system is given as follows:

F=f {(312)(Vp)* + &f(p) + Ep)f, + [1 - g(p)1f }aV,
v
(3.1)

where o is the gradient energy coefficient, f(p) is the double-
well potential with minima at p=1 and 0, and @ is the po-
tential height. f; and f; are the free energy densities for the
bulk solid and liquid, respectively. The interpolating function
g(p) is a monotonous function satisfying g(0)=0 and g(1)
=1.

The two concentration fields for the solid ¢, and for the
liquid ¢; are introduced. In the interfacial region, these con-

centrations obey the mixture rule ¢=h(p)c,+[1-h(p)]c, with

an interpolating function h(p). The concentrations ¢, and ¢
are not independent of each other and the relation between
them is determined by the condition of equal chemical po-
tentials at each point df,/ dc,=df,;/ dc;= . which is the essen-
tial condition introduced in the KKS model [9]. This condi-
tion allows the equilibrium phase field profile to be
decoupled from the concentration profile, removing an extra
contribution to the surface energy which depends on the sol-
ute concentration at the interface and the temperature. In the
present study, we hold a relation c,=kc;, since our focus
is placed on the dilute solution system. Then, the tempora
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1 evolution of the phase field p can be described by the time-
dependent Ginzburg-Landau equation ﬂ,p:—M OF/ dp with
the phase-field mobility M, which is explicitly given as [9]

M_lﬁtp = 52V2p - Gf’ - gr[fs(cs) _fl(cl) - (Cs - CI)MC]’
(3.2)

where f'=df/dp and g’ =dg/dp. The time evolution of the
concentration field is described by the following diffusion
equation:

ge=VD(pWh(p) Ve, +[1-h(p)]Ve},  (3.3)

where D(p) is the diffusivity of the phase field dependent
with D(1)=D, and D(0)=D,. It is noted that the function

h(p) should be equivalent to g(p) in the variational formula-
tion. On the other hand, these two functions are indepen-
dently defined within a nonvariational formulation and this
allows a simple choice of h(p)=p, which is advantageous in
terms of the computational efficiency [8]. In the following,
our discussion is given in the nonvariational form, though it
is applicable to the case of the variational formulation.

The relation between the KKS model and the other mod-
els given in Refs. [11-13] can readily be grasped by trans-
forming the variables. For this, we introduce the phase field
¢ given as ¢=2p—1. The solid and liquid phases are speci-
fied by ¢=+1 and —1, respectively. Furthermore, the dimen-
sionless local supersaturation u is defined as

c;—cf

(3.4)

u= .

¢ =cs
This is equivalent to the definition of Eq. (2.6) in the sharp-
interface description. In the dilute solute limit, the thermo-
dynamic driving force in Eq. (3.2) can be approximated as

[9]

fse) = file) = (e; = chpe = = %[67 - = (e=¢))]

m
RT

~-—"cj—c{=(c;~ )],
m

(3.5)

where R is the gas constant and v,, is the molar volume. In
this approximation, we neglect mc] term in Ty=T,,—mc],
since this term results in the second-order contribution of
concentration which is negligibly small in the dilute solution
limit. Then, Egs. (3.2) and (3.3) are rewritten in terms of ¢
and u introducing the antitrapping current term jar,

M'9,p="V - w2f —3'\u, (3.6)
1+k-(1-k)h
L OO, VD) ¥ - ]
#5111 = Rulgn(e),
3.7)
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where M=4A7l, o=0/2, w=w/4, and N is given as A\
=RT,(1-k)(c]-c%)/(2v,,) and h(¢)=2i7(¢)—1. q( o) is rep-
resented by

D($)[1 +k—(1-k)h(d)]
D, 2

q(¢) = (3.8)
and, accordingly, g(+1)=kD,/D; and g(—1)=1. The antitrap-
ping current term j,r is given as [12]

o Vo
jar=—a($)—=[1+ (1 -kuld .

. Vo Vel
This is a phenomenologically introduced term which is non-
vanishing only in the interface region. a(¢) is an interpolat-
ing function which provides an additional degree of freedom
in choosing a set of the interpolating functions. When we
further define 7=(Mw)™', W?=c?w™!, N*=(15/8)\/ w, f'
=2f", and g'=(8/15)g", Egs. (3.6) and (3.7) are, respec-

tively, expressed as

9,p= WV~ f'(p) —Ng' (Pu,

(3.9

(3.10)

[1+k—(1 —k)h(¢)]a
2 i

\%
= V<D/q(¢) Vu+a(pWl+(1- k)u]ﬁﬂﬁﬁ)

+ %[1 + (1 =k)uldh(g). (3.11)
Equations (3.10) and (3.11) represent the final set of equa-
tions for the present phase-field model. When we consider
one-dimensional profile of ¢ during steady state with bound-
ary condition ¢=1 at x—-2 and ¢=-1 at x— +, this
model leads to ¢,(x)=—tanh[x/(y2W)]. It should be noted
that W corresponds to a measure of the thickness of the dif-
fuse interface. Also, the surface tension v is represented by

(3.12)

where I=242/3. As the advantage of the KKS model, y does
not depend on the solute concentration field.

It is important to point out that Egs. (3.10) and (3.11) are
identical to Egs. (68) and (69) in Ref. [12] except for the fact
that our discussion is limited to the isothermal process. Also,
the model of Ref. [10] for a pure material, where a thin-
interface limit analysis was performed in the case of a two-
sided model, is regarded as a special case of the above equa-
tions with k=1 and a(¢)=0. In the following, we present the
thin-interface limit analysis of Egs. (3.10) and (3.11).

y=IWw,

IV. ASYMPTOTIC ANALYSIS FOR TWO-SIDED MODEL

In this section, we carry out the matched asymptotic
analysis of the phase-field model given by Egs. (3.10) and
(3.11) in order to demonstrate the constraints imposed on the
model for description of the free-boundary problem. As al-
ready mentioned, the asymptotic analysis for the one-sided
model with the antitrapping current term was detailed in Ref.
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[12]. The present analysis corresponds to the extension of
their analysis to the case of the two-sided model. We use an
expansion parameter e=W/d, and perform the asymptotic
analysis up to second order in &. As pointed out in Ref. [12],
this expansion scheme with € yields all important correction
terms at second order.

A. Dimensionless expressions and matching conditions

It is first convenient to rewrite the sharp-interface model
and the phase-field model in dimensionless forms by mea-
suring length in unit of d;, and time in unit of doz/ D,. Using
these dimensionless spatial and time scales, the sharp-
interface equations (2.7)—(2.9) are rewritten as

(4.1)

where ¢,=D,/D;=q(+1)/k for the solid, ¢;=q(-1) for the
liquid, and

du=q,V?u with i=s or [,

u*=—- k- Pv,, (4.2)

[1 + (1 - k)u*]vn = CI(+ 1)3,1M|_ - q(_ 1)(9,,1/!

. (4.3)

where k=dyk is the dimensionless interface curvature, (3

= E D,/d, is the dimensionless kinetic coefficient, and v,
=d,V, /D, is the dimensionless normal velocity.

In the phase-field model, we first utilize the van’t Hoff
relation for the dilute binary alloy given by m
=T,>R(1-k)/(v,,AH) to express \* as

15 RT
2 DR (e )
8 2v,w ’
15 mAH 15 IW
=2 (- ) == =ae, (4.4)
8 2T, 16 d,

where a,=I/J with J=g(+1)—g(-1)=16/15. Then, the di-
mensionless forms of the phase field model are given by

ag’dp=eV2p—f'(p) —aeg’ (Pu, (4.5)
[1+k=(1-RAP]
U
2
\Y%
= V(q(¢) Vu+a(pe[l+(1- k)uWﬁ)
+ %[1 + (1 = k)uldh(), (4.6)

where a=D,7/ W>.

In the following, we will expand the ¢ and u fields in
power of &. In order to avoid an expected abrupt variation of
these fields along the interface, one needs to deal with the
solutions in two regions [19]; an inner region which corre-
sponds to the spatially diffuse interface region where ¢ var-
ies rapidly and an outer region which represents the bulk
phase region away from the interface. The expansions in the
inner region will be matched order by order in power of € to
those in the outer region. The outer and inner expansions of
the phase field are written as ®=®)+e®,+>P,+--- and
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b= hy+ed,+£>h,+- -, respectively. Similarly, the outer and
inner expansions of the u field are given as U=Uy+eU,
+&?U,+- - and u=uy+eu,+&*uy+- -+, respectively. Since in
the outer region ® is constant in each phase and g'(*1)=0,
®=*1 are stable solutions for the ¢ equation (4.5) to all
orders in & for any value of U. Accordingly, U, simply
obeys the diffusion equation to all orders in &

U, =q;V*U, withn'=0,1,2, ..., (4.7)

where i=s in the solid and i=/ in the liquid.

In order to find the inner solution, as described in Refs.
[8,12], we rewrite the phase-field equations (4.5) and (4.6) in
terms of a local orthogonal set of curvilinear coordinates in
the reference frame of the interface r (signed distance to the
¢=0 level set) and s (arclength along the interface) and then
the rescaled coordinate 7=r/e. The detail of the differential
operators in terms of r and s is found in Refs. [12,19]. In this
coordinate system, the phase-field equations are expressed as

[12]
9, -1 (#)+&[(av, + K)d,¢—ag’ ($p)u]

+&%(d - Kznﬁ,,qﬁ) =0(&%), (4.8)

£720,[q(d)dp] + &7 (5u,[1+ k= (1 = )A($)1(0,00)
—30,[1+ (1 = Duld,p($) +v,0,{a(B1 + (1 - k)u]
X(0, )} + kq(d) ) + kv,a(B)[ 1+ (1 = k)u](d,4)
- &> 9q(P)d,u + d[q(¢)du] = O(e). (4.9)

As mentioned, the expansions in the inner region will be
matched order by order in power of € to those in the outer
region. The matching conditions for the phase field are trivial
as given by

do(7.5)= + 1 as p— + oo,

¢ (m,s)=0as p— =+ oo, (4.10)

with n' =1. The matching conditions for u field are exem-
plified as [12]

uo(n,5) = Up|™(s) as p— = oo,
uy(n,5)= Ui (s) + 93, Up| " (s) as p— * oo,

uy(1.8) = Uo|™(s) + 99, U\ | (5) + (7/2) 3. Uy|*(s)
(4.11)

as p— * o,

where C|* represents the quantity C evaluated at the inter-
face, approaching from the liquid side ( C|*) or the solid
side ( C|).

B. ¢ equation at €’

Substituting the inner expansion of the phase field into
Eq. (4.8), we obtain at the leading order

9, o= () = 0. (4.12)
When we define f' () =—py+ ¢03, this relation yields

PHYSICAL REVIEW E 79, 031603 (2009)

¢o(7) =—tanh % (4.13)
\r

with the matching condition (4.10). Also, we can grasp the
relation d,¢y=(1/ \"2)(9{’02— 1.
C. u equation at 72

The substitution of the inner expansion of the u field into
Eq. (4.9) yields at order &2,

3,Lq(bo)d,ue] =0,

of which the integration once leads to d,un=Cy(s)/q(p).
From the matching condition (4.11), we have the condition
lim,,_. 1., d,,uo(7,5)=0. Thus, Cy(s)=0 and

(4.14)

uo(7,8) = inp(s). (4.15)

It is seen that u is independent of 7 and is continuous across
the interface.

D. ¢ equation at &!

The phase-field equation (4.8) at the first order in & is
written as

Loy =ag'(¢o)ug— (v, + k) d,ebo, (4.16)

where L:a,ﬁ— f"(d) is a linear differential operator. It is
noted that the partial derivative of Eq. (4.12) with respect to
7 yields the relation Ld,¢,=0. Since L is the self-adjoint, the
right-hand side of Eq. (4.16) must be orthogonal to d,¢,

which leads to
auy + (av, + kK)I[=0, (4.17)

where

J=—f 8'(do)dyodn=g(+ 1) —g(=1), (4.18)

I= J (d,,0)*d 7. (4.19)

The constants / and J are the same as those employed in Eq.
(4.4). Therefore, we arrive at the following Gibbs-Thomson
condition:

y=—av, - K, (4.20)
which becomes identical to Eq. (4.2) by holding B=a.

E. u equation at !

3 (o) an] = 30,[1+ (1 = B)iE)d,fu(do) = v,d,Halhy)
X[+ (1 = k)itg)(d,,¢0)}- (4.21)
We integrate this equation once to find
q(do) Iy = %U,',[h(d’o) = 2a(¢hy)(d,,p0)] + Ay (s),
(4.22)

with v)=v,[1+(1-k)iiy] and an integral constant A, and
second time to obtain
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_ JWI (o) = 20(¢0)(t9§¢0)]

0 q(¢h)

e
*f gy A,

with constant A,. Thus, the matching condition (4.11) leads

(4.23)

to
W(s) v
=A,(s)+A(5)G +—F+ { =1 + p(+1)}

= U\|" + 99, Uy|™ as n— * o, (4.24)

where
G —fﬂc( ! - ! )d (4.25)

7)o \g@) g/ '
F.= f ~ [p(dy) - p(= Ddn. (4.26)
0

p(bo) = [h(ey) = 2a(ehy)(d,,$0)V q( o). (4.27)

Since the term a(¢y)d, P, vanishes at the limit 7— =, we
have p(¥1)= ¥ 1/g(51). Therefore, we obtain

. A v,
d, Uo|™ = fs) F—= (4.28)
qg(1)  2q(*1)
and, also,
A(8) = 3q(= )8, Ug[* + 3q(+ )3, U, (4.29)

[1+ (1 =K)igglv,=q(+ 1)d, Ug|~ = q(= 1), Uy[*.
(4.30)

It should be noted that Eq. (4.30) is the leading order expres-
sion of the mass conservation law at the interface. From Eq.
(4.24), we furthermore find

!
UI
Ul" = Uil =A1()(Go = G + JH(F = ). (4.31)
Hence, in order for U, to be continuous across the interface,
it is necessary to satisfy the following conditions:

G.,=G_=G, (4.32)

F,=F =F. (4.33)

These are the integral constraints between g(¢), a(¢), and

h().

F. ¢ equation at 2

L¢2=m¢12—

2 (lel)n+ K)(977¢l +a1g,(¢0)ul

+ayitgg" (o) by + K277£77,¢0~ (4.34)
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From the discussion given in Eq. (4.16), one can realize that
the left-hand side of Eq. (4.34) be vanished by multiplying
d,¢ and integrating it from —o to +. As for the right-hand
side of Eq. (4.34), the symmetry properties of the involved
functions are utilized as in Refs. [8,12]. The substitution of
Eq. (4.20) into Eq. (4.16) yields

L¢1 == (C(Un + K)[alg,(fﬁo) + an¢0],

where L is the even operator and J,,¢ is the even function.
Since g(¢) is chosen so that g(1)=—g(~1), g’ is even in 7.
Therefore, ¢, is an even function and d,¢, is an odd func-
tion. In the right-hand side of Eq. (4.34), (;512, g'(¢y), and
d,¢, are even functions, while f"(¢), d,¢, and g" are odd
functions. From Eq. (4.34), then, one realizes the following
relation to be held:

(4.35)

+0o0
alf g (o)uyd,podn=0. (4.36)

The substitution of Eq. (4.23) into Eq. (4.36) leads to

1 - K
Ev,',f (Jo P(¢0)d§>8/(¢o)an 0d 7

+ f ( f 1md&)g (ho) . bod m — JA(5) = 0.
(o)

(4.37)

The second term in Eq. (4.37) can be transformed as

- 771‘\1(3) ,

J_w (fo q(¢o)d§)g (¢0)3,dodn
(T[T A) L\ ds()
‘L (fo 6](¢0)d§> an

g(=1)- g(d>o)
=4 ( )f t](d’o)

—A<>f s D-s@),

6](¢0)
=A(5)g(= 1)G, - A\(s)g(+ NG_+A,(s)(F, - F_),
(4.38)
where
N rCa) g<¢o)>
F*"fo <q<:1> ao) T Y

Accordingly, provided that the condition given by Eq. (4.32)
is satisfied, we can determine the constant A,(s) as follows:

Ay(s)=—A(5)G + '(S)(F —F)+ . (4.40)

&INI

1
2

where
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~ +oe
Substituting Eq. (4.40) into Eq. (4.24), we realize the follow-
ing relation:

J P(¢0)d§>g'(¢o)¢9n¢odﬂ~ (4.41)

0

!

+ -~ U"~
U1|_ =A2(S) +A1(S)G+ EF

K+JF
J

A1(S)

A A 1
(F+—F_)+Ev,',( ), (4.42)
where we assume that the condition given by Eq. (4.33) is
satisfied. It is noticed that A,(s) depends on the local
gradient d,Uy|*. In Eq. (4.42), we need to hold the following
relation to eliminate the term proportional to A(s):

A A

F.=F.. (4.43)

Finally, we obtain the Gibbs-Thomson relation at the first
order

ﬁ0+8[71=_K_an’ (444)
where U,= U,|*= U,|” and
K+JF
B=a-¢g[l1+(1 —k)ﬁo](z—J). (4.45)

From this relation, one can determine the Kinetic coefficient
7 or M within the thin-interface limit [8,12].

G. u equation at &°

Substituting the inner expansion of the u field into Eq.
(4.9), we get the relation at order £° and we integrate it once
from 0 to # to find

7

51(9{’0)37,”2 + ‘1'(¢0)¢1<97,M1 + Kf 6](¢0)3§’41d§

0

4 f”vn[l +k—(1 _k)h(¢0)]8§u1d§+vna(¢0)

2
0
X[1+ (1 =K)itg)(9,¢1) +vya’ (do) i1 + (1 = k)it]
X (o) + v,a(Po) (1 = k)uy](3,,ho)

n
+ kv, [1+ (1 - k)ﬁo]j a( o) (Fgpo)dé %(1 - k)
0
n
X f w,dh(do)dé - %[1 + (1= K)ol ($) by
0

7
+ ﬁsonf q(o)d&=As(s), (4.46)
0

with constant As(s). In the limit 7— *, ¢, and d,¢, be-
come negligibly small values, we can drop the terms propor-
tional to these quantities. The third term in Eq. (4.46) is
expressed as

PHYSICAL REVIEW E 79, 031603 (2009)

7 . (7
Kf q(¢o)dau,dé = K(EU,QJ [A( o) = 2a( o) (Ieehy) Jd €
0 0

+A,(s) 7]) , (4.47)

and the term proportional to a(¢,) in the integrand cancels
out with the eighth term in Eq. (4.46). Hence the sum of third
and eighth terms yields

K(év; f i h(¢o)d§+A1(S)7}>
0

!

=l i f  [h(do) — (T 1)]dE + kA1)
0

2

!

— + vn
kq(F1)d, Ug|" 9+ KEHi as 7 — * oo,

(4.48)

where we have used Eq. (4.28) and defined

H. = f (o) - h(F 1)]dé.

0

(4.49)

The sum of the fourth and ninth terms leads to

f” vu[1+k—(1-k)h(e)]
0

v 7
- En(l —k)f uydgh(¢hy)dé
0

v, [1+k=(1=h(dy)]
_ ! "

= j=0,( U\|" + 59, Ug|*) (4.50)

as p— X

with j, =1, j_=k. The eleventh term is rewritten as

n
&ssUOI Q(¢0)d§= aSsl]OQ(I 1)77+ (?ssUOQi as n— * 0,
0

(4.51)

where

0.= f  la(d) - g(F 1)dé. (4.52)

0

Regarding the first term in Eq. (4.46), the matching condition
given in Eq. (4.11) leads to

lim &nu2=6’r U1|t + 77&% U0|i.

p—*o

(4.53)

As already discussed in Eq. (4.7), the outer solution of u field
obeys the simple diffusion equation and this is expressed in

the curvilinear coordinates as
Q(I 1)0’& Un’|i == Uivn + Q(I I)K](yr Un’|i
—q(x 1) U, |". (4.54)

Substituting all the above expressions into Eq. (4.46), one
can arrive at
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!

+ + vn
Q(I 1) arU1|7 +jivn U1|7 + KEHi + avsUOQi :AS(S)~
(4.55)

Thereby,

!

~ v,
g+ 1), Ul —q(-1)d, Uj[*=v,(1 = k) U, + K;(H+ -H)

+ assUO(Q+_ Q—) (456)

In order to describe the mass conservation law within the
accuracy of & order, we require

H,=H._, (4.57)

0.=0-. (4.58)

If these relations are satisfied, one obtains

v, [1+(1=k)(iy+eU,)]
=q(+ 1)(d, Up|” + &3, Uy|") = g(= 1)(3, Uy|* + &4, U, [*).
(4.59)

H. Summary of the constraints

In the two-sided model, the description of the Gibbs-
Thomson relation and the mass conservation law up to the
first order in & requires five types of integral constraints in
the interpolating functions to be satisfied simultaneously.
These constraints are summarized below.

The elimination of the discontinuity in u field requires
[Egs. (4.31) and (4.42)]

[ ] e M et
o Vgl a1 \ae) g+ 1))

(4.60)
f [p(¢) - p(— 1)]dn= J  [p(é) - p(+ Va7,
0 0
(4.61)
(- [ 3-8
o \a=10 @) ")y \a D ae)) "
(4.62)

The interface effects in the mass conservation law are re-
moved when the following conditions are satisfied:

f () h(= 1))d = f W) - h+ Dldn.

0 0
(4.63)
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f [q(¢)—q(—1)]d77=f_ [q(#) —q(+ 1)]dn.
0 0

(4.64)

Equation (4.63) is related with the interface stretching effect
and Eq. (4.64) is associated with surface diffusion, viz., sol-
ute diffusion along arclength of the interface. It should be
noticed that we have only four degrees of freedom in choos-
ing the relevant interpolating functions, viz., h(¢), g(¢),
q(¢), and a(¢), while there are five types of constraints.

In the one-sided model, as detailed in Ref. [12], there are
only three constraints, Eq. (4.61) with a modification in
p(¢), Egs. (4.63) and (4.64). Hence, thanks to the antitrap-
ping current term, all the constraints can be satisfied. Espe-
cially, when one defines the following form of a(¢) [12]:

() = 1][1 - g(¢)]
T 2= )

the constraint (4.61) becomes identical to Eq. (4.63) and,
hence, one can determine A(¢) and g(¢), independently. On
the other hand, in the two-sided model, if we choose a g
function from one of the commonly used forms, we have
only three functions at our disposal. Therefore, even though
the antitrapping current term provides the additional degree
of freedom in the model, it is quite difficult to fulfill all the
requirements.

a(e) , (4.65)

V. PHASE-FIELD MODELING FOR TWO-SIDED MODEL

It was demonstrated in the previous section that one needs
to satisfy five types of constraints in the interpolating func-
tion in the thin-interface limit for the two-sided model. In
this section, we present the form of the antitrapping current
term which allows the elimination of the W-dependent inter-
face effects with simple choice of the interpolating functions.

A. Antitrapping current term for two-sided model

From a closer look at the asymptotic analysis given in
Sec. 1V, it is realized that the integral constraints given in
Egs. (4.60) and (4.62) are associated with the constant A (s)
which is the integral constant for the expression of u;. In the
analysis for the one-sided model in Ref. [12], this constant is
found to be proportional to v, by utilizing the fact that
q(+1)=0 in the one-sided model. In this study, we rewrite the
spatial gradient of u field at the solid side of the interface as
follows:

3,Ug| () = = 3u/x(s), (5.1)

with a function x(s). It is noted that this is not an assumption
but a reexpression of d,Uy|". Hence, Eq. (5.1) does not es-
sentially change the asymptotic analysis. However, utilizing
x(s) function, we can express the constraints of the interpo-
lating functions in different forms, which is advantageous in
obtaining an appropriate form of the antitrapping current
term. The dependence of x on s is not explicitly specified in
the discussion given below.
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The above expression does not change the mathematical
procedures and the results regarding ¢ equation at £° (Sec.
IV B), u equation at 2 (Sec. IV C) and ¢ equation at &'
(Sec. IV D). A difference appears in u equation at £~'. When
Eq. (5.1) is substituted into Eq. (4.22), one obtains

Ity = {%Urll[h((lso) —2a(¢o)(d,¢0)] +A1(s)}/q(¢)0)
=[3v.+A,(s) Ja(+ 1) == v/ x as p— o0,
(5.2)

and, accordingly,

Ai(s)==30,[1+q(+ Dx].

Then, the expression of u; given by Eq. (4.23) is rewritten as

(5.3)

1 7
uy = Evﬁ,f p'(o)dé+Ay(s), (5.4)
0
where
i < [0 =20 ) Get) =1 =g DA<
q( o)
The matching condition yields
uy =Ay(s) + %U,QF; + %v,’lp’(i 1)y
= U\|" + 59, Uy|" as n— * oo, (5.6)
where
F. =J [p'(¢o) —p'(+ D]d7. (5.7)
0

Since the term proportional to a(¢,) vanishes in the limit
n— *o, we have p'(=1)=—[2+¢q(+1)x]/q(-1) and
p'(+1)=—q(+1)x/g(+1). Therefore, we obtain

q(= 1)3, Ug|* == 5vl[2+ g(+ Dx],

q(+1)d, Ul == 50q(+ D, (5.8)

and we can again recover the mass conservation law within
the leading order expression as given by Eq. (4.30). More-
over, we find the following relation from Eq. (5.6):
Ujl* = Uy~ =3v)(F, - F"). (5.9)
Hence, it is required to satisfy the following relation to re-
move the discontinuity of the u field across the interface:
F.=F =F'. (5.10)
It is important to note that there is only one integral con-
straint in this procedure, which is in contrast with the re-
quirement of two constraints, (4.32) and (4.33), in the dis-
cussion of Sec. IV E.
Next we focus on ¢ equation at 2. The substitution of
Eq. (5.4) into Eq. (4.36) leads to the expression for A,(s) and
then, employing Eq. (5.6), one comprehends
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. K +JF
el EE)

" 2J
where

+ ]
K,:f lf P’(¢o)d§:|g'(¢o)(9,,¢od77. (5.12)
0

—

Hence, the condition of Eq. (4.62) is not required. We can
again obtain the Gibbs-Thomson relation at the first order
with the modification in definition of B as

K +JF'
—) (5.13)

B:a—8[1+(l—k)b_to]( 57

Finally, there is virtually no difference in the discussion
concerning the u equation at £° (Sec. IV G). It may be suf-
ficient to point out only the following point. The third term in
Eq. (4.46) is now expressed as

7 7
Kf q(o)dgu,dé= %U;K{f [ (o) = 2a(eby) (Fpo)1dé
0 0

—-[1+qg(+ 1)X]7]} (5.14)

and, thus, the sum of the third and eighth terms yields

0

%v;K{J h(o)dé—[1+q(+ l)x]n}

1 7
= EULK{L [A(¢o) —h(+1D)]dé+ n—[1+4q(+ 1))(]77}
v !
= kq(*1)d, Uy|* n+ KEnHi as p— * oo, (5.15)
which is equivalent to Eq. (4.48). The other procedures are
identical to those given in Sec. IV G and we obtain the mass
conservation law (4.59) with the integral constraints, (4.63)
and (4.64). Tt is important to note that in the above discus-
sion, all the spurious interface effects vanish when one sat-
isfies only three constraints (5.10), (4.63), and (4.64), which
is quite comparable to the case of one-sided model [11,12].
We have not yet defined the specific form of a(¢). In this
study, we focus on the following form:

[A(p) = 1][1 = g(P)] = x[g(+ 1) = q(P)][1 - g()]
(- 1) ’

a(¢) =

(5.16)

with a given form of function y. One may notice that when
x=0, Eq. (5.16) is reduced to the one given in Eq. (4.65).
Importantly, the above definition of a(¢) leads to the follow-
ing relation:

FlL=H.+x0-. (5.17)

Thus, we have only two constraints H,=H_ and Q,=0_,
which allows to choose h(¢) and g(¢), independently. In this
study, we choose
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h($)= ¢,

which is a computationally effective choice, satisfying H,
=H_ [8]. Also, we assume the following form for g(¢):

q(d) = 3{g(+ )+ q(= 1) +[q(+ 1) — g(-= 1)]}.
(5.19)

(5.18)

Then, the condition Q,=Q_ becomes equivalent to H,=H_
and hence all the constraints are satisfied. In this choice of
the functions, a(¢) is given as

a($) = —=[1 - g+ DIV, (5.20)
242
with
V(x)=1-3[1-g(+ Dx. (5.21)

It is noted that when one takes ¢(+1)=0 and x=0, the Eq.
(5.20) reads a(¢)=1/(2y2) which is equivalent to the one
proposed for the one-sided model [11,12]. On the other hand,
when the symmetric model is concerned, i.e., g(+1)=1, a()
vanishes as is consistent with the model derived by Karma
and Rappel for the symmetric case [8]. Therefore, the present
model can be seen as a generalization of the quantitative
phase-field models of two-limited cases, one-sided [11] and
symmetric cases [8], into the two-sided case.

In the choice of the interpolating functions thus described,
the kinetic coefficient 3 is expressed as

Bea—e[l+(1 —k)ﬁo]‘P(X)(M

- ) (5.22)

where K* and F* are given as
400
e[

F*=f (o + Ddn.

0

7
f ¢od§>g,(¢o)3n¢od77’ (5.23)

0

(5.24)

These are the same as the solvability integrals derived in the
symmetric case [8]. In the dimensional units, Eq. (5.22) is
rewritten as

- T NEW? _
B=01A*W{1—az D, [1+(1—k)uo]‘1’(x)},
(5.25)
with
K* + JF* (5.26)
A= — ., .
: 21

For the slow solidification process, the kinetic effect is neg-
ligibly small and, hence, E is approximated to be zero. This
is achieved for the symmetric case, k=1 and g(+1)=1 by
holding 7=a,W?\*/D,. For the two-sided case, the vanishing
condition of the kinetic coefficient leads to
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2y %
7'= a, W\ [1+(1=K)itg]¥(x).
D,

(5.27)

This expression is identical to the one for the one-sided
model [12], except for the term W(y) involved in Eq. (5.27).
It is noted that the phase-field relaxation time 7 depends on
uy. This dependency is dealt with by assigning a constant
value to u;, or by introducing u field dependence on 7 as
discussed in Refs. [12,13].

As described in this section, the antitrapping current term
was determined for the system with arbitrary value of the
solid diffusivity. Importantly, the present model contains the
previously developed one-sided and symmetric phase-field
models as special cases and, therefore, this model success-
fully bridges the gap between two limited cases. It should be
pointed out that Eq. (5.20) and (5.27) involve the function
x(s) which is originally output quantity obtained from the
simulation. In the present model, x(s) is assumed to be a
priori given quantity. The function x(s) can be considered as
an adjustable quantity of which value or form is numerically
fixed by comparing the output with the other numerical so-
lution for a certain (simple) condition. Also, the form of x(s)
can be assumed in terms of an approximate solution of the
free-boundary problem. It is noted that the contribution of
the antitrapping current term is proportional to W and hence,
the result of the present model should be converged to a
unique solution as W decreases regardless of the given form
of x(s), while the convergent behavior of the solution should
depend on x(s). In this regard, x(s) can be considered as a
quantity controlling the convergent behavior of the solution
in this model. As demonstrated in Sec. VII, in fact, the con-
vergent behavior with respect to W depend on the value of
x(s) and the solution of the present model becomes almost
independent of the value of y(s) when W is small.

B. Temperature dependence and anisotropy

In this study, our discussion has been directed to the iso-
thermal solidification process. It is trivial to extend the
present model to a directional solidification process within
the frozen temperature approximation, in which the tempera-
ture field is given as

T(z) =Ty + G(z - V[,t), (5.28)

where G is temperature gradient along z axis and V), is pull-
ing speed. Then, the last term on the right-hand side of Eq.
(3.10) N*g"(p)u is replaced by N*g'(h)[u+(z—V,t)/l7] with
a thermal length [;=|m|(1-k)c..,/ (GK) and the alloy concen-
tration c... This does not essentially change the final form of
the antitrapping current term (5.20). For a more realistic
simulation, one may solve heat conduction equation. The an-
titrapping current scheme for the one-sided model has been
applied to the solidification process coupled with heat and
solute diffusions in Ref. [13].

The crystalline anisotropy can be included in the standard
manner. As is common practice, the orientation dependences
are introduced to W and 7. These are described as W(6)
=Wya,(60) and m(6)=r7ya,(0)* with O=arctan(d,¢/d,p) and
a,(6)=1+g4c0s(46) for fourfold symmetry. Then, Eq. (3.10)
is rewritten as
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7(0)3,p=VIW(O)* V ¢| - a[W(O)W'(6), ]

+,[W(OW' (0)d,p] - f'(¢) - N*g' (P)u,
(5.29)

where W' (6)=dW/d6. 1t is noted that the interface thickness
W is involved in the antitrapping current term. As discussed
in Ref. [12], since the anisotropy of the chemical capillary
length dy[1-15g4c0s(46)] is 15 times larger than the one of
W(6), it may be safe to use the mean value of W(6) in the
antitrapping current term which leads to only a small error.

VI. SUMMARY OF THE PRESENT MODELING

The essential equations of the present model are summa-
rized in this section. We focus on isothermal solidification in
dilute binary alloy system and, for simplicity, we do not take
the crystalline anisotropy into account. The phase field ¢
specifies the solid phase with ¢=+1 and the liquid phase
with ¢=—1. The time evolution of ¢ is described by

0,p= WV - f'(p) = N*g' (Pu,
where 7 is the phase-field relaxation time, W is the measure
of interface thickness and is related to the gradient energy
coefficient, and A\* is associated with the thermodynamic
driving force. The interpolating functions were chosen so
that f'(¢)=—¢+¢* and g'(¢d)=(1-¢*)> In Eq. (6.1), u is
the dimensionless concentration defined as u=(c;—cj)/(c]
—c¢) with liquid concentration ¢;, and equilibrium concentra-
tions of liquid ¢; and solid ¢{. The time evolution of the
conserved quantity u is given by the following diffusion
equation:

[1+k-(1-kh(¢)]
2

(6.1)

du=V[Dig(d) V u—jarl

+ %[1 + (1= kulah(¢),

(6.2)

where k is the partition coefficient and D, is the liquid diffu-
sivity. h(¢) and g(¢) are the interpolating functions. The
antitrapping current j,r is written as

jar=—al@ W1+ (1= Ruladros.

Vo

where a(¢) is the interpolating function. The thin-interface

limit analysis demonstrated that precise description of the

Gibbs-Thomson relation and mass conservation law at the

interface imposes five constraints (4.60)—(4.64), on the inter-

polating functions. In order to avoid such restrictions on the
model, we proposed the following form of a(d¢),

[1(p) —1][1-g(P)] - Xlg(+1) —q(d)][1-q(P)]
V2(¢* - 1) ’

(6.3)

a(¢) =

(6.4)

where y is related to the concentration gradient at the solid
side of the interface [Eq. (5.1)]. In this study, x is employed
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as the parameter controlling the convergent behavior of
the simulation result with respect to the interface
thickness. When we define h(p)=¢ and ¢(o)

={g(+1)+q(=1)+[g(+1)-q(=1)]¢}/2, a(¢) is given as

a($) = —=[1 - g(+ DI¥(p), (6.5)
2\!’2

with

V(x)=1-3[1-g(+ Dlx. (6.6)

Then, within the thin-interface limit model, the kinetic coef-
ficient is expressed as

r
a
NEW

where a;=0.8839--- and a,=0.6267--- in the choice of inter-
polating functions described above [8]. iz, is constant related
to u field profile. Furthermore, from the vanishing condition
of the kinetic coefficient, one obtain

™

172
{1— A W[1+(1—k)ﬁo]\I'(X)}, (6.7)

a
TD[

a, W?\*
T=

[1+(1=-k)ug]V(x). (6.8)

1

These are the essential equations for the present phase-field
model. For the system with crystalline anisotropy, one has to
solve Eq. (5.29) instead of Eq. (6.1). In the next section, the
performance of this model is demonstrated.

VII. NUMERICAL RESULTS

In this section, the present model is subjected to the con-
vergent test with respect to the interface thickness in order to
investigate the computational performance. Our concern is
placed on the isothermal dendrite growth process in two-
dimensional system.

As pointed out in the Sec. V A, the computation of the
present model requires a priori knowledge on x(s). Within
this model, the convergent behavior of the solution is con-
sidered to depend on the function form y(s). In this regard,
we consider the planner interface moving at a constant ve-
locity v, along r direction. An exact solution of Eqgs.
(4.1)—(4.3) for this problem is given by

{[1 - Bv,(1 —k)lexp(-v,r) -1 -kBv,, r>0,

u(r) =

- Bu,, r<o0
(7.1)

and kBv,=Q-1 with the far-field boundary condition
u(+0)=—CQ. Therefore, y is given as y=0. For a general
case, i.e., nonplanner interface, the value of y deviates from
zero, depending on the interface curvature. In this study,
however, we assume that y=0 for simplicity. It will be seen
that the present model demonstrates a reasonable convergent
behavior even under this unsophisticated assumption. The
effect of the y value on the convergent behavior will be also
demonstrated later.

Equations (6.2) and (5.29) were discretized based on stan-
dard second-order finite difference formulas with a square
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FIG. 1. Sequences of the dendrite growth patterns during iso-
thermal solidification shown every interval of Dt/ d(2)=10 000, cal-
culated by the present model with Q=0.55, £,=0.02, k=0.15,
DS/D[=O.1, and (a) do/WOZO.4O, (b) d()/W():O.zS, and (C) do/ W()
=0.20. The figures (d) and (e) represent the results obtained by a
standard model without the antitrapping current term with dy/ W,
=0.40 and dy/ W,=0.25, respectively.

gird spacing Ax. For the Laplacian of the phase field ¢, we
used a nine-point formula with the nearest and next-nearest
neighbors, which reduces the grid anisotropy, as discussed in
Refs. [8,12]. The time evolutions of ¢ and u fields were
solved using a simple first-order Euler scheme. The simula-
tions reported here were carried out with Ax/W,=0.4 and
At/ 175=0.01 by holding the relation Tozaz)\*Woz/D,, unless
specified otherwise.

Our concern is first directed to a sequence of the dendrite
growth patterns. We employed the system of a square shape
with edge lengths of x/dy=y/dy=800 and imposed zero flux
boundary condition along all the boundaries. The initial su-
persaturation 1=0.55 is uniformly assigned to all the gird
points. The solidification started from a circular (quarter
disk) seed of radius r,=20d,, located at corner of the system.
The simulations were performed with £,=0.02, k=0.15, and
D,/D;=0.1. The sequences of the dendrite growth processes
are shown in Fig. 1, where ¢»=0 contours are plotted with an
interval of Dlt/d(,z: 10 000. The figures (a)—(c) represent the
results obtained from the present model with different values
of dy/W,. One can see typical sequence of the dendrite
growth pattern and, importantly, these sequences are almost

PHYSICAL REVIEW E 79, 031603 (2009)

dend{ite tip
! .

1 1 1

% 0.44 solid | model w.o. antitrapping
= e T e 40,40
= o ~ _

S 0.21 i d/W,=0.25
- ‘a .
5 0.0- ! liquid
Q

=

15}

S -0.24 e

b model with antitrapping |

= 0.4] o d/F 040

g A --0--dyw,=025

5 A dW,=0.20

Z

300 -200 -100 0 100 200 300
Spatial coordinate, x/do—xup

FIG. 2. (Color online) Normalized concentration u, field profile
at Dt/ d%=20 000 along the central dendrite axis. The solid, dashed,
and dotted lines are the results obtained by the present model, while
the dashed-dotted and dashed-two dotted lines represent the results
of the standard model. All the results of the present model are
almost superimposed. For visual aid, one out of every 50 symbols
along the profile is shown for the results of the present model.

independent of the value of dy/ W,,. Under a given set of the
parameters, the solidification process is uniquely described
by the present model within a certain range of dy/W,. For
comparison, we performed the same simulation based on a
standard model, viz., a model without the antitrapping cur-
rent term and with a standard choice of D(¢)=[D,+D,
+(D3_D1)¢]/2 and’ hence, q(¢):[Ds+Dl+(DS_D[)¢][l
+k+(1-k)]/(4D)), as is similar to the study in Ref. [11]. Tt
is important to note that the standard model involves the
spurious interface effects associated with the chemical poten-
tial jump at the interface and the surface diffusion. The re-
sults are demonstrated in Figs. 1(d) and 1(e). It is seen that
the dendrite growth processes are substantially different de-
pending on the value of dy,/W,. The dendrite tip velocity
increases with the increment of W, which is in marked con-
trast to the Wj-independent results obtained from the present
model. The numerical simulation of the standard model be-
comes unstable at dy/ W;=0.20 and we could not obtain the
solution.

Figure 2 shows u field profile at D;t/ d02=20000 along x
direction at y/dy=0 during the process shown in Fig. 1. The
origin of the spatial coordinate was taken to be the position
of dendrite tip x;,. It is seen that the present model uniquely
describes u field profile regardless of the value of dy/ W,
while the results of the standard model are largely dependent
on the value of dy/W,. Even at dy/W,=0.4, the standard
model exhibits the solute trapping phenomena. From this
comparison, one can comprehend that the u field profile is
one of the sensitive measures for the convergence of the
result with respect to dy/ W,,.

Next let us discuss the convergent behavior with respect
to W,. For these simulations, we employed a rectangular sys-
tem with the edge lengths of x/dy=400 and y/dy,=800. The
solidification started from a circular seed of radius r,=20d,,
at the corner of the system. We tracked the dendrite tip grow-
ing along the y direction by moving the calculation frame
with a certain velocity in the —y direction. This procedure
allows us to describe the solidification process until the
steady state is realized, within a reasonable computational
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FIG. 3. (Color online) Temporal changes of the dendrite tip
velocity. The results indicated by solid, dashed, and dotted lines are
almost superimposed and the result of the present model is well
converged even at dy/ W,=0.240.

time. The temporal changes of the dendrite tip velocity are
demonstrated in Fig. 3. These are the results obtained with
0=0.55, £4=0.02, k=0.15, and D,/ D;=0.1. In all the cases,
the dendrite tip velocity rapidly decreases in early time pe-
riod and, then, keeps a constant value corresponding to the
steady state value. The curves of the present model almost
coincide with each other, indicating that the result at d,/ W,
=0.24 is well converged. On the other hand, the result of the
standard model at dy/ Wy=0.24 is not converged. The steady
state value of the standard model at dy/ W,=0.24 is almost
twice as large as the one at d,/ Wy=0.554.

The dendrite tip velocity at D;t/ d02=40000, which can be
considered to be the steady state velocity, is plotted with
respect to Wy/d, in Fig. 4(a). The result of the standard
model rapidly increases with increase in W,/d,. The stable
solution could not be obtained with W,/d,, larger than 5.0.
On the other hand, the present model demonstrates the well-
converged behavior of the dendrite tip velocity even at rela-
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FIG. 4. (Color online) Convergent behavior of (a) dendrite tip
velocity, (b) tip radius, and (c) concentration in solid at 40d, away
from the dendrite tip during steady state (D;t/ d%=40 000), calcu-
lated with Q=0.55, £,=0.02, k=0.15, D,/D,=0.1.
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FIG. 5. (Color online) Convergent behavior of (a) dendrite tip
velocity, (b) tip radius, and (c) concentration in solid at 40d, away
from the dendrite tip during steady state (Dlt/d(z):40 000) calcu-
lated with =055, £,=0.02, k=0.15, D,/D;=0.5.

tively large value of W/d,=6.0. Although the velocity of the
present model gradually decreases with the increase in
Wy/d,, the convergent behavior is quite comparable to that
of the symmetric model [8]. Figure 4(b) shows the depen-
dence of the dendrite tip radius on Wy/d, at Dt/ d02
=40 000. This well-converged behavior of the present model
is also similar to the case in the symmetric model [8]. In Fig.
4(c), moreover, the concentration in solid at 40d, away from
the dendrite tip is plotted with respect to W,/d,. The present
model demonstrates almost the constant value c,/c,°=0.15.
In contrast, the result of the standard model is not converged
even at the smallest value employed here W,,/d,=1.8, which
may cause slight differences in the dendrite tip velocity and
tip radius between the models at W,/ d,=1.8. The convergent
behavior was also studied for D,/D;=0.5 and the results are
shown in Fig. 5. The other parameters in this simulation are
the same as those used in the calculation of Fig. 4. It is again
demonstrated that the convergent behavior obtained by the
present model is excellent, as compared to that obtained by
the standard model.

As already mentioned, the parameter (more precisely, the
function) y is regarded as the quantity controlling the con-
vergent behavior in the present model. In the simulations
discussed above, the quantity y was taken to be zero. The
dependence of the convergent behavior on the value of y was
investigated. The calculation parameters were chosen to be
0=0.55, £4=0.02, k=0.15, and D,/D;=0.1 and the relation
To=a,N*W,*W(x)/D; was employed. Shown in Figs. 6(a)
and 6(b) are the dependences of the dendrite tip velocity and
the tip radius on the value of y at Dt/ d02:60 000, respec-
tively. When d,/ W, is small, the dendrite tip velocity in-
creases and the tip radius decreases as the increase in . In
the case of d,/ Wy=0.554, however, the velocity and tip ra-
dius are almost independent of the value y. In other words,
all the results are converged to the same value irrespective of
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FIG. 6. (Color online) Dependence of (a) dendrite tip velocity,
(b) tip radius at Dt/ d3=60 000 on value of y calculated with Q)
=0.55, £4=0.02, k=0.15, D;/D;=0.1, and u field profiles along the
central dendrite axis calculated with (¢) xy=0.25 and (d) y=-0.25.

the value of y, as expected. The u field profiles in the vicinity
of the dendrite tip calculated with xy=0.25 and —-0.25 are
demonstrated in Figs. 6(c) and 6(d), respectively. x is the
quantity related to the concentration gradient at the solid side
of the interface and, hence, the u field profile depends on the
x value. While the negative value of y results in a kink at the
interface [Fig. 6(d)], this kink becomes small as d,/ W, de-
creases. In Figs. 6(c) and 6(d), the u field profiles merge into
a unique curve even at the different values of y. Hence, y
can be recognized as the controlling parameter for the con-
vergence and its appropriate value can be determined in the
light of the convergent behavior. The physical meaning of y
is clear according to the discussion given in Sec. V A, which
may enable a determination of the function form y based on
an analytical solution of the free-boundary problem for a
certain simple case. Although such a function is expected to
result in the excellent convergence, we considered in this
study that the calculation with y=0 provides reasonable per-
formance as is seen in Figs. 4 and 5.

As a benchmark test, we compare the result of the present
model with the one from the linearized solvability theory.
According to Barbieri and Langer [20], the following rela-
tion is held during the steady state in the limit of the small
undercooling,

b, L+g+1)

V,= T(pzvn)q(+l)=l >

(7.2)
where (p?V,,),(+1)=1 indicates the quantity for the symmetric
case. For this comparison, the simulations were performed
with Q=0.55, £4,=0.02, k=1.0, dy/Wy=0.277, and x=0.
Equation (6.2) was calculated by employing the value of
(p*V,) 4(+1)=1 obtained by the phase-field simulation. The re-
sult is demonstrated in Fig. 7. The agreement is quite reason-
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FIG. 7. (Color online) Comparison of dependence of p>V, on
q(+1) between the present model (solid circle) and the linearized
solvability theory (dashed line). The calculations were performed
with Q=0.55, £,=0.02, k=1.0, and dy/ W;=0.277.

able, especially, in the range of small g(+1). Although this
agreement is not strong evidence supporting the accuracy of
the present calculations, it is quite indicative of a wide range
of applicability of the model to the system with arbitrary
value of the solid diffusivity.

VIII. CONCLUSIONS

In this study, we extended the antitrapping current scheme
devised in Ref. [11] to the isothermal solidification process
of dilute binary alloy system involving the diffusion in solid.
The present model is considered to be a generalized model
based on the thin-interface limit in the light of the fact that
the previously developed symmetric [8] and the one-sided
[11] models are contained as special cases. For computation
in practice, the present model requires a priori knowledge on
the quantity y which is originally output quantity from the
simulation. The quantity y is regarded as the parameter con-
trolling the convergent behavior of the solution with respect
to the interface thickness. Even at y=0 validated for the
planner interface, the computations of the isothermal den-
drite growth process demonstrated the reasonable convergent
behavior comparable to that of the symmetric model [8]. It
remains the possibility that the limitation on the interface
thickness be further relaxed by a sophisticated choice of the
value or function form of x(s).

The diffusion in solid is of critical importance for accurate
description of solidification phenomena covering the equilib-
rium to nonequilibrium processes such as Scheil-type solidi-
fication. The present model is applicable to the case with
arbitrary value of the solid diffusivity, and hence, it can be
utilized for analysis on a variety of the solidification pro-
cesses in a wide range of binary alloy systems. The extension
of the present model to multicomponent and multiphase sys-
tems remains to be one of the important tasks for a further
development of the quantitative phase-field model.
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