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The phason dispersion in the antiferroelectric Sm-C~ liquid crystalline phase of 4-(1-methylheptyl-
oxycarbonyl)phenyl 4'-octyloxybiphenyl-4-carboxylate has been studied by quasielastic light-scattering
experiments. The phason is found to be gapless as predicted for a Goldstone mode recovering the broken
continuous symmetry. The dispersion has a minimum at q =2q„where q, is the wave vector of the un-
perturbed Sm-C~ structure. These results are consistent with the alternating-tilt model of the antifer-
roelectric Sm-Cg phase.

PACS numbers: 61.30.Gd, 64.70.Md, 64.70.Rh

The dynamics of liquid crystals is in certain respects
richer than the dynamics of 3D periodic solids. In con-
trast to these systems, many liquid crystalline phases ex-
hibit a continuous rotational symmetry, which can be
broken at the transition to phases of lower symmetry.
This should allow for the existence of symmetry recover-
ing, zero frequency Goldstone modes, which are known to
occur in particie physics and incommensurate systems. A
particularly interesting Goldstone model, which is the
subject of this study, should exist in antiferroelectric
liquid crystals.

The antiferroelectric liquid crystalline Sm-C~ phase
[1,2] is characterized by an alternation of the tilt direc-
tion of the average molecular orientation and the direc-
tion of the in-plane spontaneous polarization P by nearly
~ 180' on going from one smectic layer to another [Fig.
1(a)]. Two neighboring layers thus form an antifer-
roelectric unit cell with two antiparallel electric dipoles
and a zero value of the equilibrium electric polarization
Po(r) =Pt+P;+t =0. Because of chirality, the directions
of the spontaneous tilt and the in-plane polarization slow-

ly precess around the layer normal as one moves along
the direction perpendicular to the smectic plane. This
causes a small deviation from the ~180 alternation in

the tilt between two consecutive layers and the formation
of a modulated, helicoidal structure. Since the basic
structural unit of the Sm-C~ phase are two neighboring
layers, we have here in fact a double-twisted helicoidal
structure, formed by two identical Sm-C* helices gearing
into each other as shown in Fig. 1(b). The periodicity of
this helical modulation is generally incommensurate to
the basic antiferroelectric unit cell of the Sm-C~ phase.

The theory of incommensurate systems [3] predicts the
existence of a gapless phason mode in the incommensu-
rate phase recovering the broken translational periodicity

of the high temperature phase. In the antiferroelectric
Sm-C~ phase, the phason mode represents the sliding, or
what is equivalent, the slow rotation of the double twisted
helicoidal modulation wave, restoring the symmetry, lost
at the Sm-3 Sm-Cq transition. Since the Sm-3 *

phase has the continuous D symmetry, ~hereas the
symmetry of the Sm-Cp phase is discrete, the symmetry
recovering phason is here predicted to be a truly gapless
Goldstone mode.

Whereas the presence of acousticlike phason modes in
structurally incommensurate systems has been by now
clearly demonstrated [4], no truly gapless phason branch
has been observed so far in systems with discrete lattice
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FIG. l. (a) The alternating tilt model of the homogeneous
antiferroelectric Sm-Cg phase of liquid crystals and (b) the an-
ti ferroelectric double helix.
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symmetry, and the question of the possible existence of
such modes is still open. The only gapless phason disper-
sion observed so far has been in ferroelectric liquid crys-
tals [5], where the basic structure is quasicontinuous,
rather than discrete, as the one-dimensional smectic den-
sity modulation is only weakly coupled to the ferroelectric
order parameter and the polarization and the tilt change
only infinitesimally on going from one smectic layer to
another. A phason dispersion measurement has been also
performed in the Sm-C„* phase [6], where, however, the
results seemed to show a finite value of the phason relaxa-
tion frequency at zero scattering wave vector, q =0.

Here we report the results of a quasielastic light
scattering phason dispersion study of the antiferroelectric
Sm-Cz phase using the backwards scattering geometry.
The dispersion relation of the phason modes in the anti-
ferroelectric phase is found to be gapless, as expected for
a Goldstone mode, restoring the broken continuous sym-
metry of the Sm-3 phase at the Sm-3 Sm-C* or
Sm-2 Sm-C~ phase transition points. The dispersion
relation for the phason modes show a minimum at 2q„
where q, =2m/p and p is the period of the helix. This re-
sult is clearly compatible with the selective reAection ex-
periments by Chandani et al. [I] and the proposed alter-
nating tilt structure of the Sm-C~ phase. The form of
the dielectric tensor, which is compatible with both these
experiments can be obtained as a space average of the
dielectric tensors to two oppositely tilted ferroelectric
Sm-C* layers. It should be stressed that a previous at-
tempt to study the phason dynamics in the Sm-Cz phase
using the forward scattering geometry [6] did not reveal
the phason dispersion along q, . The phason frequency
obtained was of the order of 250 kHz and agrees with our
values, extrapolated to the Brillouin zone center, q =0.

The thermodynamic properties and phase transitions
between the antiferroelectric Sm-Cq phase and the relat-
ed ferri-, ferro-, and paraelectric phases have been theo-
retically analyzed by Orihara and Ishibashi [7] and later
by Zeks, Blinc, and Cepic [8] within the framework of a
Landau theory. The order parameters of the phase tran-
sitions between these phases have been conveniently
chosen as linear combinations of the tilt vectors g; and

g;+1 in the two neighboring smectic layers i and i + I,

(2)

which is similar to the free-energy expansion for the
phason excitations in the ferroelect."ic Sm-C* phase [5].
Here, A, and K3, are Lifshitz and torsional elastic con-
stants, associated with the antiferroelectric order parame-
ter g„which is expressed as

g, (z, r ) =00(cos@(z,t ),sinN(z, r ) ) . (3)

Following the Landau-Khalatnikov equations of motion

paraelectric Sm-2 phase gf =g, =0, in the ferroelectric
phase g)AO and (, =0, in the ferrielectric phase g, AO
and g ~0, whereas in the antiferroelectric phase f, aO
and g =0.

The spectrum of elementary excitations of the direc-
tor-polarization field in the antiferroelectric liquid crystal
has been first discussed by Zeks, Blinc, and Cepic [8].
The onset of antiferroelectric order at the phase transi-
tion point is accompanied by the slowing down of a soft
mode, that has an antiferroelectric (nonpolar) character.
Whereas in ferroelectric liquid crystals the soft mode rep-
resents the condensation of a plane wave excitation with a
wave vector q, which is close to the center of the Brillouin
zone, as q, =2m/p, where p is the period of the helical
structure, the antiferroelectric soft mode here represents
the condensation of a plane wave with the wave vector qd
near the edge of the Brillouin zone. Here qd =x/d»q„
where d is the smectic interlayer distance, and the Bril-
louin zone (Fig. 2) of the homogeneous antiferroelectric
phase is ( —x/d, x/d) and rellects the antiparallel orienta-
tion of the tilt vectors in two neighboring smectic layers.

The dynamics of the phason modes in the Sm-Cz
phase can be approximately derived from the phase
dependent part of the nonequilibrium free energy density
in the constant amplitude approximation

r 2
ee(z,i), , ee(z, r)+ r K3.0o

Z Z

4 +4+i
2

(ia)

thus describing the ferroelectric (gf) and antiferroelectric
(g, ) ordering, respectively. By writing down scalar in-
variants of the two order parameters [8] with respect to
the D symmetry of the paraelectric Sm-2 phase, one
obtains by minimization regions of stability of the para-,
ferri-, ferro-, and antiferroelectric phases. These phases
are characterized by diA'erent equilibrium values of the
order parameters gf and g, . For example, in the

2qc 0 2qc qz

FIG. 2. Schematic Brillouin zone for phase excitations in the
homogeneous Sm-C~ phase. The dispersion relation for the
case of the helicoidal modulation is shown by the dashed line.
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for the nonequilibrium phase profile @(z,r ) =q, z

+6@(z,t) in the unperturbed Sm-C~ phase, one obtains
overdamped plane-wave solutions for the phase excita-
tions

6e, (z, r ) ee e '/''i'cos(qz+ y),
where P is arbitrarily chosen. The corresponding phason
dispersion relation is gapless and parabolic:

'(q) = "q'. (s)

It should be noted that in view of the relation N(z, t)
= qz +6@(z,t) the above expressions are written in a
frame, which rotates together with the helix, and that in

the laboratory frame the phason dispersion has a
minimum at finite q. One should also mention that in the
low-frequency and long-wavelength limit q 0, the
phason excitations in the Sm-C~ phase are nonpolar, i.e.,
there is no fiuctuating electric dipole moment, 6P(z, t)
=0. This has the consequence, that contrary to the case
of ferroelectric liquid crystals, antiferroelectric eigen-
modes with q 0 cannot contribute to the linear re-
sponse of the Sm-C~ phase in the dielectric experiment.
On the other hand, these eigenmodes give rise to strong
Iluctuations of the dielectric tensor and should be observ-
able in quasielastic light scattering experiments.

The inhomogeneous part of the dielectric tensor of the
Sm-C~ phase [9], which is responsible for the quasielas-
tic light scattering, is in the limit of small tilt angle and
small amplitudes of phase excitations directly proportion-
al to the phase excitation 8@~(z,r ):

Sm-C~ Sm-C~ phase transition point. We have used
well aligned homeotropic samples of thickness 50 pm in

an experimental arrangement, described elsewhere [11].
In view of the rather small values of the period of the
helix near the Sm-C~ Sm-C~ phase transition point in

this substance, which corresponds to a large critical wave
vector q„we have decided to measure the phason disper-
sion relation in a backscattering, depolarized geometry,
as shown in the inset to Fig. 3. The light-collecting optics
was positioned at a small angle (= 2') with respect to
the light reflection from the samples surface, thus assur-
ing a heterodyne detection regime. This small deviation
of the detector angle from direct reflection introduces a
small transverse component q of the wave vector which
has been treated as a small perturbation to the dispersion
relation [12].

The dispersion relation for phase excitations propaga-
ting along the helical axis of the Sm-C~ phase of
MHPQBC as obtained by the quasielastic light scattering
in a backscattering geometry is shown in Fig. 3. The
solid line represents the best fit to Eq. (7) giving K3 /y
=0.58 x 10 pm s '. From the contribution of the
transverse component q of the wave vector to the disper-
sion relation we can estimate K+,/y= I &&10 pm s
Here K+, =

2 (Ks+Kii) is an eA'ective transverse elastic
constant [12], Ks and Kii are splay and bend elastic con-
stants, respectively, and y is the corresponding viscosity.
As one can see from Fig. 3, the phason dispersion is gap-
less within the limits of the experimental error and cen-
tered at the scattering wave vector q, =20.3 pm '. For
q, =2q, this corresponds to a helix with a wave vector

—sin(2q, z) cos(2q, z) 0
&~(z, &) = —,

'
(e3 —el)&o cos(2q, z) sin(2q, z) 0

0 0 0

(6)x 6e, (z, r ) .

Here, we have taken for simplicity the uniaxial form of
the dielectric tensor for optical frequencies, ei =1.2&|.3,
where t.'; are the corresponding eigenvalues, defined in
Ref. [9]. From the above expression one observes that
the phason excitation 8@~(z,r) with the wave vector q is
observable via fluctuations of the dielectric tensor as an
excitation with the wave vector q 2q, . The dispersion
relation for the phason excitations in the Sm-C~ phase
has in the laboratory frame a minimum at the scattering
wave vector q, =2q, :

30
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25—

20—

15—

10—

PM'

20 22
1

24 26

q [pm~]
28

(q) = --- (q+ 2q, ) (7)

The same result is obtained from a lattice model [10]
where the discrete structure of the Sm-C~ phase is ex-
plicitly taken into account.

The experiment was performed in the Sm-C~ phase
of 4-(1-methylheptyloxycarbonyl) phenyl 4'-octyloxybi-
phenyl-4-carboxylate (MHPOBC), slightly below the

FIG. 3. Phason dispersion in the Sm Cg phase of
MHPOBC, 0. 1 K belo~ the Sm-C„Sm-C~ transition. The
solid line represents the best fit to the Eq. (7) with
K3~/y=0. 58x10 pm s ' and K+,/y=1 &&10 pm s '. The
inset shows the scattering geometry. The magnitude of the
scattering wave vector q, along the z direction was calculated
according to the uniaxial optical model of the Sm-Cg phase,
with refractive indices n, =1.5 and n, =1.625, according to Ref.
li 8].
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q, =10.15 pm ' or a period of 0.62 pm. The period of
the helicial structure in the Sm-C~ phase of MHPOBC
can also directly be obtained by the selective refIection
method as has been measured by Chandani et al. [1].
From the position of the selective reAection peak near the
Sm-C~ Sm-Cq phase transition point, taking into ac-
count an average refractive index of the Sm-C~ phase of
MHPOBC and assuming a form of the dielectric tensor
given by Eq. (6), one obtains the period of the helix of
MHPOBC p =0.6 pm, which is in excellent agreement
with experimental observations.

The value of K3,/y, as obtained from Fig. 3 is within
an order of magnitude the same as that obtained in quasi-
elastic light scattering experiments in the ferroelectric
liquid crystals 4-(2'-methylbutyl)-phenyl 4'-n-octylbi-
phenyl-4-carboxylate (CE-8) and p-decyloxybenzyli-
dene-p'-amino-2-methylbutyl cinnamate (DOBAMBC)
[5,12]. In those experiments, one would usually observe a
ratio K+/y which is I order of magnitude larger. This is
in contrast with the situation in MHPOBC, where K+,/y
is only a factor of 2 larger than K3,/y. Such a low value
of K+,/y in the antiferroelectric Sm-C~ could be a result
of the absence of a spontaneous polarization P (r, t ) in

this phase. It was argued [13-16] and recently observed
[17] that the presence of a fluctuating dipole field P(r, t)
significantly inAuences the magnitude of the transverse
(or in-plane) elastic constant K+ due to bend fiuctuations
of the C-director field, which represent splaylike fluctua-
tions of the spontaneous polarization field P(r, t). This
results in the appearance of a fluctuating space charge
density p(r, t) = —VP(r, t) and renormalizes bend elastic
constant Eg due to electrostatic self-energy of charge dis-
tribution [16,17].

The value of K3,/y, as obtained from Fig. 3, can be
compared to the phason relaxation rates, as obtained by
Sun, Orihara, and Ishibashi [6] in the Sm-C~ phase of
MHPOBC at q, 0. Their forward scattering geometry
allowed only for the determination of phason relaxation
rates in the limit of small scattering wave vectors, q, 0.
In this limit they obtain relaxation rates in the Sm-Cz
phase of MHPOBC of the order of 200-300 kHz. By ex-
trapolating our data in Fig. 3 to q, =0, we obtain phason
relaxation rates of the order of r '(q =0) =250 kHz,
which is in excellent agreement with the results of Sun,
Orihara, and Ishibashi.

In conclusion, we report for the first time the observa-
tion of a phason dispersion in the Sm-C~ phase of an an-
tiferroelectric liquid crystal. The dispersion relation for
phason excitations, propagating along the helical axis of

the Sm-Cg phase, is gapless, as expected for a Goldstone
mode restoring the broken continuous symmetry of the
Sm-8 phase. It has a minimum at the wave vector 2q„
where q, is the wave vector of the unperturbed Sm-C~
structure. This observation is consistent with the pro-
posed form of the dielectric tensor in the Sm-C~ phase
and the alternating-tilt model of the antiferroelectric
Sm-C~ phase of liquid crystals and seems to be the first
demonstration of the gapless nature of the phason mode
in any incommensurate system with discrete lattice sym-
metry.

The authors thank Dr. I. Kawamura, Showa Shell
Sekiyu Co. , Ltd. , for supplying MHPOBC samples.
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