
2210
IEICE TRANS. COMMUN., VOL.E95–B, NO.7 JULY 2012

PAPER Special Section on Future Internet Technologies against Present Crises

On Tackling Flash Crowds with URL Shorteners and Examining
User Behavior after Great East Japan Earthquake∗

Takeru INOUE†a) and Shin-ichi MINATO††,†, Members

SUMMARY Several web sites providing disaster-related information
failed repeatedly after the Great East Japan Earthquake, due to flash crowds
caused by Twitter users. Twitter, which was intensively used for informa-
tion sharing in the aftermath of the earthquake, relies on URL shorteners
like bit.ly to offset its strict limit on message length. In order to mitigate
the flash crowds, we examine the current Web usage and find that URL
shorteners constitute a layer of indirection; a significant part of Web traf-
fic is guided by them. This implies that flash crowds can be controlled by
URL shorteners. We developed a new URL shortener, named rcdn.info,
just after the earthquake; rcdn.info redirects users to a replica created on a
CoralCDN, if the original site is likely to become overloaded. This surpris-
ingly simple solution worked very well in the emergency. We also conduct
a thorough analysis of the request log and present several views that capture
user behavior in the emergency from various aspects. Interestingly, the traf-
fic significantly grew up at previously unpopular (i.e., small) sites during
the disaster; this traffic shift could lead to the failure of several sites. Fi-
nally, we show that rcdn.info has great potential in mitigating such failures.
We believe that our experience will help the research community tackle
future disasters.
key words: flash crowd, URL shortener, CDN, disaster, Great East Japan
Earthquake

1. Introduction

On March 11th 2011, a great earthquake and tsunami hit
eastern Japan. After that, several web sites, especially those
providing helpful disaster-related information like shelters
or radiation levels, were overloaded by flash crowds (we
roughly define flash crowds as sharp traffic growth that over-
whelmed a web site). They had been previously unpopular
sites with only small traffic, but massive numbers of users,
most of whom were likely to be Twitter users, visited them
in a short period of time. Twitter provides a handy repost-
ing function called retweet, which allowed users to quickly
spread their favorite tweets (Twitter’s short messages). This
function probably drove the users to jump on the sites. In
normal times, Twitter flash crowds are not a serious prob-
lem, since most tweets cover trivial topics in Japan [5]. On
March 11th, however, the number of tweets increased by
80% and 72% of the increased total number was related to
the disaster [5]. Since the disaster information was consid-

Manuscript received October 17, 2011.
Manuscript revised February 15, 2012.
†The authors are with JST ERATO Minato Discrete Structure

Manipulation System Project, Sapporo-shi, 060-0814 Japan.
††The author is with the Graduate School of Information Sci-

ence and Technology, Hokkaido University, Sapporo-shi, 060-
0814 Japan.

∗An earlier version of this paper appeared in [27].
a) E-mail: takeru.inoue@ieee.org

DOI: 10.1587/transcom.E95.B.2210

ered to be essential to surviving the crisis, the site failures
became a crucial issue.

There are two common solutions to flash crowds, but
they were not useful in the emergency.

• Scaling web sites. Web sites can be scaled up by
upgrading server machines or adding new machines.
This is now a reasonable solution thanks to scalable
cloud technologies. Some sites increased their capac-
ity through the help of hosting companies that provided
their service for free (only for the sharing of disaster in-
formation). However, it is difficult for most sites to re-
act quickly in the aftermath of an earthquake (some site
administrators might be stuck in shelters themselves).
• Mirroring pages. Flash crowds can be mitigated by

posting URLs of mirror sites. There is no difficulty in
using mirror sites normally. However, in the chaos fol-
lowing a disaster, we cannot imagine that people will
stay cool enough to replace the original URLs with
those of the mirror sites before posting messages.

Since Twitter limits its message length to just 140 char-
acters, URL shorteners like bit.ly are often used to shorten
long URLs∗∗. Twitter client software automatically replaces
a long URL in a tweet with a short URL created by a URL
shortener. By clicking the short URL, the user is redirected
to the original site via the URL shortener. The use of URL
shorteners is transparent to the Twitter user, manual replace-
ment of URLs is not needed.

We launched a new URL shortener named rcdn.info
just after the disaster; rcdn.info redirects users to a replica
created on a CDN (content delivery/distribution network),
if the original site can be overloaded. We chose CoralCDN
[25] as the target CDN. CoralCDN is a research network de-
signed to mitigate flash crowds, and has capacity sufficient
to handle tens of millions of requests per day [24]. This is
a quite simple solution, but its simplicity must be guaran-
teed to work in an emergency. Our solution is free from the
problems stated above; rcdn.info can be introduced quickly
without the intervention of site administrators, and its use is
transparent to Twitter users.

We summarize our contributions as follows.

• We find that URL shorteners constitute a layer of indi-
rection [35] in the current web. Even though the web

∗∗Technically, URL (uniform resource locator) should be re-
placed with URI (uniform resource identifier) as defined by [14],
but we use the term URL in this paper since the shortening services
are usually called URL shorteners.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

INOUE and MINATO: ON TACKLING FLASH CROWDS WITH URL SHORTENERS AFTER GREAT EAST JAPAN EARTHQUAKE
2211

contains several layers of indirection, this is the only
indirection that can be deployed quickly in an emer-
gency. Since indirection is allowed to route traffic, flash
crowds can be diverted from overloaded sites on the
layer. We design rcdn.info based on this idea. (Sects. 4
and 5)
• We thoroughly analyze the HTTP request log collected

at rcdn.info. This log has extremely valuable infor-
mation in capturing user behavior in the emergency;
to the best of our knowledge, no work has analyzed
user behavior in an emergency with HTTP requests.
We quantitatively discuss the behavior from various
aspects, such as users’ purpose and regionality. We
also show that the traffic significantly grew up at pre-
viously unpopular sites in the aftermath of the earth-
quake. (Sect. 6)
• We show that rcdn.info can greatly reduce the number

of requests received by the original sites. Moreover,
though rcdn.info increases the latency due to the indi-
rection, we confirm that the increase is quite small and
it is acceptable. (Sect. 7)

We believe that it is worth sharing this very rare experience
as a way to prepare for future disasters†.

The rest of this paper is organized as follows. Section 2
reviews the Great East Japan Earthquake, URL shorteners,
and CoralCDN. After describing the requirements in Sect. 3,
Sect. 4 shows our basic idea, and Sect. 5 discusses the de-
sign of rcdn.info. Section 6 analyzes the log to unveil user
behavior, and Sect. 7 evaluates the performance of rcdn.info.
Section 8 summarizes related work, and finally Sect. 9 con-
cludes with lessons learned from the disaster.

2. Background

2.1 Great East Japan Earthquake

A great earthquake of magnitude 9.0 occurred off the east-
ern coast of Japan (Fig. 1), at 14:46 JST on March 11th
2011. It was the most powerful known earthquake to have
hit Japan, and one of the five most powerful earthquakes in

Fig. 1 Map of Japan showing the epicenter of the earthquake and the
Fukushima Daiichi nuclear power plant.

the world since modern record-keeping began in 1900. The
earthquake triggered extremely destructive tsunami waves
along the eastern coast of Japan. In addition to the signif-
icant loss of life and destruction of the infrastructure, the
tsunami caused a number of nuclear accidents at the Fuku-
shima Daiichi nuclear power plant; several hydrogen explo-
sions at the reactors scattered low level radioactive mate-
rials around the local area. The nuclear incidents greatly
disturbed people living in a wide area that included Tokyo.
They rushed onto the web searching for helpful information
and this public action formed flash crowds.

2.2 URL Shorteners

The first URL shortener, “Make A Shorter Link”, was
launched in 2001 to eliminate the frustration of copy-
ing very long URLs [8]. Currently, URL shorteners are
mainly used by short messaging services like Twitter, which
severely limit the number of characters in a message. A
URL shortener, which usually has a short domain name,
generates a unique alphanumeric key for each URL. The
domain name and unique key form a short URL like
http://bit.ly/v1Anp, which redirects visitors to the
original URL. A substantial amount of web traffic currently
goes through URL shorteners. One report indicated that
short URLs on bit.ly, the largest URL shortener, were ac-
cessed 2.1 billion times in November 2009 [3].

We show an example of message sequences with short-
ening a long (original) URL and expanding a short URL in
Fig. 2. We omit DNS name resolution of the URL short-
ener’s domain in the example.

• Shortening original URL. We show an example

Fig. 2 An example of shortening an original URL and expanding a short
URL at a URL shortener (DNS queries are omitted).

†Our anonymized data is now publicly available online at
http://rcdn.info/data.html.

2212
IEICE TRANS. COMMUN., VOL.E95–B, NO.7 JULY 2012

of shortening a URL via an API. A client makes
an HTTP request for shortening a long URL (e.g.,
http://example.com/path). Upon receiving the
request, the URL shortener generates a unique key
(e.g., v1Anp) for the URL, and stores the key
with the original URL in its database. The URL
shortener, then, responds with the short URL (e.g.,
http://bit.ly/v1Anp).
• Expanding short URL. By entering or clicking this

short URL, a client, or a web browser, makes an HTTP
request for the short URL. After receiving the request,
the URL shortener retrieves the associated URL from
its database. The shortener, then, returns a response
with 301 status code and a Location attribute. Finally,
the client is redirected to the original URL.

The use of URL shorteners is transparent to Twitter
users, because Twitter clients retrieve a short URL in the
background and the original URL is automatically replaced
with the short URL. URL shorteners are usually open ser-
vice; users are allowed to use them without prior registration
and authorization.

2.3 CoralCDN

CoralCDN is a research network developed by Michael
Freedman in 2004 [25]. It was designed to miti-
gate flash crowds; for example, CoralCDN distributed
large quantities of amateur videos of the Indian Ocean
tsunami in 2004. CoralCDN is fully open and re-
quires no prior registration or authorization. It can be
used just by adding .nyud.net to the domain name in
the original URL, e.g., http://example.com/path →
http://example.com.nyud.net/path. URLs including
.nyud.net are called “Coralized URLs”. CoralCDN can
be used easily but its use is not transparent to users since the
replacement of URLs must be done manually.

CoralCDN is deployed on PlanetLab [19] and typically
runs on 300–400 servers, spread over 100–200 sites world-
wide [24]. It has sufficient capacity to handle 40–50 million
requests per day. CoralCDN consists of DNS name servers
and proxy servers; DNS servers maintain “A” records for
.nyud.net and the proxy servers keep replicas of the orig-
inal pages. Each replica is mapped to several proxy servers
by Sloppy DHT technology [23], but the replica can be du-
plicated on other proxies depending on popularity (the num-
ber of requests). Replicas are updated after the expiry time,
which is specified by the response header given in retrieving
the original page. They are kept for at least five minutes,
even if No-Cache directives are set in the response, and are
removed within twenty-four hours at most.

Figure 3 shows an example of a message se-
quence in CoralCDN. Upon receiving a DNS query for
example.com.nyud.net, a DNS name server in Coral-
CDN responds with an IP address of a proxy server. The
client sends an HTTP request to the proxy server, which
searches for a replica of the requested page in CoralCDN by

Fig. 3 An example of CoralCDN’s behavior.

using DHT. If the replica is not found, the proxy retrieves
the requested page from the original site by issuing a DNS
query and an HTTP request. Finally, the proxy returns the
page to the client.

CoralCDN servers are mainly located in North Amer-
ica and Europe, which are far from Japan. Moreover, Coral-
CDN does not well consider the distance in choosing a
proxy server as far as we know. Consequently, users in
Japan would experience poor latency with CoralCDN. A la-
tency optimization mechanism called DONAR has been re-
cently introduced [36], but most requests are still handled
by the original CoralCDN mechanism.

3. Requirements

This section presents our requirements for preserving small
but useful web sites in the aftermath of the earthquake. The
first three were discussed in Sect. 1, and the remaining three
are general requirements for all online services.

• Mitigating flash crowds. This is our primary goal. To
prevent the failure of web sites, our solution must tame
flash crowds and reduce the request rate to the ordinary
level. If our solution works well, more users could ac-
cess useful information on the sites.
• Rapid deployment. Our solution must be deployed

quickly, since information access is considered to be
imperative for surviving any crisis.
• Transparent to use. We should not load the user with

extra operations to make a posting, since such ineffi-
cient approach will fail in an emergency.
• Better performance. We should reduce latency as far

as is possible, though load balancing generally comes
at the cost of increased latency.
• Open to many sites. We should save as many web

sites as possible. This means that our solution should
not be limited to a particular site.
• Secure to use. Our solution should be secure to users,

INOUE and MINATO: ON TACKLING FLASH CROWDS WITH URL SHORTENERS AFTER GREAT EAST JAPAN EARTHQUAKE
2213

even if it is open.

4. Basic Idea

This section describes our basic idea for satisfying the re-
quirements presented in the previous section. We first com-
pare the two solutions described in Sect. 1. The first solu-
tion, scaling web sites, requires the help of site adminis-
trators, which is often infeasible in an emergency and pre-
vents rapid deployment. Moreover, this solution is limited
to a particular web site; we have to cover any and all sites
that should be preserved. We think that these problems are
too difficult to fix. The second solution, mirroring pages,
does not have these problems, but it is not transparent to
users and forces detours to replicas. These issues, however,
can be solved to some extent. We discuss our idea, based
on the second solution, that addresses the remaining issues.
Section 4.1 discusses how to guide users to replicas, and
Sect. 4.2 shows where to create replicas.

4.1 How to Guide Users to Replica

The current web relies on several layers of indirection [35],
which decouples senders (clients) from receivers (servers).
These layers include IP, DNS, and HTTP, as shown in Ta-
ble 1; for example, DNS allows a client to communicate
with a web server without knowing the location (IP address)
in advance. Since indirection can be used to divert traffic to
some other place, it is often used for load distribution as in
round-robin DNS.

Figure 4 illustrates the three layers of indirec-
tion seen in accessing a short URL. First, a URL
shortener redirects a client to the original site (e.g.,
http://example.com/path). Next, the DNS server of
example.com responds with an IP address of a reverse
proxy [20] in one of several linked datacenters. Finally, the

Table 1 Layers of indirection.

Layer of indirection Techniques to rendezvous
IP IP anycast
DNS Round-robin DNS
HTTP Proxying and redirection

Fig. 4 An example of layers of indirection (black boxes) experienced in
accessing a short URL.

reverse proxy chooses a content server in the datacenter se-
lected. In addition to the traditional layers of indirection,
such as DNS and reverse proxying (and IP anycast but omit-
ted in the figure), URL shorteners constitute a new layer of
indirection by using HTTP redirection. While it may be dif-
ficult to quickly deploy the traditional indirection since site
administrators’ help is required, URL shorteners are not tied
to any particular site and can be deployed independently.
Though existing URL shorteners redirect clients only to the
original URLs, technically they can point to replicas on a
CDN by rewriting the URLs.

URL shorteners are transparent to Twitter users as de-
scribed in Sect. 2.2. They should not redirect users to a
replica that includes malicious contents. We will discuss
this issue in Sect. 5.4.

4.2 Where to Create Replicas

Several places are possible for replicating original pages.
Commercial CDNs provide large capacities for replication,
but it is difficult to make a contract with them because we
cannot estimate the number of pages to be replicated in the
emergency. Page cache of search engines is already used as
a replica when the original page cannot be accessed. How-
ever, the cache is not guaranteed to be up to date even if the
expiry time exceeds. Information should be the latest in an
emergency.

We choose CoralCDN as the place for replication.
CoralCDN can be used without prior registration or autho-
rization. The replicas are updated after the expiry time.

Unfortunately, users in Japan would experience poor
latency with CoralCDN, as described in Sect. 2.3. We re-
solve this performance issue as follows; Coralized URLs
are accessed by rcdn.info before clients to create a replica
on CoralCDN, or clients are redirected to the original site
if the site seems to have sufficient capacity (i.e. not over-
loaded).

5. Design and Implementation of rcdn.info

This section describes the design and implementation of
rcdn.info in detail. We first show the usage in Sect. 5.1. Sec-
tion 5.2 presents the system configuration and Sect. 5.3 de-
scribes procedures of shortening and expanding. Section 5.4
discusses implementation matters.

5.1 Usage

We briefly describe the usage of rcdn.info here. The APIs
shown in Table 2 are designed following bit.ly APIs [2].

Shortening original URL. We provide three ways to
shorten a long URL.

• API. A Twitter client sends a URL to the “shorten API”
in Table 2, and rcdn.info returns a short URL in a spec-
ified format.
• HTML form. A user submits a URL by the form on

2214
IEICE TRANS. COMMUN., VOL.E95–B, NO.7 JULY 2012

Table 2 rcdn.info APIs.

Operation URL
Shorten http://rcdn.info/api/shorten?longUrl={originalURL&}format={json|xml|text}
Expand http://rcdn.info/api/expand?shortUrl={shortURL&}format={json|xml|text}

Fig. 5 The top page of rcdn.info; the title says “short URLs and CDN
offer effective information sharing”, the button says “(make) a short URL
to CDN”, and a short description accompanies the figure.

the top page, and rcdn.info then returns with a short
URL (Fig. 5)†.
• Bookmarklet. A user clicks the rcdn.info bookmarklet

installed on the browser, which pops up a short URL of
the current page.

Twitter clients that accept any URL shortener, such as
TweetDeck [7] or YoruFukurou [10], provide transparency
to users through the APIs, by setting rcdn.info as the default
URL shortener. The HTML form and the bookmarklet are
offered to users of other clients.

Expanding short URL. We provide two ways to expand a
short URL.

• Redirection. A user clicks a short URL, and rcdn.info
then redirects her to CoralCDN or the original site.
• API. A Twitter client sends a short URL to the “expand

API” in Table 2, and rcdn.info returns a Coralized URL
or original URL without redirection.

5.2 System Configuration

Figure 6 shows the system configuration of rcdn.info. The
application server executes URL shortening and URL ex-
panding. The database maintains tuples of a unique key, an
original URL, and a Coralized URL. A list of “large capacity
sites” is also maintained (not shown in the figure) to deter-
mine where to redirect, i.e., to CoralCDN or the original site
as described in Sect. 4.2. The list includes some domains in
the Alexa top 10 in Japan, since they have large capacity and
are unlikely to be overloaded. We also require a DNS name

Fig. 6 The system configuration of rcdn.info.

Fig. 7 Procedures of shortening an original URL and expanding a short
URL in rcdn.info application server (error handling processes are omitted).

server that maintains an “A” record of rcdn.info.

5.3 Procedures of Shortening and Expanding

The message sequences are common between rcdn.info and
existing URL shorteners (Fig. 2), except that clients can be
redirected to CoralCDN in rcdn.info. We describe only the
internal procedures executed within the application server.
We also explain the latency improvement techniques intro-
duced in Sect. 4.2.

Shortening original URL. Figure 7(a) shows a procedure
of URL shortening. Upon receiving a request for short-
ening, the application server validates the requested URL,
e.g., whether it has a correct URL format beginning with
http://. The server then searches its database for the re-

†We offer only Japanese pages on rcdn.info, because very few
people do not speak Japanese and they are unlikely to cause flash
crowds to disaster information (in general, majority is most likely
to cause flash crowds).

INOUE and MINATO: ON TACKLING FLASH CROWDS WITH URL SHORTENERS AFTER GREAT EAST JAPAN EARTHQUAKE
2215

quested URL. If the URL is not found, the server generates
a unique key for the URL by using the SHA1 hash func-
tion (the hash value is incremented if conflicted with exist-
ing keys), and stores a tuple of the unique key, the original
URL, and the Coralized URL, into the database. Finally,
the server returns the short URL that consists of rcdn.info
domain and the unique key.

In order to resolve the poor latency issue described in
Sect. 4.2, the application server asynchronously makes a re-
quest for the Coralized URL. Since this request populates
a DHT cache, a DNS cache, and a replica of the requested
page in CoralCDN, subsequent requests experience less la-
tency. This request should be issued asynchronously so as
not to keep the client waiting long, while it should be issued
just after receiving the shortening request in order to create
caches and replicas as soon as possible.

Expanding short URL. Figure 7(b) shows a procedure
of URL expanding. Upon receiving a request for expan-
sion, the application server extracts the unique key from the
short URL, and retrieves the corresponding tuple from the
database (if the tuple is not found, 404 status code is re-
turned). If the domain name in the original URL is found
in the list of large capacity sites, the server returns the origi-
nal URL for better latency; otherwise, the server returns the
Coralized URL to mitigate flash crowds.

We show the URL expansion process without and with
the asynchronous request in Fig. 8. The expansion process
redirected to the original URL by the large capacity list has
the same procedures with Fig. 2. The process without the
asynchronous request (the first access we call) involves one
more round-trip than that with the asynchronous request (the
second access). The process to the original URL (the origin
access) has the same number of round-trips to the second
access, but the origin access is usually faster if the original
site is much closer to clients than CoralCDN.

5.4 Implementation

We implemented rcdn.info on the LAMP (Linux, Apache,
MySQL, Perl) stack [32]. The server machines were do-
nated by Amazon Web Services [1]; Linux runs on an
EC2 virtual machine (micro instance) in Tokyo region, and
the “A” record of rcdn.info is maintained by a “Route 53”
name server. The application server required 541 lines
of Perl script. Since a unique key consists of six fig-
ures in base 62 (i.e., 0-9A-Za-z), a short URL looks like
http://rcdn.info/EXnXN5. The request log is moni-
tored in real time (using “tail -f” command), and an asyn-
chronous request is made just after a shortening request is
found in the log.

We experienced no trouble related to the throughput of
the server, since the procedures require no heavy operations;
database access involves no complicated join operation, and
the HTTP response has just a short URL for shortening API
or “empty” body for redirection.

We did not give priority to detecting malicious con-

Fig. 8 Examples of expanding a short URL at rcdn.info, without and
with the asynchronous request (DNS queries are omitted).

tents, because CoralCDN maintains a global blacklist of
specified domain names [24]. Our rcdn.info shows no sign
of “redirecting to replica page” before taking users to Coral-
CDN, because there has been no serious problem in the his-
tory of CoralCDN as far as we know.

6. Log Analysis

This section analyzes HTTP requests logged at rcdn.info.
Section 6.1 overviews the request log. Sections 6.2 to 6.5
answer questions, such as “what was rcdn.info used for”,
“who used it”, “how it was used”, and “from where was
it accessed”. We finally examine the user behavior from the
two aspects tightly linked to flash crowds, namely URL pop-
ularity and request peaks, in Sects. 6.7 and 6.6.

6.1 Overview

We began developing rcdn.info on March 13th 2011, just
two days after the earthquake. After the test operation on
March 14th, we launched rcdn.info on March 15th. There
were 24,959 HTTP requests at rcdn.info from March 15th
2:00 JST to 18th 22:23 JST (the log after March 18th was
unfortunately lost due to mis-configuration in a rush job;
remember that rcdn.info was not a well planned research
project). Each log entry includes date and time, request
method, path name, source IP address, user agent, referring
page, and so on.

One of the authors, Takeru Inoue, announced the

2216
IEICE TRANS. COMMUN., VOL.E95–B, NO.7 JULY 2012

Fig. 9 Topics of top 50 popular URLs at rcdn.info, and those of
expansion requests for these popular URLs.

launch of rcdn.info on Twitter, on March 15th. His Twit-
ter account is @takemaru jp and had 365 followers at that
time. His followers mainly lived in the Tokyo metropolitan
area, which includes Tokyo and the four neighboring prefec-
tures, but the use of rcdn.info was not limited to the Tokyo
area. Our rcdn.info appeared on several major online media
like Yahoo! Japan [9] and livedoor [4]† on March 16th. We
confirmed that rcdn.info was accessed from all prefectures
in Japan.

We examined the March log in June and July, 2011.
First, source IP addresses were resolved into domain names.
We then removed requests other than shortening and ex-
panding, e.g., requests for the top page, images, style sheets,
and so on. We also removed requests from automated
agents, whose user agent name includes “bot”, “crawler”,
“slurp”, or “AppEngine-Google”, or whose domain name
ends with “amazonaws.com”. Finally, we obtained 4,543
requests, which include 474 shortening requests and 4,069
expansion requests. The dataset is not that large, but its in-
formation is extremely valuable in capturing user behavior
in the emergency. To understand the behavior well from the
dataset, we provide several views in the following subsec-
tions. We think the dataset has no strong bias because the
data was collected nation-wide, and samples of thousands
give a good estimation to grasp a overall picture.

6.2 Topics

During the logging period, 299 unique URLs were short-
ened. We manually categorize the top 50 popular URLs
(pages) based on their topics in Fig. 9(a). We also catego-
rize the 3,582 expansion requests that were made for these
top 50 URLs in Fig. 9(b). Since these requests cover 88.0%
(3,582/4,069) of all requests, we can understand “what was
rcdn.info used for” by examining just this data.

We first discuss Fig. 9(a). Our purpose in developing
rcdn.info was to mitigate flash crowds for disaster informa-
tion, but rcdn.info was used in a variety of ways that differed
from our original purpose. While 31 pages in the top 50 in-
cluded disaster information, 17 pages were related to other
topics. We could not retrieve valid content from the two
URLs in the “unknown” category.

As shown in Fig. 9(b), 85.1% of requests that were
made for the top 50 were issued for disaster-related pages.
As expected, “nuclear accidents” garnered a high level of in-
terest, more than half of the requests. This pie chart shows

Fig. 10 Referring pages in expansion requests.

Fig. 11 Requests per unique IP address (left), and correlation between
shortening and expansion requests by each address (right).

that rcdn.info was mainly used to share disaster information.
Interestingly, both charts have different ratios. This dif-

ference might imply that people often want to spread what
they do not want.

6.3 Referring Pages

Figure 10 shows the referring pages of the expansion re-
quests. More than half of the requests have no referring
page. We regard these “Referer-less” requests as issued by
Twitter clients, since Twitter clients usually set no Referer
header in the request. That is, 81.7% of expansion requests
were made by Twitter users. Social networking services
(SNSs) accounted for a small part of the requests, because
their users do not need to shorten long URLs. We can say
that rcdn.info was mostly used by Twitter users.

6.4 Request Types

We found 2,443 unique source IP addresses in the log. Fig-
ure 11 (left) shows a distribution of requests per unique
address, which roughly follows a Zipf-like distribution for
both shortening and expansion requests.

We next examine the correlation between the number
of shortening requests and that of expansion requests for
each address. Figure 11 (right) is a bubble chart of the cor-
relation; circle size represents the number of addresses at
that point. We see no clear correlation in the figure; some
addresses issued many more shortening requests than expan-
sion ones.

†Yahoo! Japan has been the most popular site in Japan for
more than ten years, and livedoor occupied the 8th Alexa ranking
in Japan as of July, 2011.

INOUE and MINATO: ON TACKLING FLASH CROWDS WITH URL SHORTENERS AFTER GREAT EAST JAPAN EARTHQUAKE
2217

Fig. 12 Expansion requests versus population for each prefecture (left),
and locality of information exchange (right).

6.5 Regionality

We classified source IP addresses into Japan’s 47 prefec-
tures, in order to examine the regionality of requests. We
could classify 1,315 of 2,443 unique addresses, and we ex-
amined 2,108 requests that have those classified addresses.

Figure 12 (left) plots the number of requests against
the population of each prefecture. We created three pre-
fecture groups according to the distance from the epicen-
ter, 1) Eastern Honshu, 2) Hokkaido and Western Honshu,
and 3) Shikoku and Kyushu, as shown in Fig. 1. Comparing
prefectures with similar populations, we see a weak trend
in which prefectures closer to the epicenter made more re-
quests in Fig. 12 (left). This trend is reasonable because peo-
ple closer to the epicenter are more interested in the disaster
and rcdn.info is mainly used to share disaster information as
mentioned in Sect. 6.2.

We discuss the locality of information exchange among
users by using Fig. 12 (right). The vertical axis is the ratio
of “local exchange” measured at rcdn.info, while the hor-
izontal axis is the same ratio with no locality assumption.
We explain “local exchange” by using a mark of Kanagawa
prefecture labeled in the figure. This mark means that URLs
shortened by Kanagawa users were expanded by Kanagawa
users with probability of 69.5% (see the vertical axis), while
expansion requests made by Kanagawa users account just
for 16.9% of total requests (see the horizontal axis). We
see strong locality in terms of information exchange among
Kanagawa users, since 69.5% is much greater than 16.9%.
The strong locality is found in all prefectures other than To-
kyo in the figure (the figure shows 13 prefectures that made
more than 4 shortening requests). We consider that this
strong locality come from local contents and/or user rela-
tions.

6.6 URL Popularity

Figure 13 plots the distribution of expansion requests per
unique URL. The plot roughly follows a Zipf-like distribu-
tion, as is common among web caching and proxy networks
[16]. Certain URLs are very popular, such as the most popu-
lar one received nearly 1 K expansion requests, while a large
number of URLs received only a few requests (72 URLs re-
ceived no expansion request).

Fig. 13 Expansion requests per unique URL.

Fig. 14 Domain rankings between rcdn.info in the emergency and Alexa
at ordinary times (left), and rankings between retweets and Alexa both at
ordinary times (right).

We found 154 unique domains in the 299 original
URLs that were shortened at rcdn.info. Figure 14 (left)
compares domain rankings between rcdn.info in the mid-
dle of March and Alexa in June 2011 (i.e., Alexa at normal
times)†. We see no clear correlation between these rank-
ings. Surprisingly, 41 of 154 domains are not found even
within the Alexa 1 M ranking, and so they are not shown
in the figure. This result means that massive requests were
made for normally unpopular sites; these sites must have
been less popular before the earthquake. We think this is the
reason why many web sites went down in the aftermath of
the earthquake.

For comparison, we examine the ranking of retweeted
domains at ordinary times with the Alexa ranking. The
retweeted domain ranking was calculated by the authors
from a retweet dataset between June 20th and June 23rd,
2011, in Japan [6]. The top 25 domains in the retweet rank-
ing have better Alexa ranks than those in rcdn.info, as shown
in Fig. 14 (right). Moreover, only 2 of the top 25 retweeted
domains are not found in the Alexa 1 M ranking, while 7
of the top 25 rcdn.info domains are not found in Alexa. We
know that Alexa traffic ranks (bit/s) and retweet ranks (im-
pressions) cannot be compared directly with our click ranks,
but these results still support our conclusion that the request
growth, which could be flash crowds, occurred at previously
unpopular sites in the middle of March.

†The Alexa ranking can be different between March and June,
but this gap does not upset our conclusion, because domains pro-
viding disaster information must have been even less popular be-
fore the earthquake.

2218
IEICE TRANS. COMMUN., VOL.E95–B, NO.7 JULY 2012

Table 3 Top three popular URLs.

URL Title (originally in Japanese) Date/time of shortening
of total requests # of requests to origin
http://earthsense.info/ List of radiation levels March 17th, 7:59pm
http://www.atomin.go.jp/atomin/... Radiation and human body March 15th, 11:53am
http://maps.google.com/maps/... Shelters in Rikuzen-Takata City March 16th, 7:10pm

Fig. 15 Total requests per hour (stacked lines).

Fig. 16 Expansion requests per minute for the top three popular URLs.

6.7 Request Peaks

Our advantage over ordinary tweet analysis is that rcdn.info
can count actual clicks with accurate time stamping, while
conventional tweet analysis provides only impressions. Fig-
ure 15 shows the number of requests per hour. We see sev-
eral sharp peaks as well as a periodic day-and-night pattern
in the figure.

To investigate these peaks more closely, we examined
request rates for the top three popular URLs at a finer time-
scale. Table 3 presents details of the top three URLs. Fig-
ure 16 shows the number of expansion requests per minute
for these URLs. The horizontal axis is time elapsed since
the shortening request was issued for each URL. The most
popular URL was retweeted by an influential Twitter user
(more than 20 K followers) about one hour after the short-
ening process was established. We see a sharp peak just
after the retweet. The second popular URL was tweeted di-
rectly by another influential user (more than 100 K follow-
ers), and this tweet also triggered a sharp peak (this user

also retweeted the fourth most popular URL which yielded
a sharp peak). The third popular URL was retweeted by tens
of users, but none of them had strong influence and we see
no sharp peak. We found such drastic rate shifts for most
of the popular URLs. These peaks grew on the order of
minutes, not seconds or hours, as is common among flash
crowds studied in CoralCDN [24]. The peaks are a bit small
to cause server failures, but this mechanism (or the combi-
nation) could trigger larger peaks that hit some previously
unpopular sites just after the earthquake.

7. Performance Evaluation

This section evaluates performance of rcdn.info through
simulations using the log analyzed in Sect. 6. Section 7.1
investigates the request reduction effect that would be mea-
sured at origin servers by replaying the requests. Section 7.2
evaluates the latency increase, which is caused by rcdn.info
as discussed in Sect. 4.2, assuming requests collected in the
log. We do not discuss the throughput of rcdn.info, because
we had no trouble about that and we can utilize good dis-
tributed data storage [21], [22], [31] if needed.

7.1 Request Reduction

We examine the number of requests that original sites re-
ceived. We first count such requests for the top three URLs.
As described in Sect. 2.3, CoralCDN makes a request for
an original site if it has no replica or the replica is stale.
Since we do not know the expiry time of each replica, we
assume that CoralCDN updates replicas every five minutes
(a conservative assumption). Figure 17(a) shows the num-
ber of requests that the original site would have received
under the assumption. For the most popular URL, the origi-
nal site received only 17.9% of requests (166/925); further-
more, it received just one of 144 requests within the bus-
iest five minute period (Fig. 17(b)). We also see the great
suppression of requests for the second popular URL, while
the third URL’s site received slightly more requests since
it has a long-lasting request pattern as shown in Fig. 16.
We calculated the total number of requests that all origi-
nal sites received, assuming that rcdn.info redirected all re-
quests to CoralCDN without the large site list. The result
is that the original sites received only 32.5% of the requests
made (1,321/4,069). That is, rcdn.info offers great potential
to reduce the request traffic, and the reduced rate, a single
request per five minutes, is considered not over the ordinary
level for most sites. Web sites, however, may receive other
traffic from users not using rcdn.info; we briefly discuss this
issue in the conclusion.

INOUE and MINATO: ON TACKLING FLASH CROWDS WITH URL SHORTENERS AFTER GREAT EAST JAPAN EARTHQUAKE
2219

Fig. 17 Total requests and requests to origin (a) during the whole logging
period and (b) in the peak five minutes for each URL.

Fig. 18 Latencies for shortened URLs.

7.2 Latency Increase

We conducted experiments to evaluate the latency improve-
ment techniques introduced in Sect. 5.3. The experiments
were made at a host located in Japan, in a day in July 2011.
Though some web sites might have rather different condi-
tions from the emergency, we can still understand intrin-
sic impacts of the techniques. The latency and its vari-
ance could be larger in March due to heavy server loads and
detoured networks, but the order relation among accesses
would remain unchanged.

We first selected 181 rcdn.info short URLs whose orig-
inal pages were unlikely to be replicated in CoralCDN at
that time; i.e., they were not accessed within twenty-four
hour period via rcdn.info, and the corresponding Coralized
URLs were not found by Google search. The following pro-
cess was then executed for each selected URL. We accessed
the Coralized URL twice via rcdn.info, and compared the
latencies between the first and second accesses (we assume
that CoralCDN creates a replica with the first access, and
simply returns the replica in the second access). We also
accessed the original URL via rcdn.info and measured the
latency. DNS cache was cleared at the experiment host be-
fore every access for fair comparison.

Figure 18 shows the latencies. The latencies are greatly
improved between the first and second accesses (typical
RTT between Japan and US is more than 120 msec.). This
improvement is brought by the asynchronous access to the
Coralized URL in the shortening procedure. The origin ac-
cess has shorter latencies than the second access does. Users
who access a large capacity site enjoy the better latency with
the original site thanks to the large site list. Assuming the

requests collected in our log, we calculated the average la-
tencies weighted by the popularity of URLs; the averages
were 6.30, 2.26, 1.48 seconds for the first, second, and ori-
gin accesses, respectively. The pages had weighted average
size of 132 KB (excluding images and etc.). The additional
latency of rcdn.info, that is the small gap between the sec-
ond and origin accesses, can be considered as a necessary
cost to prevent the long latency caused by flash crowds.

Since it takes some time to complete the asynchronous
access, a user may suffer from the long latency if clicking
an rcdn.info short URL before the completion. This, how-
ever, cannot be a serious problem in practice, because the
asynchronous access usually takes less than ten seconds as
shown in Fig. 18 (the asynchronous access includes the same
operations with the first access).

8. Related Work

Flash crowd mitigation has been studied through the design
and operation of CoralCDN. Reference [24] shows sample
configurations for web servers to redirect flash crowds to
CoralCDN, but this technique does not work in an emer-
gency since it needs the support of site administrators. Other
research papers focused on flash crowd mitigation [12],
[18], [29], [37], but they also rely on the involvement of web
sites.

Several research papers [13], [26], [28] studied anoma-
lous traffic including flash crowds, but none of them focused
on the traffic during an emergency; we have detailed the
great shifts seen in site popularity.

The roles of indirection were extensively investigated
in [35]. The review paper of CoralCDN [24] also discussed
indirection in terms of its naming technique. To the best of
our knowledge, no research work has addressed the layer of
indirection constituted by URL shorteners, though shorten-
ers have been widely used. This paper is the first work to
discuss the indirection and to unveil the potential to flash
crowd mitigation.

There are many studies that focus on network latency
[17], [34], but no work has dealt with the latency caused by
the combination of URL shorteners and CDNs, since this is
a new challenge introduced by our idea.

Short URLs were recently examined in [11], which
crawled many short URLs and analyzed their popularity.
This work, however, could not investigate user behavior
from various aspects, because crawled data includes no
timestamp, no address, and no HTTP headers. We have pre-
sented various views to examine the behavior by analyzing
the HTTP log collected at our URL shortener.

Several research papers studied information dissemina-
tion on Twitter. The dissemination is known to be quite fast;
it takes less than thirty minutes for every hop [30]. Current
news and events are likely to be retweeted [15]. Reference
[33] also examined frequently tweeted topics. These find-
ings are consistent with the fast development of flash crowds
after a disaster.

2220
IEICE TRANS. COMMUN., VOL.E95–B, NO.7 JULY 2012

9. Conclusions

This paper tackled the flash crowds seen in the aftermath of
the Great East Japan Earthquake (March, 2011). We found
that URL shorteners constitute a layer of indirection that is
easily reconstructed even in the midst of an emergency. We
developed a URL shortener named rcdn.info and confirmed
that it can greatly mitigate flash crowds. Our solution is
quite simple, but it is based on a deep insight into current
Web usage. We also found request growth at previously
unpopular sites during the disaster. Future work includes
additional data analysis or more controlled experiments to
compare users in an emergency with those in normal situa-
tions.

It is worth noting that rcdn.info is supposed to work
with other CDNs if redirection URLs are given by the CDNs
(or can be generated like CoralCDN), though the techniques
for latency improvement strongly depends on positions of
users, rcdn.info, and CDNs.

The more users rely on rcdn.info, the more flash crowds
can be mitigated. However, rapid promotion is not easy in
the emergency. One idea is that rcdn.info would be imple-
mented in the existing shorteners stealthily in normal times,
and it would be activated in the emergency.

Finally, we summarize lessons learned from the disas-
ter. In terrible disasters, we should take into account that the
traffic pattern will drastically change. We should develop a
layer of indirection that is highly independent, in order to
quickly control the traffic.

Acknowledgement

We would like to thank Prof. Michael Freedman for devel-
oping an excellent content distribution network. We also
wish to acknowledge energetic support in software develop-
ment by Dr. Norihito Yasuda and Mr. Masaaki Nishino. We
would like to thank Dr. Tatsuya Mori for his valuable ad-
vice in the log analysis. We would like to thank Mr. Yuichi
Yoshida for designing the pages of the shortener. We wish
to acknowledge kind support about Amazon Web Services
by Dr. Yasuhiro Araki, Ms. Miki Takata, and Mr. Keiichi
Okabe.

References

[1] Amazon Web Services. http://aws.amazon.com/
[2] bitly-api. http://code.google.com/p/bitly-api
[3] Goo.gl challenges bit.ly as king of the short — NYTimes.com.

http://bits.blogs.nytimes.com/2009/12/14/googl-challenges-bitly-as-
king-of-the-short/

[4] livedoor news. http://news.livedoor.com/article/detail/5417888/ (in
Japanese).

[5] Press Release — NEC Biglobe. http://www.biglobe.co.jp/press/
2011/0427-1.html (in Japanese).

[6] Retweeter! http://retweeter.unicco.in/ (in Japanese).
[7] Tweetdeck. http://www.tweetdeck.com/
[8] We want ’em shorter. — MetaFilter. http://www.metafilter.com/

8916/

[9] Yahoo! news. http://headlines.yahoo.co.jp/hl?a=20110316-000000
03-rbb-sci (in Japanese).

[10] Yorufukurou. http://sites.google.com/site/yorufukurou/home-en
[11] D. Antoniades, I. Polakis, G. Kontaxis, E. Athanasopoulos, S.

Ioannidis, E.P. Markatos, and T. Karagiannis, “we.b: The web of
short URLs,” ACM WWW, pp.715–724, 2011.

[12] I. Ari, B. Hong, E. Miller, S. Brandt, and D. Long, “Managing
flash crowds on the Internet,” IEEE/ACM MASCOTS, pp.246 – 249,
2003.

[13] P. Barford and D. Plonka, “Characteristics of network traffic flow
anomalies,” ACM IMW, pp.69–73, 2001.

[14] T. Berners-Lee, R.T. Fielding, and L. Masinter, “Uniform resource
identifier (URI): Generic syntax,” IETF RFC 3986, 2005.

[15] D. Boyd, S. Golder, and G. Lotan, “Tweet, tweet, retweet: Conver-
sational aspects of retweeting on Twitter,” IEEE HICSS, pp.1–10,
2010.

[16] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” IEEE IN-
FOCOM, vol.1, pp.126 –134, 1999.

[17] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,”
USENIX USITS, p.18, 1997.

[18] X. Chen and J. Heidemann, “Flash crowd mitigation via adaptive
admission control based on application-level observations,” ACM
Trans. Internet Technol., vol.5, pp.532–569, 2005.

[19] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.
Wawrzoniak, and M. Bowman, “PlanetLab: An overlay testbed
for broad-coverage services,” SIGCOMM Comput. Commun. Rev.,
vol.33, pp.3–12, 2003.

[20] B. Davison, A web caching primer, IEEE Internet Computing, vol.5,
no.4, pp.38–45, 2001.

[21] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo: Amazon’s highly available key-value store,”
Proc. twenty-first ACM SIGOPS symposium on Operating systems
principles, pp.205–220, Oct. 2007.

[22] B. Fitzpatrick, “Distributed caching with memcached,” Linux J.,
vol.2004, no.124, p.5, Aug. 2004.

[23] M. Freedman and D. Mazières, “Sloppy hashing and self-organizing
clusters,” Peer-to-Peer Systems II, LNCS, vol.2735, pp.45–55,
Springer, 2003.

[24] M.J. Freedman, “Experiences with CoralCDN: A five-year opera-
tional view,” USENIX NSDI, 2010.

[25] M.J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing
content publication with coral,” USENIX NSDI, 2004.

[26] K. Ingham and H. Inoue, “Comparing anomaly detection tech-
niques for HTTP,” Recent Advances in Intrusion Detection, LNCS,
vol.4637, pp.42–62, 2007.

[27] T. Inoue, F. Toriumi, Y. Shirai, and S.-i. Minato, “Great east Japan
earthquake viewed from a URL shortener,” Proc. Special Workshop
on Internet and Disasters, SWID’11, pp.8:1–8:8, 2011.

[28] C. Kruegel and G. Vigna, “Anomaly detection of web-based at-
tacks,” ACM CCS, pp.251–261, 2003.

[29] R. Kurebayashi, K. Obana, H. Uematsu, and O. Ishida, “A Web
Access SHaping method to improve the performance of congested
servers,” IEICE/IEEE APSITT, pp.120–125, 2008.

[30] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?,” ACM WWW, pp.591–600, 2010.

[31] A. Lakshman, P. Malik, and K. Ranganathan, “Cassandra: A struc-
tured storage system on a P2P network,” Proc. 2008 ACM SIGMOD
international conference on Management of data, Products Day #1,
June 2008.

[32] J. Lee and B. Ware, Open source Web development with LAMP: us-
ing Linux, Apache, MySQL, Perl, and PHP, Addison-Wesley, 2002.

[33] J. Letierce, A. Passant, J. Breslin, and S. Decker, “Understanding
how Twitter is used to spread scientific messages,” WebSci, 2010.

[34] H.F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H.W.
Lie, and C. Lilley, “Network performance effects of HTTP/1.1,

INOUE and MINATO: ON TACKLING FLASH CROWDS WITH URL SHORTENERS AFTER GREAT EAST JAPAN EARTHQUAKE
2221

CSS1, and PNG,” ACM SIGCOMM, pp.155–166, 1997.
[35] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, Internet

indirection infrastructure, ACM SIGCOMM, pp.73–86, 2002.
[36] P. Wendell, J.W. Jiang, M.J. Freedman, and J. Rexford, “DONAR:

Decentralized server selection for cloud services,” ACM SIG-
COMM, pp.231–242, 2010.

[37] X. Yang and G. de Veciana, “Service capacity of peer to peer net-
works,” IEEE INFOCOM, vol.4, pp.2242–2252, 2004.

Takeru Inoue received the B.E., M.E., and
Ph.D. degrees from Kyoto University, Kyoto,
Japan, in 1998, 2000, and 2006, respectively.
He joined NTT Laboratories in 2000. He is also
a researcher at Japan Science and Technology
agency. His research interest includes design
and control of network systems. He received the
best paper award from Asia-Pacific Conference
on Communications in 2005. He also received
the research awards of the IEICE Information
Network Group in 2002 and 2005. He is a mem-

ber of IEEE.

Shin-ichi Minato is a Professor at Grad-
uate School of Information Science and Tech-
nology, Hokkaido University. He also serves as
a Research Director of ERATO MINATO Dis-
crete Structure Manipulation System Project,
executed by JST. He received the B.E., M.E.,
and D.E. degrees in Information Science from
Kyoto University in 1988, 1990, and 1995, re-
spectively. He had been working for NTT Lab-
oratories since 1990 until 2004. He was a Vis-
iting Scholar at Computer Science Department

of Stanford University in 1997. He joined Hokkaido University as an As-
sociate Professor in 2004, and has been a Professor since Oct. 2010. He
published “Binary Decision Diagrams and Applications for VLSI CAD”
(Kluwer, 1995). He is a member of IEEE, IPSJ, and JSAI.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

