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Generation of broadband spontaneous
parametric fluorescence using multiple
bulk nonlinear crystals

Masayuki Okano,'? Ryo Okamoto,"? Akira Tanaka,?
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1Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
2The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
*takeuchi @es.hokudai.ac.jp

Abstract:  We propose a novel method for generating broadband spon-
taneous parametric fluorescence by using a set of bulk nonlinear crystals
(NLCs). We aso demonstrate this scheme experimentally. Our method
employs a superposition of spontaneous parametric fluorescence spectra
generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73
THZz) with a degenerate wavelength of 808 nm was achieved using two
B-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm
(34 THZz) was realized using a single BBO crystal. We a so observed coin-
cidence counts of generated photon pairs in a non-collinear configuration.
The bandwidth could be further broadened by increasing the number of
NLCs. Our demonstration suggests that a set of four BBO crystals could
realize a bandwidth of approximately 215 nm (100 THz). We also discuss
the stability of Hong-Ou-Mandel two-photon interference between the
parametric fluorescence generated by this scheme. Our simple scheme is
easy to implement with conventional NLCs and does not require special
devices.

© 2012 Optical Society of America

OCI S codes: (190.4410) Nonlinear optics, parametric processes; (270.0270) Quantum optics.
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1. Introduction

Quantum entangled photon pairs play a key role in quantum information processing [1] and
quantum communication [2]. In recent years, entangled photon pairs with ultrabroad band-
widthsin the frequency domain have attracted much attention [3,4]. Such frequency-entangled
photon pairs are indispensabl e for the future realization of ”single-cycle biphotons” [3], whose
characteristic coincidence time, as measured at distant detectors, isasingle optical cycle. These
broadband correlated photon pairs have the potential to realize high-resolution quantum opti-
cal coherence tomography [5], highly-efficient two-photon absorption experiments [6, 7], and
precise synchronization of two clocks[8].

Various methods have been devel oped for generating broadband spontaneous parametric flu-
orescence that can be used as correlated photon pairs. However, there have been only a few
methods that can realize an ultrabroad bandwidth of an order of 100 THz. For example, one
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method uses chirped quasi-phase matched devices. It was theoretically proposed by S.E. Har-
ris [3] and subsequently demonstrated experimentally by generating ultrabroadband sponta-
neous parametric fluorescence in the range 700-1500 nm with a center wavelength A of 1064
nm [9] and 300 nm (136 THz) bandwidth spontaneous parametric fluorescence at A; = 812
nm [10]. Although this approach is suitable for ultrabroadband generation and enables us to
engineer the high optical nonlinearities of materials [11], it requires sophisticated quasi-phase
matched devices that should be properly designed for a specific purpose. Furthermore, it is dif-
ficult to use this method to the applications where the pump laser wavelength has to be varied
over a certain range (>10 nm). Another method employs a large temperature modulation in a
NL C and obtained a broad bandwidth of 253 nm (154 THz) at A = 702 nm [12]. However, this
method al so requires sophisticated device structure to exploit spatial modulation of temperature
inatiny NLC. Although a broad bandwidth of 174 nm (106 THz) at A = 702 nm was reported
using an ultrathin (thickness: 0.05 mm) crystal [13], this method increases the bandwidth at the
expense of the photon flux.

There have been other experimental demonstrations towards the generation of broadband
spontaneous parametric fluorescence. One approach isto control the pump beam incident angles
to obtain awide range of the phase matching conditions. A method using tightly focused pump
beam was reported with 84 THz bandwidth [14], and another method uses a pair of gratings for
pump (24 THz [15]). Oppositely, one can collect the parametric fluorescence spread over in a
certain divergence angle (91 THz [16]).

In this paper, we propose a novel method that uses multiple bulk NLCs to generate broad-
band spontaneous parametric fluorescence. Our schemeis easy to implement asit employs aset
of conventional bulk NLCs and it does not require special devices. This scheme uses aweakly
focused pump beam and the broadband photons are emitted into a certain direction in a non-
collinear configuration, so that the parametric fluorescence can be coupled into single mode
fiber couplers. In principle, the bandwidth can be extended by increasing the number of NLCs
up to 100 THz asis shown later. Furthermore, the pump laser frequency can be tuned within the
tuning range of the phase-matching conditions of NLCs. We then experimentally demonstrate
the scheme by using two bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degen-
erate wavelength of 808 nm was achieved using two -barium-borate (BBO) crystals. We aso
measured the coincidence counts of generated photon pairs in a non-collinear configuration.
Calculations based on the experimental results suggest that it should be possible to realize a
bandwidth of approximately 215 nm (100 THz) by using a set of four BBO crystals.

We aso discuss the effect of air gaps between multiple NLCs on the Hong-Ou-Mandel
(HOM) interference [17] between the daughter photons generated by our scheme. Our theo-
retical analysis suggests that the difference in the refractive indices of the air for the pump light
and the daughter photons indeed modify the shape of the HOM interference, but the change
is negligibly small for the current experimental condition. The analysis also suggests that the
effect of group velocity mismatch between the pump light and the daughter photon is aso neg-
ligible and it is not necessary to stabilize the distance between crystals with interferometric
accuracy when a pump light with appropriate coherence length is used.

The remainder of the paper is organized asfollows. Section 2 describes the proposed scheme.
Section 3 describes the experimental setup used to demonstrate the scheme by using two bulk
NLCs. Section 4 presents the experimental results and discussions about the effect of the air
gap between NLCs. The final section summarizes the findings of this study and gives the con-
clusions.
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2. Proposed scheme

For bulk NLCs, the spontaneous parametric fluorescence spectrum is determined by the phase-
matching conditions for parametric down conversion, which is a second-order nonlinear pro-
cess. A pump photon with afrequency wp and a momentum kj, is down converted to a pair of
photons, which are signal and idler photons with frequencies ws and w; and momentaks and k;,
respectively. Due to energy conservation, wp = ws+ @ must be satisfied so that the momentum
mismatch Ak = kp, — ks — ki must be zero to satisfy the critical phase-matching condition [18].
Thefrequency spectrum F (w) for spontaneous parametric fluorescence, which consists of pairs
of signal F(ws) andidler F(e;) photons, can be assumed to be symmetric relative to the center
frequency 2. The spectrum F (), which is F (ws) = F (@) = F (2 £ Q) = F(Q), can then
be described as

2

L
F(Q) o ‘ /0 dzexp[iAk(Q)7]

_ L 26inc? [Akf)ﬂ | @

where z is the position in the NLC aong the pump beam axis. and L is the length of the NLC
aong the z axis. The momentum mismatch Ak in the NLC depends on the frequencies of the
generated signal and idler photons. Thus, the frequency spectrum F () has afinite bandwidth
that is determined by the frequency-dependent momentum mismatch Ak(Q).

We now propose our scheme that employs multiple NL Csto generate broadband spontaneous
parametric fluorescence. As an example, Fig. 1 schematically depicts the proposed method for
three NLCs. Multiple bulk NLCs are aligned in parallel along the pump beam. The phase-
matching condition, which depends on the momentum mismatch Ak, for each NLC can be
controlled by controlling the tilt angle 6; of the optic axis of the NLC. The tilt angle between
the optic axis and the pump beam is varied in the horizontal plane (i.e., parallel to the page)
and the pump beam is horizontally polarized in Fig. 1. The tilt angles of the three NLCs are
set to be different from each other (6a, 6ip, and 6 in Fig. 1). Consequently, the parametric
fluorescence spectra generated by the NLCs will differ due to the phase-matching conditions.
The parametric fluorescence generated from all the NL Cs can be collected at an emission angle
0(—0) assigna (idler) photons of correlated photon pairsin anon-collinear configuration. The
parametric fluorescence spectrum also depends on the emission angle 6, which determines the
momentum direction of generated photons. Thus, the signal photon spectra generated from the
NLCs and detected at an emission angle 8 = 64, can be expressed by

F(Q,60)= Y F(Q.6q60) Y L2sinc? [AW@M)L}

i=ab,c i=ab,c

) @

where F, 6;;, and k; arethe signal photon spectrum, the NL C tilt angle, and the momentum mis-
match of theith NLC (i = a, b, ¢), respectively. By suitably controlling the phase-matching con-
ditions of the NLCs, the spontaneous parametric fluorescence bandwidth could be broadened
due to the superposition of spontaneous parametric fluorescence generated from the multiple
bulk NLCs.

Figure 2 schematically depicts the proposed scheme with three NLCs in the view of the
frequency spectrum. The upper left figure of Fig. 2 shows the relation between the emission
angle 0 and the wavelength A of the generated parametric fluorescence as tuning curves that
indicate the phase-matching conditions. The three different tilt angles 6; of the three NLCs
(6a, 6ip, Brc) lead to three different tuning curves. When the generated signal and idler photons
are collected at emission angles of 6 = 64 and — 6y, respectively, the parametric fluorescence
spectra generated by the NLCs have different peaks and bandwidths, as shown in the lower
left figure of Fig. 2. The broadband spontaneous parametric fluorescence can be obtained at
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Fig. 1. Schematic of proposed method to generate spontaneous parametric fluorescence by
using multiple bulk NLCs. Multiple (threein figure) bulk NLCs are aligned in parallel; the
pump beam passes through all the NLCs. The optic axes of the NLCs have different tilt
angles 6 (6a, 6ip, 6rc) to control the phase-matching condition for each NLC. Generated
parametric fluorescence is collected at the emission angle -6 as signal and idler photons.

the detection angle 64 as a superposition of these spectra, as shown in the lower right figure of
Fig. 2. Following the proposed method, the spectral bandwidth can be broadened by increasing
the number of crystals. The expected broadening of the bandwidth with increasing number of
crystals will be discussed later in Sec. 4.1 based on experimentally measured spectra.

Tuning curves

Emisiong | 0L=bk, Titangles
\_/ O1=01c
PShele" 0g | - \\// signal
0 - : L » A Wavelength
_ ed -—— /—-K ‘g - - Idler

> g

: - ;

g i f

0 “ > /\s 0 | o > As

Spectrum of signal photons Superposition of spectra

Fig. 2. lllustration of proposed scheme for generating spontaneous parametric fluorescence
using three bulk NLCs. Upper left figure shows tuning curves of three NLCs with tilt an-
gles 6; of 6ta, B, and B;c. Lower left figure shows corresponding parametric fluorescence
spectra from these three NLCs for a detection angle 6 = +6y. Lower right figure shows
broadened spectrum as a superposition of these spectra.

3. Experimental setup

Figure 3 shows the experimental setup used to demonstrate the proposed scheme using two bulk
NLCs. The pump laser system consists of a single-frequency CW Ti:sapphire laser (MBR-110,
Coherent) pumped by a diode-pumped solid state (DPSS) laser (Verdi G-10, Coherent) and a
resonant frequency doubling unit (MBD-200, Coherent). The output of the Ti:sapphire laser
(wavelength: 808 nm; linewidth: approximately 100 kHz) is frequency doubled by second-
harmonic generation (SHG) and it is used as the pump beam. The reason why we used a pump
laser with narrow linewidth (coherence length longer than 1 km) will be discussed later in Sec.
4.2. The pump beam (wavelength: 404 nm; power: 100 mW) isweakly focused by alens (focal
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length: 600 mm); this focusing has a confocal parameter (i.e., twice the Rayleigh length) of
approximately 230 mm. Two 2-mm-thick bulk BBO crystals (BBO1 and BBO2) are aligned
in paralel along the pump beam with a separation of 10 mm around the focus. The optic axis
of BBO1 (BBO2) crystal has a tilt angle of 61 (6;2) relative to the cut angle (28.9°) of the
BBO crystal. Thesignal and idler photons generated by type-1 phase-matching parametric down
conversion are collected by two fiber couplers (FCs) with an emission angle 6 of 1° relative
to the pump beam. Long pass filters (LPFs) are placed in front of the FCs to filter the pump
beam. Collected photons are transferred through polarization-maintaining fibers (PMFs) to the
300-mm spectrograph with a 300-grooves/mm grating blazed at 750 nm (SP-2358, Princeton
Instruments) and detected by a charge coupled device (Pixis:100BRX, Princeton Instruments)
to measure the frequency spectrum. The phase-matching conditions of the two BBO crystals
are controlled by rotating the BBO crystals to vary the tilt angles 6;1 and 6;».

é- Spectrograph

BBO Type-l

BBOT BBO2 emisslion T —
= = 600 angle i
A=808nm  A=404nm pump i signal \ damper
= > )
o 0m| )
P=100mW |ens Nalad] idler / — LPF
Ou Ow mirror FC
tilt angle PMF
A=532nm Spectrograph

P=5W

Fig. 3. Experimental setup to measure spontaneous parametric fluorescence spectra gener-
ated from one or two BBO crystals (BBO1 and BBO2). 6;; and 6;, are thetilt angles of the
optic axes of BBO1 and BBO2 crystalsrelative to the cut angle, respectively. Thetwo BBO
crystalsarealigned in parallel aong the pump beam with a separation of 10 mm. Generated
signal and idler photons are collected at an emission angle of +£1° by fiber couplersand are
transferred to the spectrograph to obtain the spectra. DPSS laser: diode-pumped solid-state
laser, SHG: second-harmonic generation system, LPF: long pass filter, FC: fiber coupler,
PMF: polarization-maintaining fiber.

4, Resultsand discussion

4.1. Observation of broadband spontaneous parametric fluorescence

To experimentally demonstrate our scheme, we measured spontaneous parametric fluorescence
spectra generated from one and two NLCs in the experimental setup shown in Fig. 3. We first
measured spontaneous parametric fluorescence spectra generated from only one BBO crystal
(BBO2) in a non-collinear configuration for various phase-matching conditions, as shown in
Fig. 4(a). The tilt angle 6> was varied from —0.05° to —0.40° in 0.05° steps. As aresult, the
spectrum could be controlled by varying the phase-matching conditions, as shown in Fig. 2.
The transmission efficiency of the spectrograph was calibrated in these spectra; however, the
intensity reduction in thelong wavelength region may be due to areduction in the fiber coupling
efficiency. When thetilt angle 6;» was set to —0.05°, the spectrum was degenerate at the center
wavelength of 808 nm and the bandwidth (FWHM) was typicaly 75 nm (34 THz). Thus, a
broadband spectrum is expected when spectra with different tilt angles are superimposed. As
an example, Fig. 4(b) shows calculated spectra as a superposition of these measured spectra.
The bandwidth of the spectra obtained by summing two measured spectra obtained for tilt
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angles 6;» of —0.05° and —0.15° is approximately 130 nm (60 THz), as plotted by the blueline
in Fig. 4(b). A bandwidth of approximately 215 nm (100 THz), which is almost three times that
of one degenerate spectrum, can be expected from the sum of four measured spectra with 6,
of —0.10°, —0.20°, —0.30°, and —0.40°, as plotted by the red linein Fig. 4(b).

I\{lel?slulr?qf??c?tfﬁllll|||||||l_ﬁ05_ _300 $I|rT|]L|I||atll?r]S||||| LI L L O B
S'200£(a) —zgf L) — g8z
S 150F W \ =4 f1200
2 100F ' h L
2 - 1100
£ s50F “ “‘ 3

E e .~JJ.-_~ ‘ W " "“ Mt E 0

700 800 900 700 800 900
Wavelength [nm] Wavelength [nm]

Fig. 4. (8) Measured spontaneous parametric fluorescence spectragenerated from one BBO
crystal (BBO2) with atilt angle 6;» varied between —0.05° and —0.40°. (b) Calculated
spectra as a superposition of measured spectra of two BBO crystals with 6, of —0.05° and
—0.15° (blue line) and four BBO crystals with 6, of —0.10, —0.20, —0.30, and —0.40°
(red line).

We then measured spectra of both the signal and idler photons of the spontaneous parametric
fluorescence generated from both BBO crystals as shown in Fig. 5. A typical bandwidth of 160
nm (73 THZz) was obtained with tilt angles 6;1 and 6;» of —0.10° and —0.20°, respectively as
shown in Fig. 5. A typical single photon count rate was 1.0 x 10° counts per second when
the pump beam power was 10 mW. The measured bandwidth was over two times greater than
that obtained using only one BBO crystal. This broad bandwidth in the frequency domain cor-
responds to a Fourier-transform-limited temporal width of approximately 6 fs for correlated
photon pairs in the time domain. The intensity ratio of parametric fluorescence collected from
two BBO crystals was sensitive to the fiber coupling of the fiber couplers, which was optimized
to maximize the overlap of these two spectra. The slight difference between the spectrum of sig-
nal (red linein Fig. 5) and idler (blue line in Fig. 5) photons may be caused by the non-perfect
spatial mode matching of the two detection modes at the crystal.

Then we measured the coincidence counts between the signal photons and the idler photons
for the whole spectrum, i.e. just inserting alow frequency filter (SCF-50S-42L, SIGMA KOKI)
to cut the pump beam. With the detection event of the signal photon as atrigger, the coincidence
count rate of idler photons was typically 2% that of the single photon count rate. We think
this relatively low fraction (2%) is due to technical difficulties when we align single mode
fiber couplers. We think the fraction can be improved up to approximately 20% if we can
simultaneously monitor the spectra of daughter photons and coincidence counting rate [19].

4.2. Effect of the air gap between the nonlinear crystalsin the proposed scheme

In our proposed scheme, there should be gaps between NL Csto control thetilt angles of NLCs,
which may affect the phase relation between generated photons and pump photons due to fol-
lowing two causes.

The first cause is the group velocity mismatch between the pump beam and signal (idler)
photons. The group velocity mismatch can be eval uated by the dispersion coefficient D = ug* —
ug 1, where uo e are the group velocities for ordinary and extraordinary raysin a medium [20].
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Fig. 5. Measured spectra of signal (red line) and idler (blue line) photons of spontaneous
parametric fluorescence generated from two BBO crystals. Spectra of signal and idler pho-
tons had measured bandwidths of approximately 160 nm (73 THz). Tilt angles 6;1 and 6;»
were set to —0.10° and —0.20°, respectively.

Then the spatial separation Al of the pump and signal (idler) photons after passing through the
medium with a length d can be given by Al = cdD. If the coherence length of the pump beam
is shorter than this separation, this separation causes a loss of the coherence between photons
generated from separated multiple NLCs and thus only an incoherent mixture of photons can
be obtained [21, 22].

In our experimental setup, two BBO crystalswith alength of 2 mmis separated by the air gap
with a distance of 10 mm. In this case, the separation Al in the BBO crystal is approximately
0.1 mm and that inthe air gap islessthan 1 um. In our experimental setup shown in Sec. 3, the
CW pump laser with anarrow linewidth (~ 100 kHz) is used. The coherence length of the laser
isan order of 1 km and is much longer than these separations (0.1 mm and 1 pm). In this con-
dition, the effect of group velocity mismatch isnegligible and it is not necessary to stabilize the
distance between crystals with interferometric accuracy. Note that similar condition has been
widely used for the polarization-entanglement sources [23-25]. This effect of group velocity
mismatch will become critical when one wish to use short pulse lasers with small coherent
length for pumping [21,22].

The second cause is the momentum mismatch between the pump, signal and idler photons.
This effect on the polarization entangled photon pair source has been discussed by Atatire et
al. [26] and Giuseppe et a. [20]. For the case of frequency entangled photon pairs generated
from the proposed scheme in Sec. 2, the state of photon pairs generated from two NLCs is
written by

¥ >= /dQFa(Q)\ +Q >5[~ Q> +/d£2exp[i¢d(9)]Fb(Q)| +Q>5|-Q>;, (3

where K (+Q) = K (—Q) (i = a,b) is a symmetric frequency spectrum of photons generated
fromith NLC asexplained in Sec. 2 and ¢4(2) isaphase term. This phase term can be given by
04 (Q) = Ak(Q)d, where Ak(€2) is amomentum mismatch between the pump beam, signal and
idler photonsin theair gap. This momentum mismatch can bewritten by Ak(€2) =kp —ks—ki =
N(wp)wp/c—N(L +Q)(L +Q)/c—n(L —Q)(L —Q)/c, where n(w) isarefractive index
of the air at the frequency .

To investigate the effect of this phase term, Here we consider a HOM interferometer [17],
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with a pair of photons described in Eqg. (3). The coincidence rate P;(t) between two separated
output ports A and B of the HOM interferometer with the slow single photon detectors can be
written by

]

P.(7) / dandos < P[a)(on)al(ws)an(wn)as(0p) ¥ > (4

/ dQAdQg|| < Olas(Qa)ai (Qp)€8T —as(Q)ai (Q) TP > |2 (5)
= [ dOIR(€)+ explida(2)] F(@) (1 cos(207)), ©

where 7 is arelative time delay between signal and idler photons, a;(w;j)(j = A,B) isan an-
nihilation operator for the mode coupled to the output port j = A, B at the frequency w; and
aj () (j = s,i and k= A, B) isan annihilation operator for the mode of signal (j = s) and idler
(j =) photons at the frequency Q [27].

Now, let us consider HOM interference signal s with the state of photons that have frequency
spectra shown in Fig. 6(a), which is a model spectrum based on the experimental data shown
in Fig. 4. The spectrum F(Q)(i = a,b) of photons generated from ith NLC is assumed to be
different from each other (cf. Fig. 2). Then a sum of two spectra F;(Q2) + F,(Q2) has broadened
bandwidth (Q/2r ~ 70 THz in this case).

215 @] e 1.4

g [ F© 1A | A

210} _§0.8- ™ :

£ [F© 806l A

< 5 13 V. case(1) & i
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Fig. 6. (a) Frequency spectra F (€2) of photons generated from ith NLC (i = a (blue line),
b (red line)) and a sum of two spectra (black line) with the bandwidth of approximately
70 THz. (b) Coincidence rate P;(t) in a HOM two-photon interferometer with the case
(1) ¢g = O (solid black line), case (2) ¢g ~ 0.377 (dashed blue line) and case (3) ¢q = 7
(dashed-dotted red line). The width of the HOM dip with the case (1) is approximately 3

um

Figure 6(b) shows cal cul ated two-photon interference signals of the HOM interferometer for
the following three cases: (1) An ideal case with the O gap distance (¢q = 0); (2) The case
of our experimental condition, with the pump laser wavelength A, of 404 nm and the air gap
distance d of 10 mm (The average of ¢q4 over the fluorescence spectrum is approximately 0.37
7); (3) The worst case (¢g = 7), which corresponds to the air gap distance approximately 27
mm for A, of 404 nm. Note that the phase term ¢y is afunction of the gap distance d between
the crystals and refractive indices n of the pump and signal (idler) photons. The results of the
calculations for these three cases are shown in Fig. 6(b). The solid black line, the dashed blue
line, and the dashed-dotted red line corresponds to case (1), (2), and (3) respectively. In case
(1), the HOM interference curve is simply the inverse Fourier transform of the absolute value
squared of the sum of the two spectra (Fa(Q) + F,(€2)), which is shown as the black line in
Fig. 6(a). The width of this HOM dip (ct ~ 3 um) corresponds to the time correlation of the
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signal and the idler photon (7 ~ 9 fs). Note that the difference between the dashed blue line
(case (2)) and the solid black line (case (1)) is negligibly small. In the worst case (case (3)), the
width of the HOM dip is amost the same with the HOM dip given solely by the first crystal
(Fa(€2)). Note that the difference between the curves becomes less significant when the overlap
of F5(Q) and F,(Q) become smaller. Note also that this effect caused by momentum mismatch
changes has a sinusoidal dependence on the gap distance d, with a period of 54 mm in our
experimental condition. Thus, it isnot necessary to stabilize the distance between crystals with
interferometric accuracy for this effect, too.

In summary in this subsection, we have considered the effect of group velocity mismatch
and the momentum mismatch between the pump light and daughter photons on the shape of
HOM interference curve. The effect of group velocity mismatch between the pump light and
the daughter photon is negligible in the current experimental condition where a CW pump laser
with long coherent length is used. The difference in the refractive indices of the air for the
pump light and the daughter photons causes the momentum mismatch between the pump light
and daughter photons, and it may modify the shape of the HOM interference, but the change
is negligibly small for the current experimental condition. The calculated HOM interference
curve using a model spectrum considering the experimental data is almost the same with the
one calculated for an ideal frequency entangled photon pair. For both of the effects, it is not
necessary to stabilize the distance between crystals with interferometric accuracy.

5. Conclusion

We proposed anhovel method for generating broadband spontaneous parametric fluorescence by
using a set of multiple NLCs. We demonstrated the proposed scheme using two conventional
NLCs. The superposition of spontaneous parametric fluorescence spectra generated from two
BBO crystals gave a typical bandwidth of 160 nm (73 THz) at the degenerate wavelength of
808 nm. In contrast, the bandwidth with only one BBO crystal was typically 75 nm (34 THz).
We also measured coincidence counts of correlated photon pairs generated in a non-collinear
configuration. Using this ssmple scheme, a bandwidth could be broadened by increasing the
number of NL Cs without employing any special devices, provided the phase-matching condi-
tions of the NLCs are satisfied. Based on a calculation using measured spectra, a bandwidth
of approximately 215 nm (100 THz) is expected by using a set of four BBO crystals. Fur-
thermore, the pump laser frequency can be tuned within the tuning range of the NLCs in the
proposed method. This tunability is important for applications such as two-photon absorption
experiments.

We have also discussed the effect of air gaps between multiple NLCs on the HOM interfer-
ence between the daughter photons generated by our scheme. Our theoretical analysis suggested
that the difference in the refractive indices of the air for the pump light and the daughter pho-
tons may modify the shape of the HOM interference, but the change is negligibly small for the
current experimental condition. The analysis also suggested that the effect of group velocity
mismatch between the pump light and the daughter photon is also negligible and it is not nec-
essary to stabilize the distance between crystals with interferometric accuracy when a pump
light with appropriate coherence length is used. The narrow HOM dips of broadband sponta-
neous parametric fluorescence generated in our scheme are promising for applications such as
aquantum optical coherence tomography.

For the generation of broadband parametric fluorescence, higher efficiency may be expected
when periodically polled materials are used due to the higher nonlinearities. On the other hand,
our scheme has advances on the tunability of both pump and signal/idler wavelengths by simply
adjusting the angles of the crystals. It may be also possible to prepare crystals cut at different
angles and put together in contact to reduce the dispersion effect when tunability is not nec-
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essary. The limit of the bandwidth is, in principle, given by the phase matching condition and
transparent window of the nonlinear crystal. However, the increase in number of crystals to
achieve very broad spectrum may suffer from technical difficulties like fine adjustment of each
crystals.

Our scheme could also be useful for conventional nonlinear optics especially with the pro-
cess of the second harmonic generation, which is an inverse process of the parametric down-
conversion. The second harmonic generation from broadband anti-correlated frequencies have
recently been demonstrated by classical laser pulsesfor optical coherence tomography [28,29].
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