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Abstract 31 

Background: Patterns of concerted fluctuation in populations, synchrony, can reveal impacts of 32 

climatic variability on disease dynamics. Here, we examined whether malaria transmission has 33 

been synchronous in an area with a common rainfall regime and sensitive to the Indian Ocean 34 

Dipole (IOD), a global climatic phenomenon affecting weather patterns in East Africa. 35 

Methods: We studied malaria synchrony in five fifteen year long (1984-1999) monthly time 36 

series that encompass an altitudinal gradient, ~1000m to 2000m, along Lake Victoria Basin.   We 37 

quantified the association patterns between rainfall and malaria time series at different altitudes 38 

and across the altitudinal gradient encompassed by the study locations. 39 

Results: We found a positive seasonal association of rainfall with malaria, which decreased with 40 

altitude. By contrast, IOD and interannual rainfall impacts on interannual disease cycles 41 

increased with altitude. Our analysis revealed a non-decaying synchrony of similar magnitude in 42 

both malaria and rainfall, as expected under a Moran effect, supporting a role for climatic 43 

variability on malaria epidemics frequency, which might reflect rainfall mediated changes in 44 

mosquito abundance. 45 

Conclusion: Synchronous malaria epidemics call for the integration of knowledge on the forcing 46 

of malaria transmission by environmental variability to develop robust malaria control and 47 

elimination programs. 48 

Key-words: Synchrony, Climate Change, Indian Ocean Dipole, Anopheles, Plasmodium, Time 49 

Series50 
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Synchrony, the degree of concerted fluctuations among populations in a region, is a key 51 

parameter to understand impacts of climatic trends and variability on population dynamics [1]. 52 

For infectious diseases, synchrony has become especially important because its estimation offers 53 

a mean to test hypothesis regarding the importance of exogenous epidemic drivers. In a relatively 54 

homogenous environment, a synchrony decay with distance implies that impacts of climatic 55 

trends and variability, if any, are marginal when compared with regulatory factors related to 56 

population processes, e.g., immunity in diseases, and independent of the changing environment 57 

[2]. By contrast, a non-decaying synchrony, of magnitude slightly larger, or similar, to that of the 58 

environment, will support a Moran effect, where transmission patterns in a region could be 59 

similar by a common mechanism of action for the exogenous, often climatic, forcing [3]. As 60 

originally defined, the Moran effect arises by the emerging synchronization of autoregressive 61 

dynamics of time series by the impact of common sources of exogenous forcing, i.e., the 62 

autonomous (or endogenous) dynamics of a population get tuned to that of external factors 63 

influencing the dynamics of populations living under a similar (or correlated) environment [2].  64 

Vector-borne diseases, such as malaria, are excellent model systems to study synchrony and test 65 

Moran effects. For example, Moran effects are expected in malaria because of the monotonic 66 

relationship between vector abundance and transmission [4], and between vectors and rainfall 67 

[5]. Lake Victoria basin (LVB) is a unique setting to study exogenous forcing in malaria 68 

transmission because of three main reasons: (i) it encompasses an altitudinal gradient, which is 69 

also a gradient of malaria endemicity [6, 7]; (ii) it has relatively homogeneous rainfall patterns 70 

[8]; (iii) rainfall and malaria are impacted by global climatic phenomena, especially the Indian 71 

Ocean Dipole, an irregular oscillation of sea-surface temperatures in which the western Indian 72 

Ocean becomes alternately warmer and then colder than the eastern part of the ocean [9, 10].  73 

Here, we studied malaria synchrony in five fifteen year long (1984-1999) monthly time series 74 

(Fig. 1A) from Lake Victoria basin, West Kenya (Fig. 2). We also studied rainfall time series 75 

(Fig. 1B) synchrony to test the condition of environmental autocorrelation necessary for a Moran 76 

effect. We used the dipole mode index, DMI, (Fig. 1C) as an IOD index [11] to quantify its role 77 

as interannual driver of malaria and rainfall dynamics. We found that both rainfall and malaria 78 

had a non-decaying synchrony with distance, and that malaria synchrony was slightly larger than 79 
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rainfall synchrony, as expected under a Moran effect. A more detailed time scale analysis of 80 

synchrony showed that seasonal cycles in malaria transmission were led by two month lagged 81 

changes in rainfall, with decreasing intensity as a function of altitude. By contrast, interannual 82 

cycles in the disease were driven by IOD, with an increasing intensity with altitude. These 83 

patterns could be related to the population dynamics of Anopheles mosquitoes, whose abundance 84 

is likely driven by rainfall patterns in the region [5, 12]. Finally, our results clearly show that 85 

patterns of climatic variability have a strong signature in malaria transmission among vulnerable 86 

populations, and are, therefore, a necessary input for a strong malaria control/elimination 87 

framework.  88 

Materials and Methods 89 

Data Malaria and rainfall data spanned from January 1985 to December 1999. The five malaria 90 

time series were monthly counts of inpatients admitted into the hospitals because of high fever 91 

and other clinical malaria symptoms. In Kericho, all malaria cases were confirmed by blood slide 92 

examination [13]. In the other four sites (Maseno, Kendu Bay, Kisii and Kapsabet) we collected 93 

the data from books with malaria diagnosed inpatient records. Unfortunately, these books did not 94 

indicate whether all recorded malaria cases were confirmed by blood slide examination.  95 

However, we were informed by staff members from each hospital that cases were often 96 

confirmed by blood slide examination. We restricted our samples to this kind of malaria 97 

infections, i.e., inpatient admissions, in order to make a sound statistical analysis at the price of 98 

using data that likely underestimate the total number of malaria infections [14]. Rainfall data 99 

were obtained from the Kenyan Meteorological service. We use rainfall records from some of 100 

the same locations of the malaria time series and a location midway between the two lowest 101 

altitude sites (Fig. 2). Specifically, we employ meteorological records from Kisumu as proxy 102 

inputs for Kendu Bay and Maseno, localities for which we were unable to find relatively 103 

complete records through the Kenyan Meteorological services and other meteorological data 104 

repositories. We chose Kisumu because of the lack of missing observations during the study 105 

period, and by the similar rainfall patterns to Kendu Bay and Maseno according to 106 

meteorological models [8].  107 
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Statistical Analysis To estimate synchrony in the time series first we removed non-stationary 108 

trends [15] in the malaria time series(Fig. 1D) using three standard procedures: local polynomial 109 

regression fitting (Loess) [15], singular spectrum analysis (SSA) [16] and the empirical mode 110 

decomposition (EMD) [17]. These methods have different assumptions and outcomes, Loess 111 

extracts (non)linear trends (Fig. 1E), while SSA (Fig. 1F) and EMD decompose signals into 112 

different oscillatory (Fig. 1G, 1H and 1I) and non-cyclical components. In SSA the trends are 113 

extracted by examining the variability of the largest eigenvalue from an autocovariance matrix, 114 

while EMD decomposes a time series by building oscillatory signals, Intrinsic Mode Functions 115 

(IMF), that are repeatedly subtracted from the time series. We employed these different methods 116 

to ensure robustness in the inferences from subsequent analyses. The lack of non-stationary 117 

trends in rainfall made unnecessary the treatment with Loess and SSA. However, we 118 

decomposed rainfall data using EMD to perform frequency specific association analysis (Fig. 3).  119 

Second, we estimated the synchrony, r0, i.e., cross correlation at lag 0, of rainfall and detrended 120 

malaria time series, using both linear regression [2] and spline correlogram on high frequency 121 

filtered, detrended time series [18]. Third, we studied the association between rainfall and DMI 122 

with malaria along the altitudinal gradient of our study locations using cross correlation 123 

functions [15]. Further details about the data and methods are presented in the Supplementary 124 

Data. 125 

Results 126 

Estimates for malaria regional synchrony (Table 1) were similar using SSA, Loess (Fig. 4A) and 127 

EMD (Fig. 4B) detrended time series. Malaria time series synchronicity was observed across the 128 

2-dimensional distance, and altitude, gradients, with all series in phase and with their maximum 129 

correlation observed at lag 0 (Fig. 4C), with minimum correlations well above 0.3 at lag 0 in the 130 

EMD detrended malaria data (Fig 4B, 4C, Table 1). For rainfall, synchrony estimates from the 131 

raw time series (Fig. 4D) and EMD (Fig. 4E) were very similar across the range of distances and 132 

altitudes studied (Fig. 4F). To estimate the smoothed correlogram of malaria (Fig. 4B) and 133 

rainfall (Fig. 4E) we employed only the EMD detrended time series since this procedure also 134 

allowed to filter out high frequency components in the time series, which can artificially increase 135 

time series synchrony by the emerging correlation expected from high frequency band 136 
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constraints. The smoothed correlograms for both malaria (Fig. 4B) and rainfall (Fig. 4E) were 137 

similar to the regional synchrony, as the 95% confidence envelope contained the smoothed 138 

correlogram along the range of studied distances in each case (Fig. 4B, 4E). Similarly, as 139 

expected under a Moran effect, the regional malaria and rainfall synchrony patterns were not 140 

statistically different (Table 1). Two-month lagged rainfall had the highest positive correlation 141 

with malaria, with a decreasing association as function of increasing elevation (Fig. 5A), a 142 

pattern also observed for an analysis based only on the EMD extracted seasonal malaria IMFs 143 

(Fig. 5B). The consideration of EMD extracted interannual malaria IMFs (Fig. 5C) showed the 144 

association between interannual rainfall and interannual malaria to have a maximum positive 145 

correlation when rainfall is 1 month lagged in relation with malaria, and a maximum negative 146 

correlation when rainfall is 4 month lagged in relation with malaria, suggesting a role for rainfall 147 

temporal variability in the synchronous malaria dynamics. The SSA detrended Malaria-DMI 148 

Cross Correlation Function (Fig. 5D)  showed the positive association between these time series 149 

was maximum for up to 4 months of lagged DMI at altitudes over 1600 m.  When the seasonal 150 

(Fig. 5E) and interannual (Fig. 5F) malaria IMF were correlated with DMI, the association up to 151 

4 months of lagged DMI showed to be robust at interannual scales and altitudes over 1600 m. In 152 

addition, the analysis with the IMFs also showed that DMI and seasonal components of malaria 153 

are associated at seasonal scales for 3 and 4 months of lagged DMI (Fig. 5E) and the association 154 

between DMI and malaria can be continuous along the altitudinal gradient given the emergence 155 

of significant patterns of association at altitudes below and above 1600 m (Fig. 5F).  Patterns of 156 

association between malaria and DMI could be mediated by the impact of  DMI on rainfall.  157 

DMI and rainfall have a correlation that decreases with altitude,  which is maximized between 2 158 

and 6 months (Fig. 6A), where DMI has nil impacts on the seasonal components of rainfall (Fig. 159 

6B), but is positively associated with the interannual components of rainfall (Fig. 6C). 160 

 161 

Discussion 162 

Moran effects have seldom been observed in population dynamics [2, 3]. This could reflect the 163 

dominance of endogenous feedbacks over exogenous forcing in population dynamics [19]. For 164 

example, in diseases, a decaying synchrony with distance, or travelling waves of transmission, 165 
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have been described for both vector-borne diseases [20] and directly transmitted diseases [21]. In 166 

contrast, we found that both seasonal and interannual cycles of malaria have a non-decaying 167 

synchrony, both in 2-d distance and along an altitudinal gradient, at distances far greater than 168 

mosquito vector dispersal, which on average barely exceeds 2 km [22] or children movement in 169 

the area [23]. Moreover, the degree of synchrony in malaria time series is slightly above, yet not 170 

statistically different, from rainfall synchrony, as expected under a Moran effect [3].   171 

A Moran effect in malaria transmission at the LVB could be explained by the monotonic 172 

dependence of Plasmodium parasite transmission on Anopheles vector density in endemic areas 173 

[4]. Mosquito population regulation is sensitive to the availability and stability of larval habitats 174 

[5, 24]. In fact, Anopheles vector density tracks rainfall variability in LVB in a regular fashion 175 

[12]. It takes about two months for malaria transmission to reach its peak following large rainfall 176 

events, roughly the total time of a few mosquito generations [25] including the  parasite 177 

incubation period [26].  This probably implies a reactive response by mosquitoes to the transient 178 

creation of habitats by rainfall, assuming a density-dependent regulation [14], a pattern described 179 

in other species of mosquitoes vector of pathogens. Since Anopheles mosquitoes are ubiquitous 180 

in LVB [5, 12, 24], a synchronized amplification of their populations and malaria transmission 181 

following rainfall could explain the patterns of synchrony we report here. If this is the case, then 182 

the IOD, which has the strongest impact on rainfall at high altitudes according to climatic 183 

circulation models [8], could drive the Moran effect in malaria transmission along LVB probably 184 

by homogenizing rainfall synchrony across the altitudinal gradient, thus homogenizing weather 185 

conditions that increase mosquito productivity [24].  The existence of Moran effects in malaria 186 

transmission is a pattern that shows the non-trivial impacts of climatic variability on malaria 187 

epidemics. For example, the spatial extent of synchronous patterns in malaria transmission, i.e., 188 

the maximum distance over which malaria synchrony is constant, could be used as indicator of 189 

the minimum spatial scale for interventions aimed at eliminating malaria from a given landscape. 190 

Thus, consideration of impacts by environmental variability on malaria transmission biology is 191 

required to increase robustness in the development and implementation of malaria control and 192 

elimination programs, to at least be prepared against surprises that can arise from climatic 193 

variability, one of the many aspects shaping the complexity of malaria transmission. 194 

195 
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Figure Legends 259 

Fig. 1 Data (A) Malaria Time Series. (B) Rainfall.  (C) Dipole Mode Index. (D) Trends (solid 260 

lines for Loess, dashed lines for Singular Spectrum Analysis [SSA] and dotted lines for 261 

Empirical Mode Decomposition[EMD]). There is no dashed line for Kisii and Kapsabet because 262 

the SSA was unable to detect any trends. (E) Loess detrended Malaria time series. (F) SSA 263 

detrended Malaria Time Series. (G) Malaria intrinsic mode functions, IMFs, with interannual 264 

cycles. (H) Malaria IMFs with seasonal cycles. (I) Malaria IMFs with high frequency cycles. 265 

Inset legends identify time series with colors. Color codes are shared by panels A, D, E, F, G, H, 266 

I. IMFs were derived via an EMD for each time series. 267 

Fig. 2 Study Sites in Lake Victoria Basin, Western Kenya. Kisumu (0°6'S 34°45'E Atltitude = 268 

1131 m); Kendu Bay (0°24’05”S, 34°39’56”E, Altitude = 1240 m); Maseno (0°00’15”S, 269 

34°36’16”E, Altitude = 1500 m); Kisii (0°40’S, 34°46’E, Altitude = 1670 m); Kapsabet (0°12’N, 270 

35°06’E, Altitude = 2000 m); Kericho (0°23’55”N, 35°15’30”E, Altitude = 2000 m). In the map 271 

elevation is measured in meters, m, and indicated by gray. Location color indicates the data 272 

available at each site ; blue (rainfall); green (disease) and red (disease and rainfall). 273 

Fig. 3 Rainfall Time Series Empirical Mode Decomposition (A) Intrinsic mode functions, 274 

IMFs, with interannual cycles; (B) IMFs with seasonal cycles; (C) IMFs with high frequency 275 

cycles. Inset legends identify time series with colors. 276 

Fig. 4 Synchrony Analysis (A) Malaria time series correlation at lag 0, r0, as function of latitude 277 

(Lat), longitude (Long) and two-dimensional distance [2D] between the studied localities. Colors 278 

indicate the method employed to detrend the malaria time series employed to estimate r0. (B) 2D 279 

distance spline correlogram (3 edf) for the signal obtained by adding the seasonal and interannual 280 

intrinsic mode functions from the empirical mode decomposition applied to the malaria time 281 
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series (C) Contour maps for temporal cross-correlations between the Empirical Mode 282 

Decomposition [EMD] detrended malaria time series (D) Rainfall time series correlation at lag 0, 283 

r0, as function of latitude (Lat), longitude (Long) and 2D distance between the studied localities. 284 

(E) 2D distance spline correlogram (2 edf) for the signal obtained by adding the seasonal and 285 

interannual intrinsic mode functions from the empirical mode decomposition applied to the 286 

rainfall time series.  (F) Contour maps for temporal cross-correlations among the Rainfall time 287 

series. In A, B, D, and E Synch is the estimated regional synchrony obtained with each method. 288 

In B and E dotted lines indicate the 95% confidence envelope for the smoothed correlation 289 

function, solid line, obtained with 1000 data permutations. In C and F, the y axis represents the 290 

lag for the cross correlation and the x axis represents the 2D distance. Values in the contour lines 291 

are correlations, which are significantly different from 0 when their absolute value is above 292 

0.075 (P<0.05). 293 

Fig. 5 Time scale impacts of Rainfall and Indian Ocean Dipole on malaria synchrony across 294 

an altitude gradient (A) Singular Spectrum analysis detrended malaria time series (SSA 295 

Malaria) correlation with Rainfall (B) Seasonal malaria Intrinsic Mode Function, IMF, 296 

correlation with Seasonal Rainfall IMF (C) Interannual malaria IMF correlation with Interannual 297 

Rainfall IMF (D) SSA detrended malaria correlation with Dipole mode index (DMI) (E) 298 

Seasonal malaria IMF, correlation with DMI (F) Interannual malaria IMF correlation with DMI. 299 

IMFs for each malaria time series were obtained by empirical mode decompositions. In all 300 

panels the x axis represents the lag for the cross correlation and the y axis represents the site 301 

altitude. Values in the contour lines are correlations, which are significantly different from 0 302 

when their absolute value is above 0.075 (P<0.05).  303 
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Fig. 6 Time Scale association between Rainfall and Dipole mode Index (DMI). (A) Rainfall 304 

correlation with DMI (B) Seasonal rainfall Intrinsic Mode Function, IMF, correlation with DMI 305 

(C) Interannual rainfall IMF, correlation with DMI. IMFs for each malaria time series were 306 

obtained by empirical mode decompositions. The x axis represents the lag for the cross 307 

correlation and the y axis represents the site altitude. Values in the contour lines are correlations, 308 

which are significantly different from 0 when their absolute value is above 0.075 (P<0.05).  309 
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Table 1. Confidence limits for the regional synchrony estimates. 95% confidence limits were estimated 

from the standard error of maximum likelihood estimates for the regional synchrony.  

 

Time Series Mean ± S.E. 95% Confidence limits 

Malaria-LOESS 0.48 ± 0.06 0.34 - 0.61 

Malaria-SSA 0.53 ± 0.05  0.42 - 0.64 

Malaria-EMD 0.49 ± 0.03 0.42 - 0.56 

Rainfall-Raw Data 0.52 ± 0.06 0.37- 0.66 
Rainfall-EMD 0.43 ± 0.03 0.34 - 0.51 

 

 

Table 1
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Detailed Methods 

 
 

Software 

 

All statistical analyses were performed using the statistical software R[1]. 

 

Time series detrending methods 

 

Loess 

This is a well established procedure to remove non-linear trends from time series data [2]. A 

non-parametric trend is fitted to the time series using local polynomials regression fits, Loess, 

which is then subtracted from the original series [3]. For the synchrony analysis, such residuals 

are then standardized to be normal and with a variance of one [2]. 

 Singular spectrum analysis (SSA) 

This non-parametric technique separates trends and oscillatory components from noise in a time 

series [4]. The method consists in the computation of the eigenvalues and eigenvectors from a 

covariance matrix [M] whose element mij is the covariance between lags i and j. The projection 

of the time series on the eigenvectors (the principal components of the matrix) reconstructs the 

pattern of variability associated with the selected eigenvalue, resulting in a de-noised time series 

[4].   The eigenvalues themselves indicate how much variance is accounted for by the different 

components [4] . 

Empirical Mode Decomposition (EMD) 

This technique decomposes time series into trends and oscillatory components. Briefly, a time 

series goes through an iterative sifting process which decomposes the time series into a sum of 

intrinsic mode functions (IMF). The algorithm to extract IMFs is as follows: (i) Envelopes are 

built by joining through a cubic spline all the maxima (upper envelope) and minima (lower 

envelope); (ii) the mean of the two envelopes is subtracted from the time series; and (iii) the 

Video
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process is repeated until an IMF is obtained.  IMFs should satisfy the assumption of a narrow 

band (which is fulfilled when the number of zero crossings and extrema are either equal or differ 

by one) and the mean of its upper and lower envelopes, equals zero (which renders impossible 

unwanted fluctuations expected by assymetric waverforms).  The process of extracting IMFs can 

be repeated on the residuals from each IMF extraction until all cyclic components are extracted 

and the final residuals represent a trend for the data. Further details and a mathematically 

rigorous explanation are presented by Huang et al [5]. Regarding our data, we extracted three 

IMFs and the trend (Fig. 1D) from the malaria time series, each IMF corresponding to 

interannual cycles (Fig. 1G), seasonal cycles (Fig. 1H) and high frequency cycles (Fig. 1I). For 

the rainfall time series we only extracted two IMFs, because the extraction of a third IMF did not 

lead to the separation of trends, and the trends lacked any noticeable non-cyclical pattern (Fig. 

3A). Like the malaria time series, the rainfall time series also had seasonal (Fig. 3B) and high 

frequency components (Fig. 3C). For the EMD malaria data were log-transformed, in order to 

minimize signal interference.   

Spline Correlogram 

 

We employed spline correlograms to study rainfall and malaria synchrony. This technique can be 

used to study the spatio-temporal autocorrelation among populations. Basically, smoothing 

splines are used to generate a functional correlogram, i.e., an assumption free and smooth 

function depicting spatial autocorrelation, among several time series, which depends on distance. 

Given the low number of time series, (5 for malaria and 4 for rainfall, numbers rendering 

impossible a bootstrap), we generated a null distribution from the estimator by computing spline 

correlograms from random time series.  The random time series were constructed by sampling 

without replacement the detrended, and also high frequency filtered, time series, i.e., we 

analyzed time series without trends to ensure a stationary mean and, series without high 

frequency components to avoid the spurious correlations that can be expected when these 

components are considered. This procedure was repeated 1000 times to extract the 2.5% and 

97.5 % quantiles of the null distribution, which correspond to the 95% confidence envelope of 

the spline correlogram [6]. For the smoothing of the 5 malaria time series we employed 3 

degrees of freedom (edf), and to make a reliable comparison we used 2 edf given that we only 

had 4 rainfall time series.  



 

Cross Correlation Function 

 

Cross correlation function, CCF, is formally defined as the ratio between the cross-covariance 

function of two time series divided by the square root of the product of each series variance, and 

represents the association between time series as function of time [2].  
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