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Abstract 

We report an unambiguous detection of the crytalline anisotropy of the spin-orbit interaction in (001) InAlAs/InGaAs/InAlAs 
quantum wells using nanofabricated rectangular loop arrays, where the sides of the constituent loops are aligned along either the 
[110] or [  ¯  110] crystallographic axis. The fabrication and measurements were performed on the epi-wafer samples whose spin 
properties were characterized previously [Koga et al., Phys. Rev. Lett 89, 046801 (2002)]. We find that the experimentally 
observed spin interference patterns ― the amplitude modulation of the Al'tshuler-Aronov-Spivak oscillations as a function of the 
gate voltage ― are in good agreement with the results of the spin interferometer model extended for rectangular loops and 
including both the Rashba and Dresselhaus spin-orbit interactions. 
PACS: 71.28.+d; 71.70.Ej; 72.25.-b; 72.25.Dc; 72.25.Rb; 72.80.Ey; 73.20.Fz; 73.21.Fg; 73.23.-b; 73.23.Ad;  
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1. Introduction 

There has been much interest in the control of electron spin dynamics, through the control of the Rashba and 
Dresselhaus spin-orbit (S.O.) interactions in III-V semiconductor heterostructures. In this paper, we extend our 
previous model of ballistic spin interferometer (SI) based on the Rashba effect [1,2], to the one that includes both 
the Rashba and Dresselhaus S.O. interactions in more general rectangular loop geometries. We itemize the 
underlying assumptions and conditions as follows: (1) The interferometer (nanolithographically defined rectangular 
loop arrays) is fabricated in n-type (001) In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum wells (QW), where the 
direction of [001] axis ( ẑ  direction) is defined to be pointing upward from the semiconductor surface. (2) The 
Rashba parameter α [see Eq.(3)] has the same sign as the  z component of the electric field (Ez) within the QW  
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(pointing in the  [001] direction), according to the k·p theory, assuming that the contributions from the hetero-
interface boundaries [3] are negligible. (3) The sides of the rectangular loops are aligned along either the [110] 
(vertical) or the [ ¯110] (horizontal) crystallographic axes. 

A noteworthy result in the analysis of our experimental work is the detection of the crystallographic anisotropy of 
the S.O. interaction. We prepared two kinds of rectangular loop samples. In one kind, the constituent rectangles 
were elongated horizontally (|| [ ¯110]), denoted by positive values of ΔL. In the other kind of samples, the rectangles 
were elongated vertically (|| [110]), denoted by negative values of ΔL [see Fig. 1(a)].  We observed distinct spin 
interference (SI) patterns, which are also denoted as the time-reversal Aharonov-Casher (TRAC) patterns [4], 
between these two kinds of samples, where the peak and dip features of the SI patterns were consistent with our 
extended SI model.   

2. Spin Interferometer Model 

Shown in Fig. 1(a) is a schematic illustration of the rectangular SI. We consider the evolution of the spin state Ψi 
that is incident at the lower left corner of the loop in both the clockwise (CW) and counter-clockwise (CCW) 
directions [only the clockwise direction is shown in Fig. 1(a)]. The transport electron experiences spin precession 
due to the Rashba and Dresselhaus S.O. interactions. We denote the spin states of an electron after propagating the 
loop in the CW and CCW directions, respectively, as ΨCW and ΨCCW. 

    (1) 
where is the phase added to account for the magnetic flux piercing the loop ( , S 
being the area inside the loop). R1~R4 are the spin rotation operators associated with the electron transport along 
each side of the loop. We note that R4=R2

-1 and R3=R1
-1 by the time-reversal symmetry. We also assume that Ψi is 

properly normalized. The backscattering portion of the partial wave function is written as Ψbak=1/2(ΨCW+ΨCCW). 
The factor 1/2 is obtained by multiplying 1/√̄ 2   twice, each 1/√̄2   being associated with the beam splitter [1]. We 
relate |Ψbak|2 to the quantum correction to the electric resistance (Rxx). The larger |Ψbak|2, the larger Rxx. Since Ψi can 
take all spin states with equal probabilities, the averaged value of |Ψbak|2 over all initial spin states, denoted by 

￣￣ |Ψ bak|2 , is the measure of the quantum correction to Rxx. With a little algebra, one can show 

          (2) 
where  [X]σσ’ denotes a matrix element  using a spin basis in ẑ  direction. RTOT is given in 
Eq. (1) and the detailed forms for R1~R4 are discussed below. We note that cosφ in Eq. (2) exemplifies the 
experimental Al'tshuler-Aronov-Spivak (AAS) oscillation. Thus, the quantity A (including its sign) is closely related 
to the amplitude of the experimental AAS oscillation (h/2e), where Rxx is measured as a function of B. Letting 
k±=kx±iky [kν≡-i(∂/∂ν), where ν=x, y or z], the Rashba (HR) and Dresselhaus (HD) hamiltonians for (001) oriented III-
V semiconductor quantum well are given as [5]  

(b)

Fig.1. (a) Illustration of a rectangular spin interferometer. Placed at the lower left corner is a hypothetical beam splitter. 
Placed at the other three corners are totally reflective mirrors. (b) Three dimensional plot of A(θD, θR) [Eq. (6)]. 

[001]

(a) 
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  and                                                                                  (3)  

                                             (4) 

respectively, where  means the expectation value calculated using the confined wave function along the z axis. 

The total Hamiltonian HS.O.=HR+HD has the following structure: 
 
where hS.O.

* is the 

complex conjugate of hS.O.. We note that HS.O. is the most general S.O. Hamiltonian including both the Rashba and 
Dresselhaus effects of all orders. Now, let us consider the time evolution of a spin state for an electron with an in-
plane wave vector k=(kx, ky), i.e., .  Converting t to L (length) using , 
where m* is the effective mass (m*=0.047me) for the conduction electrons, we perform the series expansion on 

, which can be considered as the spin rotation operator. Letting , 

 

                    (5) 
where I is the identity matrix. Here, we also defined  and . Thus, we see that Eq. (5) 
denotes a spin rotation by a angle θ about the axis ξ̂≡(cosφ, sinφ, 0), employing the right-handed screw rule. 

In analyzing the experimental results, a special attention should be paid to the definition of the crystallographic 
indices. We define the indices following the convention used in the semiconductor industry [6]. In this convention, 
group III and V atoms are, respectively, placed at (0, 0, 0) and (1/4, 1/4, 1/4), or the equivalent sites, in zinc-blend 
structure. Then,  x̂,  ŷ and ẑ  directions in HR and HD [Eqs. (3) and (4)] are in the [ ¯010], [100] and [001] directions, 
respectively. We note that such correspondences differ from the more natural  x̂|| [100],  ŷ || [010] and ẑ  || [001], 
which are the cases if group V and group III atoms are, respectively, placed at (0, 0, 0) and (1/4, 1/4, 1/4), or the 
equivalent sites. The latter choice is generally used by in the field of k·p theory and ab initio calculations [7]. For 
clarity, the indices following the latter convention are also shown in  Fig. 1(a) with the subscript “th” such as [100]th.  

With these in mind, one can obtain the analytic form of the SI amplitude A(θD, θR) as follows. 

,          (6) 

where θD=  and θR= . Shown in Fig. 1(b) is three-dimensional plot of A(θD, θR).  

3. Comparison with the experimental results 

Shown in Fig. 2(g)-(i) are the experimental TRAC curves (-δg0
AAS vs. NS) measured at 300 mK for devices with 

L=1.8 μm and ΔL= -0.4, 0.0 and 0.4 μm, respectively, together with the results of our extended SI model [Fig. 2(a)-
(c)], where the amplitude of the AAS h/2e oscillation in the electric conductance per loop is extracted by FFT and 
denoted as δg0

AAS. We also note that these devices were fabricated using sample1 wafer in Ref. 8. The reminiscent 
of the WAL effect, which manifests itself in the negative background of TRAC curves, is visible in these devices for 
all NSs. The details of this effect will be discussed elsewhere [9]. Another feature found in the TRAC curves is the 
“wiggling”. We marked dip- and peak-like features in the TRAC curves in Fig.2(g)-(i). We note that these features 
are highly reproducible. For example, the positions and the amplitudes of the “wiggling” repeated among devices 
that have identical structures and were prepared on a same epi-wafer, but at different times (typically more than a 
year apart).  A noteworthy result is the fact that period of the appearance of the dip and peak features in the TRAC 
curves depended on the ΔL value of the pertinent structure. In this respect, we plotted, in Fig. 2(d)-(f), the wiggling 
part of the TRAC curves, denoted as AAS

wiggle,0gδ , subtracting the negative background, shown by the red lines in Fig. 
2(g)-(i), from the TRAC curves somewhat arbitrarily. We found the period of the wiggling features increases with 
increasing ΔL, though such tendency is less obvious between devices with ΔL=0.0 and 0.4 μm. The explanation of 
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the latter feature may require more sophisticated model than our SI model. We note that the positions and 
amplitudes of the simulated dips and peaks varied sensitively with the doping density N1 below the QW [8] and the 
QW thickness dQW.  Nevertheless, the periods of their appearance were less sensitive to N1 and dQW.  We also note 
that we confirmed the information on the crystallographic indices of our samples that was provided by the wafer 
supplier by the facet observation at the wet-etched line and space structures [9,10].   

Based on all the information provided above, we conclude that the crystallographic anisotropy of the S.O. 
interaction predicted from HR and HD [Eqs. (3) and (4)] has been confirmed successfully in the present experiment.  
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Fig. 2. (a)-(c) Plots of A(θD, θR) for L=1.8 μm and ΔL = -0.4, 0.0 and 0.4 μm, respectively.  The other parameters 
used in the calculation include the interaction parameter Ep=22eV [8] and b41

6c6c= 27eVÅ3 in Eq. (4). N1=3.65, 
3.85 and 4.10×1024m-3, and dQW=9.6, 9.4 and 8.8 nm were used in (a), (b) and (c), respectively. (d)-(f) The 
“wiggling” part of the AAS amplitudes vs. NS (TRAC curves), subtracting the background components shown by 
the red lines from the -δg0

AAS vs. NS data, both shown in (g)-(i), for the devices with  ΔL = -0.4, 0.0 and 0.4 μm, 
respectively. The red curves in (d)-(f) are guides to the eyes. In (d)-(i), the values in ordinate were negated to 
make their signs match those of A(θD, θR). (j) Detailed design of the fabricated structure. (k) UV micrograph of the 
sample with ΔL = 0.4 μm. The darker region represents the etched part of the sample and the lighter reagion 
represents the unetched part where the conduction electrons reside.  The electric current was passed in the [110] 
direction in all samples. 


