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Abstract Gridworlds are one of the most popular settings used in benchmark
problems for real-time heuristic search algorithms. However, no comprehensive
studies have existed so far on how the difference in the density of randomly po-
sitioned obstacles affects the hardness of the problems. This paper presents two
measures for characterizing the hardness of gridworld problems parameterized by
obstacle ratio, and relates them to the performance of the algorithms. We em-
pirically show that the peak locations of those measures and actual performance
degradation of the basic algorithms (RTA* and LRTA*) almost coincide with each
other for a wide variety of problem settings. Thus the measures uncover some
interesting aspects of the gridworlds.

Key words real-time search – gridworlds – benchmark – phase transition

Introduction

Real-time(or on-line) heuristic searchis an attractive framework for real-world-
oriented agents. Traditionaloff-line searchmakes a complete plan before action
execution, often resulting in exponential time complexity which limits its appli-
cability to real-world problems. On the other hand, real-time search interleaves
partial look-ahead and action execution, often resulting in a practical model to
cope with real-world problems.

Two-dimensional grids with randomly positioned obstacles (gridworlds) are
one of the most popular settings used in benchmark problems for real-time search
algorithms. Their usefulness lies in their simplicity of problem description and
easy visualization of search processes. However, no comprehensive studies have
existed so far on how the difference in the density of randomly positioned obstacles
affects the structure of the state spaces and the performance of the algorithms. In
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particular, recent studies of the so-called phase transition phenomena which could
cause dramatic change in their performance in a relatively small parameter range
suggest that we should evaluate the performance in a parametric way with the
parameter range wide enough to cover potential transition areas.

In this paper, we present two measures for characterizing the hardness of the
gridworld problems parameterized by the obstacle ratio, and relate them to the per-
formance of real-time search algorithms. One is a measure based on the entropy
calculated from the probability of existence of solutions. The other is a measure
based on the total errors of initial heuristic cost estimation against the actual cost.
We show that the gridworlds are the most complicated in both measures when the
obstacle ratio is around 41%. We then solve the parameterized gridworlds with
the well-known basic real-time search algorithms RTA* and LRTA* to relate their
performance to the proposed measures. Evaluating the number of steps required
for obtaining solutions with the two algorithms, we show that they both have a
peak when the obstacle ratio is around 41%. This coincidence supports the rele-
vance of the proposed measures. We also show that this kind of coincidence can
be observed for a wide variety of heuristic functions and gridworld types. Using
wide-range settings of the obstacle ratio, this paper provides guidelines to set up
problems appropriately as the benchmarks, and reveals some interesting aspects of
the gridworlds and the algorithms.

The rest of this paper is organized as follows. Section 1 reviews typical real-
time search algorithms and their properties, and then gives a description of the
gridworld problems. In Section 2, we introduce two kinds of measures for evaluat-
ing the hardness of the gridworlds parameterized by the obstacle ratio, and relate
them to the performance of the algorithms. Section 3 demonstrates that those mea-
sures are applicable to the problems with wide variety of settings. In Section 4,
we compare our work with related works, and discuss the novelty of our studies.
Finally, we conclude the paper in Section 5.

1 Real-Time Search Algorithms and Gridworld Problems

1.1 State Space Search Problem and Real-Time Search

A state space search problemis represented by a tuple< N, s,G,O >, where
N denotes a set ofstates(of the problem solver or agent), including astart state
s ∈ N and a set ofgoal statesG ⊆ N , andO ⊆ N × N denotes a set of
operatorswhich represent transition of the states. The pair< N,O > defines
a directed graph called astate space graph. A solutionof the problem is a path
from the start state to a goal state. The cost of the operatoro = (v, v′) ∈ O
for changing the state fromv to v′ is denoted byc(v, v′) (> 0), and the sum
of the cost of those operators on a solution path defines the cost of the solution. A
solution with the smallest cost is anoptimalsolution. For improving the efficiency,
the heuristic search algorithms exploit the so-calledheuristic functionh(v) for
estimatingh∗(v), the cost of optimal solutions starting from statev. Theh-values
areadmissibleif and only if 0 ≤ h(v) ≤ h∗(v) for all statesv.
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The search algorithms ever proposed can be classified into two types, off-line
search and real-time search. The off-line search algorithms, including classical
ones such as breadth-first, depth-first, and A*, only concern making a complete
plan to a goal before it is actually executed by the agent. On the other hand, the
real-time search algorithms concern interleaved decision making and action exe-
cution for navigating the reactive agent to a goal. They repeat a cycle in which,
based on a local search, they decide a single action in a constant time and execute
it immediately.

The real-time search algorithms have the following advantages.

– They can take care of the environments that change dynamically during the
problem solving process. In such environments, the complete plans made by
the off-line search algorithms before action execution often become inappro-
priate in the course of the process.

– They need no whole map of the state space. Using only local map information
around the agents, the real-time search algorithms can work under the situation
where the area observed by the agents spreads out as they move.

– They are more suitable for problem solving in the real world where the compu-
tational time and memory capacity are limited, and provide more human-like
framework of problem solving than that of the off-line search algorithms.

1.2 RTA* and LRTA* Algorithms

Korf is the first to present the basic framework of the real-time heuristic search
(Korf, 1990). He proposed Real-Time A* (RTA*) and Learning Real-Time A*
(LRTA*) algorithms.

RTA* repeats the following steps until a goal is reached.

1. Computef(v′) = c(v, v′) + h(v′) for each neighborv′ of the current statev.
2. Update theh-value of the statev by h(v) = secondminv′f(v′), wheresec-

ondmindenotes the function that returns the second smallest value.
3. Move to a neighborv′ with the smallestf(v′) value. Ties are broken randomly.

In step 2, updatingh(v) to the second smallest value off(v′) prevents the
agent from unnecessarily visiting the same state.

RTA* has the properties ofcompletenessandcorrectness(Korf, 1990).

LRTA* is the same as RTA* except that the step 2 is replaced by the following.

2. Update theh-value of the statev by h(v) = minv′f(v′).

Whereas RTA* updatesh(v) to the second smallest value off(v′), LRTA*
updates it to the smallest one. In this way, LRTA* never overestimatesh-values.
As a result, thoseh-values will gradually approach the accurate estimation if their
initial values are admissible.

LRTA* has the property ofconvergence, in addition tocompleteness(Korf,
1990). The proofs of these properties are precisely described in (Ishida and Korf,
1995; Shimbo and Ishida, 2000).
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Fig. 1 An example of gridworlds (30 × 30, 40% obstacles).

1.3 Gridworld Problems

Gridworlds are search problems for finding a path from a start states to a goal
stateg in a 2-dimensional grid environment with randomly positioned obstacles.
Fig. 1 shows an example of gridworlds of size30 × 30.

The problem setting in this paper is as follows: The state space consists of the
m× n cells (positions) in the grid. The agents are allowed to move to a vertically-
or horizontally-adjacent cell in a single step, unless the cell is not occupied by an
obstacle. Such a move defines a state transition. Moreover, we consider the grid as
a torus. This means that when the agent moves out of a bound, it just comes inside
from another bound at an appropriate position (as formally described later). The
start and the goal are placed at one of the most separate pair of positions of the
grid. The cost of each move is a constant, say, 1.

Formally, a gridworld is defined by a tuple< m,n, obs >, wherem andn
are integers that define the setCm,n of cell positionsCm,n = {(x, y) | 0 ≤ x <
m, 0 ≤ y < n}, andobs is a Boolean function such thatobs(x, y) is true if and
only if the cell at(x, y) is occupied by an obstacle. In this paper, we consider a
class of gridworlds generated by a random mechanism to defineobs in terms of the
obstacle ratior = R/mn as a parameter, whereR is the number of cells occupied
by obstacles. Note that we can think of mainly two ways to place obstacles: place
an obstacle with probabilityr at each cell, or, place exactlyrmn obstacles at ran-
dom. We want to make many problem instances which have solutions for larger,
but such problem instances can be hardly generated by the former one. Therefore,
we adopt the latter way in this paper.

Given a gridworld< m,n, obs >, the associated state space search problem is
uniquely defined by the tuple< V, s, g, T >, whereV = Cm,n−{(x, y)|obs(x, y)}
is the set of states,s is the start state,s = (bm/4c, bn/4c), g is the goal state,
g = (b3m/4c, b3n/4c), and T ⊆ V × V is the set of operators defined by
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((x, y), (x′, y′)) ∈ T if and only if either (1)x′ = x andy′ = y ± 1 (mod n),
or (2)x′ = x ± 1 (modm) andy′ = y.

Such a state space search problem< V, s, g, T > is associated with a di-
rected graphD = (V,L), defined by the set of nodesV and the set of edges
L which connect each node(x, y) with each of its successors(x′, y′) such that
((x, y), (x′, y′)) ∈ T . The solutions of the problem are the paths of the graph
starting froms and ending atg. Note thatD is not necessarily a connected graph,
because there can be a node which is not reachable from the start states. In par-
ticular, the goal stateg is not necessarily reachable froms. Since the problems
are generated by a random mechanism, we can talk about the probability that a
problem has solutions. This is a topic discussed in the next section.

Note that the gridworlds are relatively easy problems for off-line search al-
gorithms, because the size of the state space isO(mn) for m × n grids and the
algorithms are allowed to spend enough time to find a solution using whole knowl-
edge about the state space. On the other hand, real-time search algorithms cannot
get additional knowledge about the state space without actual actions of the agents,
and each action should be decided within the constant time (inreal time). There-
fore, the gridworlds have been thought to be suitable benchmark problems for
real-time search algorithms and widely used to demonstrate the performance of
the algorithms.

2 Hardness Measures for Gridworld Problems

Given the sizem andn of the problem, there exist exponentially many gridworlds,
each corresponding to an allocation pattern of the obstacles, and their hardness
statistically depends on the number of obstacles. In general, the gridworlds will
get more complicated as the number of obstacles increases to some extent, but
placing too many obstacles would make them simpler. For a deep understanding
of the properties of the problems, it is important to see how the obstacle ratior
affects the hardness to solve them.

In this section, we present two measures for the hardness of the gridworld
problems, based on the notions of theprobability of existence of solutionsand the
initial heuristic error. The measures will uncover some interesting aspects of the
gridworlds from each viewpoint.

2.1 Probability of Existence of Solutions and Its Entropy

In this subsection, we introduce the hardness measure based on the probabilityp
that a problem has a solution, depending upon the obstacle ratior. Fig. 2 shows
the plot ofp for various obstacle ratios and gridworld sizes. Each data point has
been computed from 10,000 randomly generated problem instances.

To interpret the results, we identify three ranges,0 ≤ r < r1, r1 ≤ r < r2, and
r2 ≤ r ≤ 1, wherer1 andr2 are some values around 0.35 and 0.43, respectively.
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Fig. 2 Probabilityp of existence of solutions.

In the first range, wherer is relatively small,p is decreasing from 1 but its
change is modest. As we can easily imagine, in this case, those small number of
obstacles rarely prevent a path from reaching the goal to form a solution.

In the third range, wherer is relatively large,p gradually approaches 0. In this
case, a lot of obstacles tend to be placed adjacent to each other, making longwalls
to prevent a path from going straight to the goal.

The second range, wherer is between 0.35 and 0.43, is the most interesting,
becausep is decreasing from 0.9 to near 0.1 very rapidly. In particular, the slope of
the decreasing curve is the steepest aroundr = 0.41. This kind of phenomena are
sometimes called thephase transition, suggesting that a big change may be taking
place in the structure of the state space in this relatively small parameter range.

Intuitively, the gridworlds are the most complicated and the hardest to solve
whenp is around 0.5, because in that region it is most difficult to predict whether
solutions exist or not. Here we introduce the first hardness measure, theentropyH
based onp, incorporating such an intuition.

H = −p log2 p − (1 − p) log2(1 − p)

H is the average information content to determine whether solutions exist or not,
and we interpret it as a measure of disorder of problem instances.

Fig. 3 shows the entropyH calculated from Fig. 2.H takes the maximum
aroundr = 41%, regardless of the gridworld size. According to our interpretation,
the gridworlds are the most complicated in that region.

2.2 Total Initial Heuristic Errors

In this subsection, we introduce the second hardness measure, based on the initial
heuristic error.
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Fig. 3 EntropyH calculated from the probabilityp of existence of solutions.

The performance of real-time heuristic search algorithms are greatly influ-
enced by the accuracy ofh-values, because the selection of a move in those al-
gorithms depends solely onh-values. For example, if theh-values are accurate,
the agents will move toward a goal along an optimal path. Otherwise, they may
choose a wrong move along a path which will never lead to the goals without
backtracking. Therefore, there is a good reason to believe that the difficulty of the
gridworlds for real-time search algorithms is defined appropriately in terms of the
initial heuristic error, the error between the actual costh∗ and the estimated cost
h at the beginning of the problem solving.

Here we introduce the second hardness measure,total initial heuristic errors
E, defined by the sum of the initial heuristic errors for all states

E =
∑
v∈V ′

∣∣h∗(v) − h0(v)
∣∣

whereh0(v) denotes the initialh-value for statev, andV ′ the set of all the states
on some path connecting the start and the goal. Note that the states unreachable
from the start and the goal are ruled out. As a result, the size ofV ′ is variable, even
if the number of obstacles is fixed. Therefore,E depends on the size ofV ′ as well
as the accuracy of initialh-values. When computingE and the performance of the
algorithms, we employ only the problem instances which have solutions, because
they are computable only for such problems.

Fig. 4 shows howE is related to the obstacle ratior, when we adopt the Man-
hattan distanceManhattan(v, g) = min(|x−x′|,m−|x−x′|)+min(|y−y′|, n−
|y−y′|) for a heuristic functionh0(v), wherev = (x, y) and the goalg = (x′, y′).
Note that this definition of Manhattan distance is adapted from the ordinary one for
our torus gridworlds. For each point(r, E), E is obtained as the mean of 10,000
randomly generated problem instances of obstacle ratior. The relative standard
errors smaller than 1% have been ensured by the statistical analysis.
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Fig. 4 Total initial heuristic errorsE using Manhattan distance as initialh-valuesh0(v).

We can see that whenr is relatively small,E is monotonically increasing asr
increases, and whenr exceeds some point, it starts to be monotonically decreasing.
Note that our hardness measureE is maximal whenr is around 41%, which is
common to all of the five curves. Moreover, it is interesting to notice that our first
hardness measureH, the entropy we have introduced in the previous subsection,
was also maximal aroundr = 41%. Thus, intuitively, both measures strengthen
the relevance of each other. This is a good reason for us to say that the gridworlds
are the mostcomplicatedaroundr = 41%. In fact, in the next subsection, we will
see that the amount of computation required for the real-time search algorithms
also takes the maximum aroundr = 41%.

2.3 Performance Evaluation of Real-Time Search Algorithms

In this subsection, we investigate the performance of real-time search algorithms.
More precisely, we evaluate the actual costC (equal to the number of steps in this
case) required for obtaining solutions with RTA* and LRTA* on the gridworlds
parameterized by the obstacle ratior.

The experimental results are depicted in Fig. 5. Each point is obtained as the
mean of 10,000 randomly generated problem instances of size100×100, adopting
Manhattan distance for a heuristic function. The relative standard errors of the data
are within 2%.

The results show that in both algorithms the actual costC takes its maximum
when the obstacle ratior is around 41%. Recall that both the entropyH and the
total initial heuristic errorsE have a peak whenr is around 41% as we have seen
in Section 2.1 and 2.2. Therefore, these parameter regions are approximately iden-
tical. This supports the validity of two kinds of hardness measuresH andE.
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Fig. 5 The performance of RTA* and LRTA*.

Table 1 Peak locations for a variety of heuristic functions.

peak location
heuristic function H E C(RTA*) C(LRTA*)

Zero 0 40% 40% 41%
Minimum min(xd, yd) 40% 41% 42%
Maximum max(xd, yd) 40% 41% 41%

41%
Multiple

√
xdyd 40% 42% 41%

Euclidean
√

xd
2 + yd

2 41% 41% 41%
Manhattan xd + yd 41% 42% 41%

3 Coincidence of Peak Locations

In this section, we demonstrate that the hardness measuresH andE are applicable
to the problems with a variety of settings. More precisely, we will see the coinci-
dence of the peak locations for a variety of heuristic functions, for some variants
of gridworld problems, and even for search problems on random graphs.

3.1 Various Kinds of Heuristic Functions

We have seen that the peak locations of the entropyH, the total initial heuristic
errorsE, and the actual costC almost coincide with each other when using Man-
hattan distance for a heuristic function. In this subsection, we will see that this
coincidence can be observed commonly for other heuristic functions as well.

Table 1 summarizes the peak locations ofH, E, andC for a variety of heuristic
functions. Each heuristic function estimates the cost from a statev = (x, y) to the
goal stateg = (x′, y′) using the formula in the table, wherexd = min(|x −
x′|,m − |x − x′|) andyd = min(|y − y′|, n − |y − y′|).
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Fig. 6 Types of gridworlds.

Table 2 Peak locations for a variety types of gridworlds.

peak location
type size H E C(RTA*) C(LRTA*)

standard 100 × 100 41% 41% 42% 41%
non-torus 100 × 100 39% 39% 40% 40%

rectangular 200 × 50 40% 40% 40% 40%
500 × 20 34% 34% 34% 35%
1000 × 10 26% 26% 25% 25%

wall-made 100 × 100 49% 50% 51% 51%
3-dimensional 20 × 20 × 20 66% 67% 68% 68%

Note that the peak locations ofH, E, andC almost coincide at around 41%
for all heuristic functions we have considered. In particular, it is interesting to see
that even theZerocase (or theuninformedcase) where there is no prior knowledge
given to the agents has the same peak location.

All these heuristic functions have two properties in common: they areadmis-
sible and they areweakly decreasingfor the empty grid. A heuristic function is
admissible if it never overestimates the actual cost, as defined in Section 1.1. A
heuristic function is weakly decreasing for a particular state space if the estimated
cost for the space is monotonically non-increasing along all the optimal paths to
the goal. We conjecture that the peak locations ofH, E, andC almost coincide at
around 41% forall heuristic functions that are admissible, weakly decreasing for
the empty grid, and defined only in terms ofxd andyd; but this conjecture is yet
to be verified.



Hardness Measures for Gridworld Benchmarks 11

3.2 Various Types of Gridworlds

We have seen that the peak locations almost coincide with each other for the 2-
dimensional torus- and square-type gridworlds (we call this type of gridworlds
standard). In this subsection, we will see that this kind of coincidence is com-
monly observed for other types of gridworlds as well. The gridworlds we consider
are natural extension of thestandardtype, as depicted in Fig. 6. We adopt the
Manhattan distance for a heuristic function (for the3-dimentionaltype, the pre-
cise definition of Manhattan distance is 3-dimentional as well).

Table 2 summarizes the peak locations for a variety types of gridworlds. The
peak locations almost coincide with each other, because their difference is at most
2 (points). The actual peak locations depend on the gridworld types and sizes (ra-
tios of m:n). From these results, we can useH or E to predict the peak location
of the actual performance degradation of RTA* and LRTA* algorithms for various
types of randomly generated gridworlds.

3.3 Random Graphs

We have seen that the peak locations almost coincide with each other for a variety
types of gridworlds. In this subsection, we will see that this kind of coincidence is
observed even for general random graphs.

Extending thestandardtype of gridworlds, we generate random graphs in 2-
dimensional torus Euclidean planes (Fig. 7). More precisely, each graph consists
of n nodes: the starts and the goalg placed at one of the most separate pair of
positions;n−2 nodes placed randomly according to the uniform distribution. Pairs
of nodes are connected by edges according to either of the following two models:
one is thefixed radius modelGF (n,R) which connects any pairs of nodes within
a distanceR; the other is theBernoulli modelGB(n, P ) which connects each pair
of nodes with a probabilityP . TheseR andP are parameters on which we are to
focus.

Table 3 summarizes the peak locations for two kinds of random graphs, when
we adopt the Euclidean distance for a heuristic function. We can see that the peak
locations almost coincide with each other for any cases of the model and size.
This suggests thatH andE are suitable also for the general mazes, not only the
gridworlds.

4 Related Works

Real-time heuristic search is the framework of search technique proposed by Korf
(Korf, 1990). The benchmark problems used in his work wereN -puzzles (N =
8, 15, 24). As far as we know, Ishida is the first to adopt the gridworlds as the
benchmark problems for real-time search. In his joint work with Korf (Ishida and
Korf, 1991), Ishida introduced new search problems called Moving-Target Search
(MTS), in which a goal state (target) may move continuously during problem solv-
ing processes. Therefore,N -puzzles were inappropriate benchmark problems for
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Fig. 7 An example of random graphGF (50, 0.13).

Table 3 Peak locations for random graphs.

peak location forR / P
graph model n H E C(RTA*) C(LRTA*)

100 0.111 0.113 0.111 0.112
GF (n, R) 500 0.052 0.053 0.052 0.052

1000 0.037 0.038 0.037 0.037
100 0.018 0.018 0.019 0.019

GB(n, P ) 500 0.0035 0.0032 0.0035 0.0032
1000 0.0017 0.0015 0.0018 0.0016

MTS, because in those puzzles the goal states are stationary. On the other hand, the
gridworlds are appropriate problems for MTS, because it is very natural to think of
applications where target agents are moving around in the gridworlds. He showed
experimental results (for thestandardtype) for obstacle ratios changing from 0%
to 35%, observing that the obstacles tend to disconnect the state space when the
ratio reaches 40%. Probably, this is why Ishida and other researchers following his
work have rarely considered the obstacle ratios greater than 40% in the literature.
In this paper, working on the full-range of obstacle ratios, we have shed light on
a new aspect of the gridworlds and real-time search algorithms from the unique
viewpoint.

Various problems such as constraint satisfaction problems (CSPs) have an as-
pect that a property of problems or performance of algorithms could dramatically
change in a relatively small parameter range. This phenomenon is often called
phase transition(Cheeseman, Kanefsky, and Taylor, 1991; Hogg, Huberman, and
Williams, 1996). This word has been used in the field of thermodynamics for com-
monly describing an abrupt sudden change (such as the change from water to ice)
in physical properties with a small change in a parameter such as the temperature.
Furthermore, some attempts to relate the hardness of problems to the probabil-
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ity of existence of solutions have been made in some CSPs such as Random-SAT
and Graph-Coloring Problem. Their empirical results show that harder problem in-
stances are often generated at aroundcrossover pointwhere the probability is 0.5
(Mitchell, Selman, and Levesque, 1992; Crawford and Auton, 1996; Hogg 1998).
In this paper, we demonstrated that the similar phenomena are observed in the
gridworlds as well, although the gridworlds are not CSPs.

As for random graphs, aiming at applications to wireless networks, one of the
main research topics in recent years has been the analysis of their connectivity
(Santi, Blough, and Vainstein, 2001; Krishnamachari et al., 2002). In this paper,
for the fixed radius model and the Bernoulli model, we demonstrated that the peak
locations ofH, E, andC almost coincide with each other at the phase transition
area where the probability of existence of solutions (a sort of connectivity) rapidly
decreases. This kind of coincidence is the same as the one observed in the grid-
world problems.

5 Conclusion

In this paper, we have studied the hardness of randomly generated gridworlds with
the whole parameter range. We have empirically showed that the peak locations
of the entropyH, the total initial heuristic errorsE, and the actual costC almost
coincide with each other in all variants of gridworlds we have considered. This
suggests thatH andE can be used as useful hardness measures for a wide variety
of gridworld-like search problems.

The gridworlds have an advantage in that it is easy to control their hardness
through their sizes and obstacle ratios. However, we should not discuss the per-
formance of the algorithms only with easy problem instances. It seems that some
previous works have set obstacle ratios only to the values taken from an easy prob-
lem region. We believe that our study has made a contribution to understanding the
properties of the gridworlds, and provides good tips for using them as the bench-
mark problems.

Future research directions include: theoretical analysis of the gridworlds and
real-time search algorithms for explaining the empirical results of this paper more
clearly; design of useful (possibly inadmissible) heuristic functions based on the
knowledge on the obstacle ratio; application of our approach to wider variety of
graphs such assmall-world networksandscale-free networks. Although we have
focused only on well-known basic algorithms RTA* and LRTA* as the subject
of discussion with the intention of clarifying the nature of phenomena observed
in the gridworlds, more sophisticated algorithms such as Multiple-Agents RTA*
(Knight, 1993), Moving-Target Search (Ishida and Korf, 1991, 1995), Real-Time
Bidirectional Search (Ishida, 1996), FALCONS (Furcy and Koenig, 2000),εδ-
LRTA* (Shimbo and Ishida, 2003), LRTA*(k) (Herńandez and Meseguer, 2005),
and their variants are also interesting, and our approach may contribute to their
further understanding.
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