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Abstract

We will construct differential forms on the embedding spaces Emb(R j , R
n) for n − j � 2

using configuration space integral associated with 1-loop graphs, and show that some linear
combinations of these forms are closed in some dimensions. There are other dimensions in
which we can show the closedness if we replace Emb(R j , R

n) by Emb(R j , R
n), the homo-

topy fiber of the inclusion Emb(R j , R
n) ↪→ Imm(R j , R

n). We also show that the closed
forms obtained give rise to nontrivial cohomology classes, evaluating them on some cycles
of Emb(R j , R

n) and Emb(R j , R
n). In particular we obtain nontrivial cohomology classes

(for example, in H 3(Emb(R2, R
5))) of higher degrees than those of the first nonvanishing

homotopy groups.

1. Introduction

A long immersion is a smooth immersion f : R
j → R

n for some n > j > 0 which
agrees with the standard inclusion R

j ⊂ R
n outside a disk D j ⊂ R

j . A long embedding is an
embedding R

j ↪→ R
n which is also a long immersion. Let Imm(R j , R

n) and Emb(R j , R
n)

be the spaces of long immersions and long embeddings respectively, both equipped with
the C∞-topology. In this paper we will construct some nontrivial cohomology classes of
Emb(R j , R

n) given by means of graphs.
Some graphs have appeared in previous works. In the cases when n − j = 2, some

special graphs are introduced in [R, CR] for describing a perturbative expansion of the
BF theory functional integral for higher-dimensional embeddings, and an isotopy invariant
of codimension two higher-dimensional embeddings is constructed via configuration space
integral (CSI for short). The graphs used in [R, CR] are 1-loop graphs, i.e., those of the first
Betti number exactly one (see also [Wa1]).

† Partially supported by Grant-in-Aid for Young Scientists (B) 21740038, MEXT, Japan, Grant for Basic
Science Research Projects, the Sumitomo Foundation and The Iwanami Fujukai Foundation.

‡ Partially supported by Grant-in-Aid for JSPS Fellows 08J01880, JSPS and Grants-in-Aid for Young
Scientists (Start-up) 21840002, JSPS.
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Recently Arone and Turchin announced that, at least in the stable range n � 2 j + 2,
the rational homology of Emb(R j , R

n) can be expressed as the homology of some graph
complex (see also [ALV, AT1, AT2, To]). On the other hand, a recent paper of the first
author [Sa] formally explains the invariance of the invariants of [R, CR, Wa1] (in the cases
when n − j = 2) in the context of complexes of general graphs, which contain the graphs
of [R, CR]. When the codimension n − j is odd, a ‘0-loop’ graph cocycle of the complex of
[Sa] gives the first nontrivial cohomology class of Emb(R j , R

n) via CSI, which detects the
lowest degree nontrivial homotopy class of Emb(R j , R

n) given in [B2] (in odd codimension
case). These facts suggest that the method of graphs and CSI is effective even in the range
n < 2 j + 2.

In this paper we will focus on the 1-loop graphs of [Sa] (which will be reviewed in
Section 2). We will construct some differential forms zk (resp. ẑk) of Emb(R j , R

n) (resp.
Emb(R j , R

n)) via CSI for arbitrary n, j with n − j � 2 and show that they are closed
in some dimensions (see Theorems 3·3, 3·4). Here Emb(R j , R

n) is the homotopy fiber
of Emb(R j , R

n) ↪→ Imm(R j , R
n) over the standard inclusion ι : R

j ⊂ R
n . Namely,

Emb(R j , R
n) is the space of smooth 1-parameter families of long immersions ϕt : R

j → R
n ,

t ∈ [0, 1], such that ϕ0 = ι and such that ϕ1 ∈ Emb(R j , R
n). The forgetting map

r : Emb(R j , R
n) −→ Emb(R j , R

n)

given by {ϕt} �→ ϕ1 is a fibration with homotopy fiber �Imm(R j , R
n). The homotopy type

of Imm(R j , R
n) is well-known by [Sm]. So it follows that there is no big difference between

the rational homotopy groups of Emb(R j , R
n) and of Emb(R j , R

n).
We will generalize the framework given in [R, CR] to construct zk and ẑk . They will

be given explicitly as closed forms with values in Ak = Ak(n, j), a vector space spanned
by some graphs and quotiented by some diagrammatic relations (IHX/STU relations; see
Section 2). These forms represent nontrivial cohomology classes of Emb(R j , R

n) and
Emb(R j , R

n) in dimensions stated in the following Theorem.

THEOREM 1·1 (Theorems 3·3, 3·4, 4·4). The group H (n− j−2)k
DR (Emb(R j , R

n);Ak) is non-
trivial if one of the following holds and if k � 2 is such that the space Ak = Ak(n, j) does
not vanish (see Proposition 1·2 below):

(i) n is odd;
(ii) n is even, j is odd, and k � 4;

(iii) n � 12 is even and j = 3;
(iv) n, j are both even, n − j > 2 and k is large enough so that 2k(n − j − 2) >

j (2n − 3 j − 3).

The group H (n− j−2)k
DR (Emb(R j , R

n);Ak) is nontrivial if both n, j are even and if k is such
that Ak � 0. See Figure 3·1.

PROPOSITION 1·2 (Section 5·1, Proposition 5·19). In even codimension case, Ak � R if
k � n modulo 2, and Ak = 0 otherwise. When n is odd and j is even, A3 �R.

When one of n and j is odd, the cohomology class [zk] generalizes invariants of [R,
CR, Wa1] for codimension two long embeddings in R

n , which can be regarded as element
of H 0

DR(Emb(Rn−2, R
n)). All of our cohomology classes are of higher degrees than those

discussed in [B2] and hence new.
The construction of the closed forms zk and ẑk will be given in Section 3. For this, we

need the following extra arguments in addition to those of [R, CR].



1-loop graphs and configuration space integral for embedding spaces 499

(i) In even codimension case, we need lemmas of [Sa] (in addition to those of [R, CR])
to show the vanishing of the obstructions to the closedness which arise from degen-
erations of certain kind of subgraphs.

(ii) In odd codimension case, we should take more general 1-loop graphs [Sa] than those
in [R, CR] into account in order to get meaningful closed forms. Moreover, we will
generalize the cancellation arguments due to the diagrammatic relations to those of
more general kinds of subgraph degenerations.

(iii) In the case when both n, j are even, almost all the obstructions as above cancel, but
we have no proof of the vanishing of so-called ‘anomaly’ arising from degenera-
tions of whole graphs. So we consider another space Emb(R j , R

n) on which we can
construct a correction term. See Section 3·6.
In fact the correction term restricts to a cohomology class of �Imm(R j , R

n). It seems
likely that this closed form is related to the surjection π0(Emb(R3, R

5)) → 24Z given
by Smale-Hirsch map [Ek, HM]. See Remark 3·12.

To prove the nontriviality of [zk] and [ẑk], we will generalize in Section 4 the method of
[Wa1] to higher-dimensions to construct nontrivial homology classes of Emb(R j , R

n) and
Emb(R j , R

n) by a ‘resolution of crossings’, an analogous technique to that considered in
[CCL]. We will explicitly compute the pairings of these homology classes with zk and ẑk ,
and show that they are not zero.

There are some interesting problems in the direction of this paper. The nontriviality results
of this paper might be generalized for graphs with one or more loop components, if the
corresponding forms were proved to be closed. There might be other generalizations as in
[Wa2]. Indeed, some cocycles of Emb(Rk, R

2k+1) are constructed by a method which can be
considered as a generalization of the construction of this paper. It would be also interesting
to ask how our cohomology classes given in terms of graphs relate to the actions of little
cubes operad [B1].

A sketch proof of Theorem 1.1 was firstly given by TW in his preprint, and was independ-
ently written by KS in a full style for n, j odd. So the authors decided to work together and
to generalize the result for more general n and j’s.

2. 1-loop graphs

In this section we review the definition of graphs introduced in [Sa], which generalize
those appearing in [CR, R, Wa1].

2·1. Graphs

A graph in this paper has two kinds of vertices, namely external vertices (or shortly e-
vertices) and internal ones (shortly i-vertices), and two kinds of edges, θ-edges and η-edges.
We depict e- and i-vertices as ◦ and • respectively. We depict θ-edges and η-edges as dotted
lines and solid lines, respectively. We assume that no single edge forms a loop.

Definition 2·1. A vertex v of a graph is said to be admissible if it is at most trivalent and
is one of the following forms;

A graph is said to be admissible if all its vertices are admissible.
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Remark 2·2. By definition, the endpoints of an η-edge of an admissible graph must be
i-vertices. Those of a θ-edge can be either i- or e-vertices. In [Sa] the vertices shown in
Definition 2·1 were said to be admissible and ‘non-degenerate’.

Definition 2·3. Below 1-loop graph means an admissible graph whose first Betti number
is one. The order of a 1-loop graph �, denoted by ord (�), is half the number of the vertices
of � (ord (�) is a positive integer; see Remark 2·6).

Example 2·4. The following three graphs are examples of admissible 1-loop graphs.

The orders of these graphs are 2, 3 and 5 respectively. A graph may have a large tree sub-
graph which shares only one vertex with the unique cycle, like the third graph (such graphs
have not been considered in [CR, R]).

2·2. Labels and orientations of graphs

Below let (n, j) be a pair of positive integers with n − j � 2. Here we introduce the
notion of labelled graphs.

Definition 2·5. Denote by Vi (�), Ve(�), Eη(�) and Eθ (�) the sets of all i-vertices, e-
vertices, η-edges and θ-edges of a graph �, respectively. We also write V (�) := Vi (�) �
Ve(�) and E(�) := Eη(�) � Eθ (�). We decompose V (�) � E(�) into two disjoint subsets
S(�) and T (�) given by

(S(�), T (�)) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(V (�), E(�)) n, j odd,

(E(�), V (�)) n, j even,

(Ve(�) � Eη(�), Vi(�) � Eθ (�)) n odd, j even,

(Vi(�) � Eθ (�), Ve(�) � Eη(�)) n even, j odd.

Below we will write kS := |S(�)| and kT := |T (�)|. A labelled graph is a 1-loop, admissible
graph � together with bijections

ρ1 : {1, . . . , kS} −→ S(�), ρ0 : {1, . . . , kT } −→ T (�).

Remark 2·6. It holds 2|Eθ (�)|−3|Ve(�)|−|Vi (�)| = 0 since exactly one (resp. three) θ-
edge(s) emanates from each i-vertex (resp. e-vertex). Hence |Ve(�)|+|Vi (�)| = 2|Eθ (�)|−
2|Ve(�)|. This implies that ord (�) is an integer and is equal to |Eθ (�)| − |Ve(�)| (in [Sa]
the order was defined as the latter number). Putting k := ord (�), we can show that kS =
kT = 2k in even codimension case, and (kS, kT ) = (3k, k) (n odd, j even) or (k, 3k)

(n even, j odd).

To fix the signs of the configuration space integrals (see Section 3), we orient the graphs
following [Th, Appendix B] so that the elements of S(�) (resp. T (�)) are of odd (resp.
even) degrees.

Definition 2·7. We think of an edge e as a union of two shorter segments; e = h1(e) �
h2(e), h1(e) � h2(e) = the midpoint of e. Each hi (e) is called a half-edge of e.
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Table 2·1. Degrees of elements of Ori(�)

i-vertices e-vertices η-edges θ -edges half η-edges half θ -edges

j n j − 1 n − 1 j n

Fig. 2·1. ST, ST2 and C relations, even codimension case.

For an edge e, define H(e) = {h1(e), h2(e)} as the set of half-edges of e. For any graph
�, define a graded vector space Ori(�) by

Ori(�) := RS(�) ⊕ RT (�) ⊕
⊕

e∈E(�)

RH(e),

here RX := ⊕x∈X Rx for a set X , and we regard Ori(�) as a graded vector space by
assigning the degrees to the elements of S(�), T (�) and H(e) as in Table 2·1. An orientation
of a graph � is that of one dimensional vector space det Ori(�), where det V := ∧dim V V
for a vector space V .

There is a canonical way to orient a labelled graph using its edge-orientaion (see
Section 3.1). We denote an orientation determined in this way by o = or(�).

2·3. A graph cocycle

Definition 2·8. Denote by G̃k = G̃k(n, j) the set of labelled, oriented 1-loop graphs
(�, or(�)) of order k (the definitions of labels and orientations depend on the parities of
n, j). Define the vector space Gk = Gk(n, j) of labelled, oriented graphs by

Gk := RG̃k/(�, −or(�)) ∼ −(�, or(�)),

where −or(�) is the orientation obtained by reversing the edge-orientation (that is, RH(e)-
part) of or(�). Define the vector space Ak = Ak(n, j) by

Ak := Gk/relations, labels

where relations are shown in Figures 2·1, 2·2 and 2·3 and the quotient by “labels” means that
we regard two labelled oriented graphs with the same underlying oriented graphs as being
equal to each other in Ak . Each [�] ∈ Ak possesses an orientation induced from or(�) of
� ∈ Gk . In Figures 2·1, 2·2 and 2·3, we have already forgotten the labels. The orientations
of graphs are indicated by the letters assigned to vertices and edges (which correspond to
RS(�)⊕ RT (�)-part of or(�)), and the orientations of edges (which correspond to RH(e)-
part). When (a), (b), . . . are numbers for S(�) (resp. T (�)), then p, q, . . . are those for
T (�) (resp. S(�)).
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Fig. 2·2. ST, ST2, STU, IHX and Y relations, odd codimension case.

Fig. 2·3. L relation (for arbitrary n and j).

Remark 2·9. In [Sa] we introduced ‘graph complexes’, whose coboundary operation δ is
given as a signed sum of graphs obtained by contracting the edges one at a time (we have
several complexes depending on the parities of n and j). We defined the relations in Figures
2·1, 2·2 and 2·3 so that the linear combination

Xk := 1

kS!kT !
∑

�

[�] ⊗ � ∈ Ak ⊗ Gk (2·1)

of graphs with (untwisted) coefficients in Ak , where the sum runs over all the labelled graphs
of order k (with an orientation assigned), becomes a ‘cocycle’, i.e., δXk = 0. This vanishing
is an algebraic expression of the cancellation of fiber integrations along the ‘principal faces’
of the boundary of compactified configuration spaces; see Section 3·2.

The Y relation is needed to construct cocycles in odd codimension case. In A3, the Y
relation is a consequence of the STU and the IHX relations (but it might not hold for general
Ak).

In Section 3 closed forms of Emb(R j , R
n) (or Emb(R j , R

n)) with coefficients in Ak will
be defined. What we know about Ak are stated in Proposition 1·2 and will be proved in
Section 5.

3. Cohomology classes of embedding spaces from configuration space integral

3·1. Configuration space integral

Let ϕ : R
j ↪→ R

n denote a long embedding. Let � = (�, or) be an oriented graph with s
i-vertices and t e-vertices labelled by the bijections ρ1 and ρ0 (Section 2·2). Then consider
the space

Co
� := {(ϕ; x1, . . . , xs; xs+1, . . . , xs+t) ∈

Emb(R j , R
n) × Co

s (R
j ) × Co

t (R
n) |ϕ(x p)� xs+q , ∀p, q > 0},

where Co
k (M) denotes the configuration space in the usual sense;

Co
k (M) := {(x1, . . . , xk) ∈ M×k | xi � x j if i � j}.
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The space Co
� is naturally fibered over Emb(R j , R

n), namely, the projection map

π� : Co
� −→ Emb(R j , R

n),

given by (ϕ; x1, . . . , xs; xs+1, . . . , xs+t) �→ ϕ, is a fiber bundle with fiber Co
�(ϕ) = Co

s (R
j )×

Co
t (R

n) \⋃ 1�i�s
s+1� j�s+t

{ϕ(xi) = x j }.
From now on we will define for each oriented graph � a differential form I (�) on

Emb(R j , R
n) as the fiber integral of the following form

I (�) = ±(π�)∗
∧

e∈E(�)

ωe.

Here (π�)∗ : �∗
DR(Co

�) → �∗
DR(Emb(R j , R

n)) denotes the integration along the fiber, ωe

is the ‘edge form’ (see below for precise definition). The choice of a sign from a graph
orientation will make the definition rather complicated.

Precise definition of I (�) is as follows. The bijections ρ1 and ρ0 give an orientation

or′(�) := ρ1(1) ∧ · · · ∧ ρ1(kS) ∧ ρ0(1) ∧ · · · ∧ ρ0(kT )

of RS(�) ⊕ RT (�). We arrange or′(�) in the form (i-vertices) ∧ (e-vertices) ∧ (η-edges) ∧
(θ-edges) as

or′(�) = ε(ρ1, ρ0)

s∧
p=1

ρ j (i p) ∧
t∧

q=1

ρn( jq) ∧
|Eη(�)|∧

r=1

ρ j−1(σr ) ∧
|Eθ (�)|∧

u=1

ρn−1(τu) (3·1)

for ε(ρ1, ρ0) = ±1, i1 < · · · < is , j1 < · · · < jt and for some numbers σr , τu , which are
uniquely chosen up to even swappings. Here p denotes p mod 2. The vertex part of (3·1)
determines a bijection

v : V (�) −→ {1, . . . , s + t} by

v−1(p) =
{

ρ j (i p) if 1 � p � s
ρn( jp−s) if s + 1 � p � s + t .

Now we orient edges of � so that or′(�) and the edge orientation give the orientation or(�)

where an arrow
−→
ab on an edge ab from a vertex a to a vertex b corresponds to ha ∧ hb ∈

detRH(ab) of the half edges ha, hb including a, b respectively. To each oriented edge e =−→
ab of �, we assign a map φe : Co

� −→ SN−1 where N = j or n according to whether e is an
η- or a θ-edge, defined by

φe(ϕ; x1, . . . , xs; xs+1, . . . , xs+t) := zv(b) − zv(a)

|zv(b) − zv(a)|

zv(p) :=

⎧⎪⎨⎪⎩
xv(p) if e is an η-edge (and hence a, b are both i-vertices),

or if e is a θ-edge and p is an e-vertex,

ϕ(xv(p)) if e is a θ-edge and p is an i-vertex.

Let volSN−1 denote the volume form of SN−1 which is (anti)symmetric with respect to the
antipodal map ϒ : SN−1 → SN−1, i.e. ϒ∗volSN−1 = (−1)NvolSN−1 , and is normalized as∫

SN−1 volSN−1 = 1, and define the ‘edge form’ by

ωe := φ∗
e volSN−1 ∈ �N−1

DR

(
Co

�

)
.
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We define ω� ∈ �∗
DR(Co

�) by

ω� := ε(ρ1, ρ0)

|Eη(�)|∧
r=1

ωρ j−1(σr ) ∧
|Eθ (�)|∧

u=1

ωρn−1(τu). (3·2)

The integration of ω� along the fiber of the bundle π� given above yields a differential form
on Emb(R j , R

n);

I (�) := (π�)∗ω� ∈ �∗
DR(Emb(R j , R

n)).

Here the orientation on the fiber is imposed by the canonical one given by dx1 ∧ · · ·∧ dxs+t ,
dxi = dx (1)

i ∧ · · · ∧ dx (N )

i , N = n or j . If � is an admissible 1-loop graph of order k, then
the degree of I (�) is (n − j − 2)k (see [Sa]).

PROPOSITION 3·1. The integral I (�) converges. So we have a well-defined linear map
I : Gk → �

(n− j−2)k
DR (Emb(R j , R

n)).

Remark 3·2. Since the fiber Co
�(ϕ) of π� is not compact, the convergence of the integral

is not trivial. As was done in [BT, R], the proof of the convergence uses a compactification
C�(ϕ) of Co

�(ϕ), obtained by ‘blowing-up’ along the stratification formed by all the singular
strata in the product ϕ(S j )×s × (Sn)×t where some points coincide with each other or go
to infinity. Here we identify R

j (resp. R
n) with the complement of a point ∞ in S j (resp.

Sn) and ϕ extends uniquely and smoothly to S j by mapping ∞ to ∞. The result of the
blowing-ups is a smooth manifold with corners, stratified by possible parenthesizations of
s + t distinct letters corresponding to the s + t points. The parenthesis corresponds to a
degeneration of the parenthesized points collapsed into a multiple point. In particular, the
codimension one (boundary) strata is given by a word with one pair of parentheses which
encloses a subset A ⊂ V (�) � {∞}. Note that the resulting manifold with corners depends
only on ϕ and the numbers (s, t). In the case where s = 0, we will denote the result by
Ct(R

n) and in the case where t = 0, we will denote the result by Cs(R
j ). See for example

[BT, R] for detail of the compactification.

Now we define the main differential form of this paper:

zk := (1 ⊗ I )(Xk) ∈ Ak ⊗ �
(n− j−2)k
DR (Emb(R j , R

n))

where Xk ∈ Ak ⊗ Gk is defined in (2·1).
We will see that the differential form zk is closed for approximately half of the pairs (n, j)

with n − j � 2. However we do not know whether zk is closed for all (n, j) due to some
‘anomaly’. When the anomaly may exist we consider the pullback of zk to Emb(R j , R

n) and
we will introduce (in Section 3·6) a correction term �k ∈ Ak ⊗�

(n− j−2)k
DR (Emb(R j , R

n)) for
the anomaly and define

ẑk := r∗zk − �k ∈ Ak ⊗ �
(n− j−2)k
DR (Emb(R j , R

n)). (3·3)

THEOREM 3·3. Let n, j, k be positive integers with n − j � 2, n � 4, k � 2.

(i) The form zk ∈ Ak ⊗ �
(n− j−2)k
DR (Emb(R j , R

n)) is closed if one of the following holds:
(a) n: odd ( j may be both odd and even);
(b) n: even, j : odd, k � 4;
(c) n: even � 12, j = 3.
(See Figure 3·1, • and ◦).
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Fig. 3·1. • is a pair of dimension ( j, n) where zk ∈ Ak ⊗ �
(n− j−2)k
DR (Emb(R j , R

n)) is proved to be
closed for all k � 2, ◦ is a pair ( j, n) where zk is proved to be closed for k � 4, ∗ is a pair where

ẑk ∈ Ak ⊗ �
(n− j−2)k
DR (Emb(R j , R

n)) is proved to be closed for all k � 2, and ∗p indicates that ẑk

descends to the closed form z̄k on Emb(R j , R
n) for all k � p. We will show in Section 4 that zk or ẑk in

the range shown in this figure are nontrivial, provided that Ak � 0.

(ii) The form ẑk ∈ Ak ⊗ �
(n− j−2)k
DR (Emb(R j , R

n)) is closed if both n and j are even. (See
Figure 3·1, ∗).

Theorem 3·3 generalizes a result of [CR], which is concerned with the cases (1) n, j : odd,
n = j + 2, (2) (n, j, k) = (4, 2, 3). The correction term for the latter case considered in
[CR] is different from ours but their invariant is well-defined on Emb(R2, R

4).

THEOREM 3·4. If n − j > 2, n, j both even and k >
j (2n−3 j−3)

2(n− j−2)
, then there exists an

((n − j − 2)k + j)-form ᾱk on C1(R
j ) × Emb(R j , R

n) such that the form

z̄k := zk −
∫

C1(R j )

ᾱk ∈ Ak ⊗ �
(n− j−2)k
DR (Emb(R j , R

n))

where
∫

C1(R j )
denotes the integration along the fiber, is closed and that its pullback to

Emb(R j , R
n) represents the same cohomology class as ẑk . (See Figure 3·1, ∗p).

3·2. Outline

As usual in the theory of configuration space integral, the proof of Theorem 3·3 is re-
duced to the vanishing of integrals over the boundary of the fiber by the generalized Stokes
theorem. Now we shall give a quick review of the necessary arguments in the proof, follow-
ing [R]. Recall that the generalized Stokes theorem for a fiber bundle π : E → B and a
differential form α ∈ �∗

DR(E) states that:

dπ∗α = π∗dα + Jπ∂
∗ α, (3·4)

where Jγ = (−1)deg γ γ and π∂ is π restricted to the boundary of the fiber. Here the orienta-
tion of the boundary of the fiber is imposed by the inward-normal-first convention. Applying
the generalized Stokes theorem (3·4) to π� we have

dzk = 1

kS!kT !
∑

�

labelled

[�] ⊗ J (π�)∂
∗ω� = 1

kS!kT !
∑

�

labelled

[�] ⊗ J
∑

A⊂V (�)

(
π

∂A
�

)
∗ω�. (3·5)
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Here π
∂A
� is π� restricted to the codimension one face �A(ϕ) of ∂C�(ϕ) corresponding to

the collapse of points in A ⊂ V (�) (see Remark 3·2).
Each codimension one stratum �A is the pullback in the following commutative square:

�A
D̂A ��

pA

��

B̂A

ρA

��
C�/�A

DA �� I j (R
n).

(3·6)

Here �A ⊂ � is the maximal subgraph with V (�A) = A, �/�A is � with the subgraph
�A collapsed into a point. Each term in the left-hand vertical column of the square diagram
is fibered �A = �A(Emb(R j , R

n)), C�/�A = C�/�A(Emb(R j , R
n)) over Emb(R j , R

n), or
over Emb(R j , R

n) by the pullback along r . The right-hand vertical column ρA itself is a
fiber bundle over I j (R

n). The entries of the right-hand vertical column of the diagram are
given as follows: I j (R

n) is the space of linear injective maps R
j ↪→ R

n , the fiber B̂A( f ) of
ρA over f ∈ I j (R

n) is the ‘microscopic’ configuration space, i.e., C�A( f ) quotiented by the
actions of overall translations of points along f (R j ) and overall dilations in R

n around the
origin. Then the integral for � restricted to the codimension one face �A is written as(

π
∂A
�

)
∗ω� =

∫
C�/�A

D∗
AρA∗ω̂�A ∧ ω�/�A

where
∫

C�/�A
denotes the integration along the fiber, ω̂�A ∈ �∗

DR(B̂A) is the wedge of ωe’s for

�A defined as in (3·2). Note that deg ω̂�A = |Eθ (�A)|(n−1)+|Eη(�A)|( j−1), deg ρA∗ω̂�A =
deg ω̂�A − |Ve(�A)|n − (|Vi(�A)| − 1) j + 1.

With these facts in mind, the proof of Theorem 3·3 can be outlined as follows, which
looks quite similar to that of the invariance proof of the invariant of [R, CR] (but the detail
is somewhat different).

Outline of the proof of Theorem 3·3. As in [R], the codimension one faces are classified
into the following types, depending on the method of proof of vanishing of the integrals of
(3·5).

(i) (Principal face) �A for |A| = 2.
(ii) (Hidden face) �A for 2 < |A| < |V (�)| corresponding to non-infinite diagonals.

(iii) (Infinite face) �A for 1 � |A| � |V (�)| corresponding to diagonals involving the
infinity.

(iv) (Anomalous face) �A for A = V (�).
In the sum (3·5) the vanishing of the contribution of the principal faces has essentially been
given a proof in [Sa] in a general terms of the graph complex. But we give another explan-
ation for the special cycle Xk of the graph complex, namely, explain how the relations in
Section 2 work to prove the vanishing of the principal faces contributions. We only give
here a proof of the vanishing given by the STU relation when n is odd and j is even because
the other relations work similarly.

Let �1, . . . , �6 be as in Figure 3·2. (�5, �6 are unnecessary if the bottom i-vertex of �1 is
univalent.) The six graphs are all possible ones which yield the same labelled graph �′ when
the middle edges are contracted. The principal face contribution for �1 with the middle θ-
edge, say e, collapsed is given by ± ∫Sn−1 ωe ∧ I (�′) = ±I (�′) while the contribution for �2,
�3 with the middle η-edge, say e′, collapsed is given by ±I (�2/e′), ±I (�3/e′) = ±I (�′).



1-loop graphs and configuration space integral for embedding spaces 507

Fig. 3·2. The possible labelled graphs which give the same graph �′ after contractions of the middle edges.

The cases of �4, �5, �6 are similar. The orientation of �A � Sn−1 × C�′ induced from
or′(�1) = ρ1(a) ∧ ρ0(p) ∧ ρ0(q) ∧ O ′ (re-arranged in this form) is given by

volSn−1 ∧ i

(
∂

∂ρ0(q)

)
i

(
∂

∂ρ0(p)

)
i

(
∂

∂ρ1(a)

)
or′(�1) = volSn−1 ∧ O ′.

For other graphs �i , we get the same or′(�i) = ρ1(a) ∧ ρ0(p) ∧ ρ0(q) ∧ O ′ and the induced
orientation on C�′ is again given by O ′. Therefore we see that the terms

∑6
i=1[�i ](π�i )

∂
∗ω�i

in the sum in (3·5) restricted to the corresponding (principal) face of Cs+t(R
n) is of the form(

6∑
i=1

[�i ]
)

I (�′) = 2
([�1] + [�2] + [�3]

)
I (�′),

which vanishes by the STU relation [�1] + [�2] + [�3] = 0.

The vanishing on other faces are shown in the rest of this section. Here we only give a
guide to the rest of this section. The vanishing of the contributions of (iii), the infinite faces,
are shown by dimensional arguments (this has been shown in [Sa, Section 5·8]). The van-
ishing of the contributions of (ii), the hidden faces and when n − j even the contribution of
(iv), anomalous faces, are discussed from the next subsection. In particular, through Lem-
mas 3·5, 3·6, 3·7. This will be the most complicated part in the proof. Finally when both n
and j are even, we can not prove the vanishing on the anomalous faces (iv). Fortunately, we
can find the correction term as in the statement of Theorem 3·3 that kills the anomalous face
contribution. It will be discussed in Section 3·6.

3·3. Vanishing on hidden/anomalous faces, even codimension case

When the codimension is even and � 2, the following lemma immediately follows from
lemmas given in [Sa], which is based on the codimension two case of [R] (see also [Wa1]).

LEMMA 3·5. Suppose that the codimension is even and � 2. Then the fiber integrals
(π

∂A
� )∗ω�, A � V (�), vanish.

Thus in the even codimension case the only contribution of π∂
�∗ω� over non-principal

faces is the contribution of the anomalous face. If moreover both n and j are odd, then the
following lemma holds (see [Sa, proposition 5·17], [Wa1, proposition A·13]).

LEMMA 3·6. If n and j with n − j � 2 are both odd, then the anomalous faces
contribution vanishes, i.e., dzk = 0. Hence we have a well-defined cohomology class
[zk] ∈ H ∗(Emb(R j , R

n);Ak).

This shows Theorem 3·3 for n, j odd case. For the case that both n and j are even see
Section 3·6.
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Fig. 3·3. The three subgraphs which cancel each other.

3·4. Vanishing on most of hidden/anomalous faces, odd codimension case

Let j, n be a pair of positive integers with codimension odd � 3. In this case almost all
hidden faces contributions vanish ([Sa, Section 5·7]), but we still need to prove the van-
ishings of contributions of other kinds of faces than those which do not contribute in the
even codimension case, which correspond to the collapses of admissible subgraphs, to get
a closed form on Emb(R j , R

n). We say that a subgraph �A of an admissible graph � is
admissible if �A itself is admissible in the sense of Definition 2·1 and if |A| � 3.

We will prove the following lemma in the rest of this subsection and the next subsection.

LEMMA 3·7. Suppose one of the following conditions holds:

(i) n is odd and j is even;
(ii) n and j satisfies the condition (i)-(b) or (i)-(c) of Theorem 3·3.

Then the fiber integrals (π�)∂
∗ω� restricted to faces of ∂C� corresponding to the collapses

of admissible subgraphs cancel each other in the sum zk.

In the proof of Lemma 3·7 we will need the following lemma.

LEMMA 3·8. For a subset A ⊂ V (�), suppose that �A has an η-edge e such that �A \ e
is a disjoint union of two subgraphs �A,1 and �A,2 one of which has vertices at least two.
Then I (�) restricted to �A vanishes.

Proof. Let us consider the action of R>0 on �A given by dilations of points corresponding
to vertices of �A,2 around the intersection (point) of �A,2 and e. The action of R>0 is free
because |A| � 3. So we can consider the quotient q : �A → �A/R>0 and it is easy to check
that ω�A is basic with respect to q. The dimension of the fiber �A/R>0 is strictly less than
that of �A. So the fiber integral vanishes by a dimensional reason.

Proof of Lemma 3·7 (partial). Suppose that |A| � 3 and that the subgraph �A � � is
admissible.

Let us first suppose that �A is a tree. If moreover �A has an η-edge, then the vanishing
follows from Lemma 3·8 above.

If �A is a Y -shaped admissible graph with only θ-edges, then the vanishing of the integral
is implied by the Y relation. In this case, six labelled graphs cancel each other.

If �A is a tree with only θ-edges and with at least two e-vertices, then �A has a subgraph
�I as depicted in Figure 3·3 (all the i-vertices in the figure are univalent in �A). There are
other possibilities for �’s which agree with � except for the subgraph �I replaced by �H or
�X as depicted in Figure 3·3 with labels as given in the relation in Figure 2·2. Let us denote
these graphs by �′, �′′. It is easy to check that the integrals of �, �′, �′′ coincide on the face
�A. Hence in the labelled graph expression of zk we see that

[�](π∂A
�

)
∗ω�A + [�′](π∂A

�′
)
∗ω�′

A
+ [�′′](π∂A

�′′
)
∗ω�′′

A
= ([�] + [�′] + [�′′])(π∂A

�

)
∗ω�A = 0
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Fig. 3·4. C is a component with only θ -edges. In each graph there are no other edges incident to p and q
than those shown there, and r , a, b are not univalent.

by the IHX relation.
Next we suppose that �A is not a tree. In this case either:

(i) �A = �A,1 � e � �A,2 where e is an η-edge, �A,1 is a tree, �A,2 has a loop, and �A,1 �
�A,2 = �; or

(ii) �A has a part as in Figure 3·4.

Now we show the vanishing for each of these cases.
(i) If �A = �A,1 � e � �A,2 as in the first case, then the vanishing of the integral follows

again from Lemma 3·8 above.
(ii) If �A has a subgraph of type 1 in Figure 3·4, then it must be that one or two η-

edges share the vertex r . If it is just one, then the vanishing follows from Lemma 3·8
above. If it is just two, then let (r, a) and (r, b) be the two η-edges. Consider the
automorphism g : B̂A → B̂A given as follows:

g : ( f ; xa, xb, x p, xq, xr , xt , . . .) �−→ ( f ; xa, xb, x p + (xa + xb − 2xr ), xq

+ (xa + xb − 2xr ), xa + xb − xr , xt

+ f (xa + xb − 2xr ), . . .).

This can be realized by a central symmetry of xr around the center of xa xb (xr �→
xa +xb−xr ) followed by translations of x p, xq, xt by the difference (xa +xb−xr )−xr .
If n even j odd, g reverses the orientation of the fiber and preserves the sign of ω̂�A ,
i.e., g∗ω̂�A = ω̂�A . If n odd j even, then g preserves the orientation of the fiber and
reverses the sign of ω̂�A . Hence the integral vanishes.

(iii) If �A has a subgraph of type 2 or 3 in Figure 3·4, consider the automorphism g :
B̂A → B̂A given by

g : ( f ; xa, xb, x p, xq, . . .) �−→ ( f ; xa, xb, xa + xb − xq, xa + xb − x p, . . .).

(This symmetry has been considered in [R, lemma 6·5·5].) When n odd j even, g
preserves the orientation of the fiber and reverses the sign of the integrand form.
When n even j odd, g reverses the orientation of the fiber and preserves the sign of
the integrand form. Hence in any case the integral vanishes.

(iv) If �A has a subgraph of type 4 in Figure 3·4, consider the symmetry of B̂A given by
the composition of the following symmetries:

(a) Central symmetry of the subgraph between p and q around the point
(xa + xb)/2. Write p′ and q ′ the images of p and q respectively.

(b) Central symmetry of the inverted subgraph between p′ and q ′ around the point
(x p′ + xq ′)/2.

One can check the vanishing of the integral as in the type 3 case.
(v) The case when �A has a subgraph of type 5 or of type 6 in Figure 3·4 will be separ-

ately discussed in the next subsection.
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Fig. 3·5. STU’ relation.

3·5. Vanishing for type 5 or 6 subgraphs, odd codimension case

We continue to study the odd codimension case. Now we consider in particular the case
where an admissible subgraph �A does not have an η-edge (type 6), or has just one η-edge
(type 5, see Figure 3·4). We will call such a �A an special subgraph. We show that a sum
of special graphs contributions cancel each other in some sense generalizing the cancelling
argument of the principal faces contributions, given in Section 3·2.

3·5·1. Local description of zk

If �A is special, then we may assume that it consists of a type (a) path (see Figure 5·1)
with some hairs replaced by Y -shaped graphs (as the graphs in Example 2 below) and at
most one η-edge. This is because special graphs with more complicated trees consisting
only of θ-edges cancel each other as shown in Figure 3·3. In the following we assume that
�A is special of order �.

We have seen that the configuration space integral (π�)∂
∗ω� restricted to the face �A is

expressed as ∫
C�/�A

D∗
AρA∗ω̂�A ∧ ω�/�A (3·7)

(see (3·6)). We would like to show that a linear combination of the integrals of this form
vanishes. We claim that a cancel occurs among the terms (3·7) for pairs (�′, �′

B) such that
�′ ∈ G̃k , �′

B admissible subgraph of �′ and �′/�′
B = �/�A for a fixed pair (�, �A).

To see this we fix the data Q = (�Q, v, �) where

(i) �Q := �/�A for some admissible pair �A ⊂ �, � ∈ G̃k , equipped with a suit-
able label and with one vertex v ∈ V (�Q) distinguished as the point where �A is
collapsed,

(ii) � = ord(�A) = |A|/2.

Note that there may be several possibilities for � of order k and its admissible subgraph �A

of order � that yield the same triple as Q. We consider all such order � admissible subgraphs
of graphs in G̃k that yield the same triple as Q. We denote by G̃�(Q) the set of all such
admissible subgraphs and let G�(Q) = RG̃�(Q)/(�, −or) = −(�, or). Note that graphs in
G�(Q) are subgraphs. So we forget external structure. Then consider the following G�(Q)-
linear combination of the integrands D∗

AρA∗ω̂�A for such graphs:

z′
�(Q) :=

∑
�A

labelled

�A ⊗ D∗
AρA∗ω̂�A ∈ G�(Q) ⊗ �∗

DR(C�Q )

where the sum is taken over admissible subgraphs in G̃�(Q).
Let A�(Q) be the space of �A’s in G̃�(Q) labelled oriented, quotiented by the “labelled

versions” of the IHX, ST2, STU, Y, L and the STU’ relation (Figure 3·5, the ST relation
and the label change relation are excluded). Namely, the 2- or 3-term relations given in
Figure 2·2 are the ones obtained from the 4- or 6-term relations by modding out the label
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Fig. 3·6. Standard labelling on a �-wheel.

changes. The labelled relations we consider here is the 4- or 6-term relations. Now we define
the following maps:

(i) The map iQ : G�(Q) → Gk is defined for �A ∈ G̃�(Q) by the sum of all possible
admissible replacements of the vertex v of �Q with �A.

(ii) The map m2 : Gk → Gk is defined for � ∈ G̃k by m2(�) = 2p� where p is the
number of univalent vertices of �. This will be necessary in order that STU’ relations
are mapped to ST relations.

Then by comparing the defining relations for A�(Q) and Ak we have the following Lemma.

LEMMA 3·9. The map m2 ◦ iQ : G�(Q) → Gk descends to a well-defined map i Q :
A�(Q) → Ak .

Lemma 3·9 shows that if we define

z�(Q) := ([·] ⊗ 1)(z′
�(Q)) ∈ A�(Q) ⊗ �∗

DR(C�Q ) (3·8)

then
∫

C�Q
(i Q ⊗ 1)(z�(Q)) ∧ ω�Q is a constant multiple of a partial sum in the formula (3·5)

of dzk restricted to �A’s and dzk restricted to �A is a sum of such terms. So it is enough for
our purpose to show that z�(Q) = 0 for any Q. Note that from the discussion above, we see
that only the special graph terms survive in z�(Q).

3·5·2. Decomposition to units

To study z�(Q), we decompose the set of special graphs into small pieces. It is observed
that if a special subgraph �A of �:

(i) does not have an η-edge, then by the IHX relation it is expanded in a sum of �-wheels
in A�(Q) where an �-wheel is a labelled graph whose underlying graph is shown in
Figure 3·6 (with possibly different labels from that of the figure);

(ii) has an η-edge, then by the ST2/STU relation there is another labelled special
(sub)graph �′

A (of �′), which differs from �A only by a label change, so that �A +�′
A

is equivalent in A�(Q) to a sum of graphs without η-edges. Then �A+�′
A is expanded

in A�(Q) in a sum of �-wheels.

This observation suggests a decomposition of the set G̃�(Q) of special graphs into pieces,
which we will call units. Namely by a unit we mean a single graph �A in the case (i) above,
or a pair of graphs (�A, �′

A) as above in the case (ii). Then by definition a sum of terms in a
single unit is equivalent in A�(Q) to a sum of �-wheels.

Since a special subgraph has at most one η-edge, no two different units overlaps. Hence
the set G̃�(Q) is decomposed into disjoint units. Below we shall prove the cancelling between
one or two units, which will conclude z�(Q) = 0.
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Fig. 3·7. Standard labelling on a non-wheel special graph without η-edges.

3·5·3. Cyclic permutation of a label on �A

Now let us assume that n is odd and j is even and that �A is special. The case where n is
even and j is odd will be discussed later. We can first see that the hidden face contribution
of �A with �A being odd order vanishes. This is because the central symmetry in R

n of
the local configuration space with respect to one of points lying on the j-dimensional plane
f (R j ) (as in the proof of [Wa1, proposition A·13]) reverses the orientation of the fiber and
preserves the sign of the integrand form.

The same argument does not work when the special subgraph �A is of even order. Instead
we prove the vanishing for terms of even order subgraphs by considering a cyclic permuta-
tion symmetry acting simultaneously on all graphs in a unit. A ‘cyclic permutation’ of a label
on �A is defined as follows. As in Definition 2·5 one can also define S(�A) and T (�A) for
�A, namely, S(�A) = Ve(�A) � Eη(�A), T (�A) = Vi(�A) � Eθ (�A). Recall that S-labelled
(resp. T -labelled) objects are of odd degree (resp. even degree). We consider that a label on
�A is given by numberings on the sets S(�A) and T (�A). As for graphs in G̃k , a label on �A

together with a choice of an orientation of each θ-edge determines an orientation of �A.
There is a natural choice of a cyclic ordering on the set S(�A) given as follows. If �A is

a labelled �-wheel, then S(�A) = Ve(�A) and the natural cyclic ordering is defined by the
standard labelling given in Figure 3·6. For non-wheel special subgraphs without η-edges,
the standard labelling is given as in Figure 3·7. For non-wheel special subgraphs with an
η-edge, namely for type 5 graphs of Figure 3·4, natural cyclic orderings are canonically
induced from those of an �-wheel: in the STU relation, for example, if one of the three terms
in the relation is given a S-label then the S-labels of the others are canonically determined
so that these are compatible with the graph orientations that are consistent with the STU
relation. See Figure 3·2.

The natural cyclic ordering defines a set automorphism

σ : S(�A) −→ S(�A)

given by taking the next element with respect to the (increasing) order. This turns �A into an-
other labelled graph by changing an S-label P into σ−1(P). If we change the label, the auto-
morphism σ changes the label of �A and so may change the sign of the integral D∗

AρA∗ω̂�A

(with respect to the corresponding automorphism of the configuration space). More pre-
cisely, according to the definition of the integral in Section 3·1, a cyclic permutation of the
S-label induced by σ acts on the fiber integral as −1 because the sign of an even cyclic
permutation (of odd elements) is −1.

Proof of Lemma 3·7 (continued), n odd, j even, � even case. As we have observed, we
need only to prove the cancelling of the integrals restricted to the faces corresponding to
collapses of special subgraphs. Suppose, for simplicity, that the set S(�A) is labelled by
{1, 2, . . . , �} so that 1 < 2 < · · · < � < 1 in the natural cyclic ordering given above. The
other cases can be treated separately and analogously. Let G̃std

� (�A) be the set of labelled
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special subgraphs in G̃�(Q) with isomorphic underlying edge-oriented unlabelled graph as
�A, and with the labelling on S(�A) satisfying the simplicity assumption above.

Now take a unit u(�A) and write as u(�A) = �∗
A ∈ G̃std

� (�A) if |u(�A)| = 1, or as
u(�A) = (�∗

A, �∗∗
A ) ∈ G̃std

� (�A)×2 if |u(�A)| = 2, and expand �∗
A or �∗

A + �∗∗
A in a sum of

�-wheels in A�(Q): �∗
u,1 + �∗

u,2 + · · · + �∗
u,N (�∗

u,i : �-wheel). This expansion is unique up to
permutations of suffixes i = 1, . . . , N , and the correspondence

(a labelling ρ on u(�A)) �−→ (�∗
u,1(ρ), �∗

u,2(ρ), . . . , �∗
u,N (ρ)) (3·9)

determines (non-uniquely) a matrix M (each labelling corresponds to a row of M) where
�∗

u,i (ρ) is �∗
u,i with the induced labelling. We view M as a multiset consisting of labelled

oriented wheels.
For each fixed �∗

u,i (ρ) in (3·9), there is a non-identity permutation

τ : T (�∗
A) → T (�∗

A)

acting on the T -label(s) of graph(s) of u(�A) defined so that the �-wheel expansion of
τσu(�A) in the labelling ρ: τσ�∗

u,1(ρ)+τσ�∗
u,2(ρ)+· · ·+τσ�∗

u,N (ρ) has a term τσ�∗
u, j (ρ)

with

[�∗
u,i (ρ)] = [τσ�∗

u, j (ρ)] = [�∗
u, j (τσρ)]. (3·10)

Note that τ is uniquely determined by �∗
u,i (ρ): the labelled graph σ�∗

u,i (ρ) is isomorphic
to the labelled graph obtained from �∗

u,i (ρ) by a permutation ϕ on T (�∗
u,i(ρ)) (keeping

S-labels fixed). Then τ : T (�∗
A) → T (�∗

A) is given by τ(x) = ϕ−1(x) where T (�∗
A) is

naturally identified with T (�∗
u,i(ρ)) by the labels.

Now in the �-wheel expansion of the sum z�(Q) we see that the terms for �∗
u,i (ρ) and

τσ�∗
u, j (ρ) cancel each other, i.e.,

[�∗
u,i (ρ)] ⊗ D∗

AρA∗ω̂�∗
A
+ [τσ�∗

u, j (ρ)] ⊗ D∗
AρA∗ω̂τσ�∗

A
= ([�∗

u,i(ρ)] − [τσ�∗
u, j (ρ)])

⊗ D∗
AρA∗ω̂�∗

A
= 0

by (3·10) and by the fact that σ only changes the sign of the integral and that τ does not
change the integral (though they may change the coefficient graph). More generally, the
mapping �∗

u, j (ρ) �→ τσ�∗
u, j (ρ) (τ depends on �∗

u, j (ρ)) induces an automorphism on the
multiset M without fixed point. Hence the cancelling pairs are mutually disjoint and all
terms in M cancel with each other. Note that the sum z�(Q) is over the rows of M (one row
for one term) for each unit u(�A).

Example 1. Let us see some typical examples for the cancellation. We assume that n odd,
j even. First by the STU/ST2 relation, we have the following identities

+ = = +

(3·11)

in A2(Q). Let u1 = (�1, �
′
1) be the unit consisting of the first two graphs of (3·11) and let

u2 = (�2, �
′
2) be that of the last two graphs. Then it holds that u2 = τσu1 where σ is the

cyclic permutation acting on the set S = {1, 2}, τ = (1 2)(3 4)(5 6), T = {1, 2, 3, 4, 5, 6}
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and that (τσ )2 = id. Then we see that

[�1] ⊗ D∗
AρA∗ω̂�1 + [�′

1] ⊗ D∗
AρA∗ω̂�′

1
+ [�2] ⊗ D∗

AρA∗ω̂�2 + [�′
2] ⊗ D∗

AρA∗ω̂�′
2

= ([�1] + [�′
1] − [�2] − [�′

2]) ⊗ D∗
AρA∗ω̂�1 = 0

by the relation (3·11). The contribution of any other special graph of order 2 with one η-edge
is cancelled by the same argument.

Example 2. Assume that n odd, j even again. Consider the special graphs (units)

X(p, q; r, s) := , Y (p, q; r, s) :=

where {p, q, r, s} is a permutation of {1, 2, 3, 4}. X (p, q; r, s) and Y (p, q; r, s) are related
to each other by σ . One may fix a standard way of labelling on edges of X ’s and Y ’s from
p, q, r, s. So we fix one such. The cases of other choices can be discussed similarly. Let

W (p, q, r, s) := .

Then by the IHX relation we have

X (1, 2; 3, 4) = W (1, 2, 3, 4) + W (2, 1, 3, 4) + W (1, 2, 4, 3) + W (2, 1, 4, 3)

X (3, 4; 1, 2) = W (3, 4, 1, 2) + W (3, 4, 2, 1) + W (4, 3, 1, 2) + W (4, 3, 2, 1)

X (1, 3; 2, 4) = W (1, 3, 2, 4) + W (3, 1, 2, 4) + W (1, 3, 4, 2) + W (3, 1, 4, 2)

X (2, 4; 1, 3) = W (2, 4, 1, 3) + W (2, 4, 3, 1) + W (4, 2, 1, 3) + W (4, 2, 3, 1)

X (1, 4; 2, 3) = W (1, 4, 2, 3) + W (4, 1, 2, 3) + W (1, 4, 3, 2) + W (4, 1, 3, 2)

X (2, 3; 1, 4) = W (2, 3, 1, 4) + W (2, 3, 4, 1) + W (3, 2, 1, 4) + W (3, 2, 4, 1)

Y (1, 2; 3, 4) = W (4, 1, 2, 3) + W (4, 2, 1, 3) + W (3, 1, 2, 4) + W (3, 2, 1, 4)

Y (3, 4; 1, 2) = W (2, 3, 4, 1) + W (1, 3, 4, 2) + W (2, 4, 3, 1) + W (1, 4, 3, 2)

Y (1, 3; 2, 4) = W (4, 1, 3, 2) + W (4, 3, 1, 2) + W (2, 1, 3, 4) + W (2, 3, 1, 4)

Y (2, 4; 1, 3) = W (3, 2, 4, 1) + W (1, 2, 4, 3) + W (3, 4, 2, 1) + W (1, 4, 2, 3)

Y (1, 4; 2, 3) = W (3, 1, 4, 2) + W (3, 4, 1, 2) + W (2, 1, 4, 3) + W (2, 4, 1, 3)

Y (2, 3; 1, 4) = W (4, 2, 3, 1) + W (1, 2, 3, 4) + W (4, 3, 2, 1) + W (1, 3, 2, 4)

(3·12)

in A4(Q). Here σ maps X (p, q; r, s) to Y (p, q; r, s) and σ acts on wheels. For example,
σ maps W (1, 2, 3, 4) to W (4, 1, 2, 3) and for this term τ must be (1 2 3 4). In this case
τσ X (1, 2; 3, 4) = Y (2, 3; 4, 1) = Y (2, 3; 1, 4). Indeed the expansion of Y (2, 3; 1, 4) in-
cludes W (1, 2, 3, 4) too. Noting that the integrals for X (p, q; r, s) are all equal, say to α,
and that the integrals for Y (p, q; r, s) are all equal to −α by definition of integral in Sec-
tion 3·1, it follows easily by using (3·12) that∑

(p,q;r,s)

([X (p, q; r, s)] ⊗ D∗
AρA∗ω̂X (p,q;r,s) + [Y (p, q; r, s)] ⊗ D∗

AρA∗ω̂Y (p,q;r,s)
) = 0.

Proof of Lemma 3·7 (continued), the case n even, j odd. We consider the following
cases as given in the statement of Theorem 3·3: (i)-(b) k � 4, (i)-(c) j = 3 and n � 12.
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In the case (i)-(b), the vanishing of the contributions of �A’s of even order can be shown
similarly as in the case n odd, j even, � odd by using the central symmetry around a univalent
vertex. The vanishing of �A’s of order 3 can be shown by replacing the cyclic permutation
in the discussion above with the symmetry that reverses a 3-wheel around an axis. Note that
the same argument does not work for � ≡ 1 mod 4. So (� �)k � 4 is necessary.

However, in the special case as in (i)-(c), the vanishing can be proved for all �. The case
� = 3 has been done already. For �A’s of order � with � � 5, we have that deg ρA∗ω̂�A =
�(n − 5) + 4 � 5n − 21. But when n � 12, we have that 5n − 21 > dim I3(R

n) = 3n.
Therefore ρA∗ω̂�A = 0 by a dimensional reason.

We have shown Lemma 3·7 so far and hence we have the following:

PROPOSITION 3·10. Suppose that n, j, k satisfy one of the conditions in the statement of
Theorem 3·3. Then the exterior derivative of zk is rewritten as

dzk =

⎧⎪⎨⎪⎩
1

kS!kT !
∑

�

labelled

[�] ⊗ J
∫

C1(R j )

D∗
V (�)ρV (�)∗ω̂� n, j : even,

0 otherwise,

where
∫

C1(R j )
denotes the integration along the fiber.

This completes the proof of Theorem 3·3(i).

3·6. The anomalous face correction term

In the rest of this section we let A = V (�). As was observed in Section 3·2 we know that
the integral I (�) restricted to the anomalous face �A can be written as the integral along
C1(R

j ) of the differential form

D∗
AρA∗ω̂� ∈ �

(n− j−2)k+ j+1
DR (C1(R

j ) × Emb(R j , R
n)). (3·13)

Now we would like to find an (n − j − 2)k + j form β� on C1(R
j ) × Emb(R j , R

n) so
that ∑

�

labelled

[�] ⊗ d
∫

C1(R j )

β� =
∑

�

labelled

[�] ⊗ Jr∗
∫

C1(R j )

DA(ϕ)∗ρA∗ω̂�. (3·14)

If such a β� is found, and if we set

�k := 1

kS!kT !
∑

�

labelled

[�] ⊗
∫

C1(R j )

β� ∈ Ak ⊗ �
(n− j−2)k
DR (Emb(R j , R

n)),

then by Proposition 3·10, the form ẑk defined in (3·3) gives a closed (n − j − 2)k-form on
Emb(R j , R

n), as desired in Theorem 3·3(ii) and completes the proof of Theorem 3·3(ii).
Recall that Emb(R j , R

n) is the space of smooth families ϕ̃ = {ϕt} of immersions ϕt :
R

j → R
n , t ∈ [0, 1] such that ϕ0 = ι and ϕ1 ∈ Emb(R j , R

n). We define a map

D̃A : [0, 1] × C1(R
j ) × Emb(R j , R

n) → I j (R
n)

by D̃A(t, x, ϕ̃ = {ϕt}) = Dϕt(x). Note that Dϕ : T R
j → T R

n is the differential of
ϕ, which is linear injective when ϕ is an immersion. D̃A restricts on {0, 1} × C1(R

j ) ×
Emb(R j , R

n) to DA(ι) ◦ (id × r) and DA(ϕ) ◦ (id × r).
Then, put

β� := −pr23∗ D̃∗
AρA∗ω̂� ∈ �

(n− j−2)k+ j
DR

(
C1(R

j ) × Emb(R j , R
n)
)

where pr23 : [0, 1] × C1(R
j ) × Emb(R j , R

n) → C1(R
j ) × Emb(R j , R

n) is the projection.
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LEMMA 3·11. The identity (3·14) holds.

Proof. We use the generalized Stokes theorem (3·4); suppose deg pr23∗ D̃∗
AρA∗ω̂� = a.

Then we have∑
�

[�] ⊗ dβ� = −
∑

�

[�] ⊗ d pr23∗ D̃∗
AρA∗ω̂�

= −
∑

�

[�] ⊗ [pr23∗(d D̃∗
AρA∗ω̂�) + (−1)a+1pr∂23∗(D̃∗

AρA∗ω̂�)
]

= (−1)a
∑

�

[�] ⊗ [(id × r)∗ DA(ι)∗ρA∗ω̂� − (id × r)∗ DA(ϕ)∗ρA∗ω̂�

]
= (−1)a+1

∑
�

[�] ⊗ (id × r)∗ DA(ϕ)∗ρA∗ω̂�,
(3·15)

where we have used in the third equality the fact that the form∑
�

labelled

[�] ⊗ ρA∗ω̂� ∈ Ak ⊗ �
(n− j−2)k+ j+1
DR (I j (R

n)) (3·16)

is closed (the proof of this fact is exactly the same as [R, lemma 6·5·15]). Moreover the van-
ishing of the infinite face contribution together with the generalized Stokes theorem implies
that d
∫

C1(R j )
β� = ∫C1(R j )

dβ�.

This completes the proof of Theorem 3·3(2).

Proof of Theorem 3·4. I j (R
n) is homotopy equivalent to the Stiefel manifold Vj (R

n)

(a deformation retraction is given by the Gram–Schmidt orthogonalization, see e.g., [R,
Section 2·5]) and dim Vj (R

n) = j (2n − j − 1)/2. Thus, if k is large enough as re-
quired in Theorem 3·4, then H (n− j−2)k+ j+1(I j (R

n); R) = 0. Hence there exists a form
αk ∈ Ak ⊗ �

(n− j−2)k+ j
DR (I j (R

n)) such that dαk is equal to (3·16). Then by the definition
of β� and by the generalized Stokes theorem (3·4), the correction term is equal to∑

�

[�] ⊗
∫

C1(R j )

β� = −
∫

C1(R j )

pr23∗d D̃∗
Aαk

= −d
∫

C1(R j )

pr23∗ D̃∗
Aαk − Jr∗

∫
C1(R j )

DA(ϕ)∗αk,

where we have used the fact that D̃A is the constant map near ([0, 1] × ∂C1(R
j )) � ({0} ×

C1(R
j )). By putting ᾱk = (−1) j+1 J DA(ϕ)∗αk , we get the result.

As a consequence of Theorem 4·4 and Proposition 1·2, [ẑk] will give a nontrivial co-
homology class for odd k � 3. If k is odd and large enough, then [z̄k] is also a nontrivial
cohomology class of Emb(R j , R

n) since [ẑk] = r∗[z̄k].
Remark 3·12. It is known that the image of the natural map

f : π0(Emb(R3, R
5)) −→ π0(Imm(R3, R

5))�Z

(the isomorphism on the right is given by Smale’s isomorphism [Sm]) is 24Z. (See [Ek,
HM] etc.) We denote this map by SH : π0(Emb(R3, R

5)) → 24Z. The target of SH is the
set of regular homotopy classes of embeddings. It follows from [B2, theorem 2·5] that the
map SH agrees with the composition

π0(Emb(R3, R
5))

B �� π0(�Imm(R2, R
4))

G �� π0(Imm(R3, R
5))�Z

of some two maps defined in [B2, theorem 2·5, proposition 3·2].
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Fig. 4·1. The wheel-like ribbon presentation of order k = 4.

Fig. 4·2. Local model of an intersection.

On the other hand the anomaly correction term �k defined above gives a 0-form on
Emb(R2, R

4). It is easy to see that when both n and j are even the pullback i∗�k of �k

by the natural map i : �Imm(R j , R
n) → Emb(R j , R

n) is closed on �Imm(R j , R
n) and

hence gives a well-defined homomorphism

Ak = i∗�k : π0(�Imm(R2, R
4)) → R.

At present we do not know the answer to the following question.

Question 3.13. Can the map Ak ◦ B : π0(Emb(R3, R
5)) → R recover SH? In other

words, is there a non-zero real constant λk such that SH = λk · Ak ◦ B?

4. Non-triviality of ẑk

Here we will construct the ‘wheel-like’ cycles and evaluate the cohomology classes [zk] ∈
H k(n− j−2)

DR (Emb(R j , R
n);Ak) or [ẑk] ∈ H k(n− j−2)

DR (Emb(R j , R
n);Ak) on the cycles to show

that they are nontrivial for some k.

4·1. Long embeddings from wheel-like ribbon presentations and their special family

Definition 4·1. A wheel-like ribbon presentation P = D � B of order k is a based,
oriented, immersed 2-disk in R

n− j+1 as shown in Figure 4·1. More precisely, P consists of
k +1 disjoint 2-disks D = D0 � D1 � · · ·� Dk and of k disjoint bands B = B1 � B2 � · · ·� Bk

(Bi ≈ I × I for each i), such that:

(i) Bi+1 connects D0 with Di (1 � i � k, where Bk+1 := B1) so that Bi+1�D0 = {0}× I ,
Bi+1 � Di = {1} × I ;

(ii) each disk Di intersects ‘quasi-transversally’ with the band Bi , 1 � i � k, that is,
the intersection Di � Bi is a segment contained in Int Di and T Di + T Bi spans a
3-dimensional subspace at each point in Di � Bi (as in Figure 4·2);

(iii) the base point ∗ of P is on the boundary of D0 but not on the boundaries of Bi ’s.

Figure 4·2 shows an image of a neighbourhood Ui of Di via a local homeomorphism ξi :
Ui

≈−→ [−3, 3]n− j+1.
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Fig. 4·3. Perturbation of a crossing.

Definition 4·2. Define a ribbon ( j + 1)-disk VP by

VP :=
(

D ×
[
−1

2
,

1

2

] j−1
)

�

(
B ×
[
−1

4
,

1

4

] j−1
)

⊂ R
n− j+1 × R

j−1. (4·1)

VP is an immersed handlebody obtained by attaching 1-handles to 0-handles in such a way
as P indicates, so we can make VP an immersed ( j + 1)-manifold without corners in the
standard way (see e.g. [K]). The boundary of VP is a smoothly embedded j-sphere. Taking
a connect-sum of ∂VP with standard j-plane ι(R j ) ⊂ R

n at the base point, we obtain an
embedded j-plane in R

n which is standard outside a j-disk. We choose a parametrization
R

j → ι(R j )�∂VP for the j-plane to obtain a long embedding ϕk : R
j ↪→ R

n .

4·1·1. ‘Resolved’ cycles ck, c̃k

Here we construct a cycle ck of Emb(R j , R
n) of degree k(n − j − 2) by ‘perturbing’ the

long embedding ϕk around the crossings of ϕk (neighbourhoods of Di ’s). This cycle is a
generalization of a ‘k-scheme’ in [HKS, Wa1],

Consider an (n − j − 2)-dimensional unit sphere in x3 . . . xn− j+1-space

S := {(0, 0, x3, . . . , xn− j+1)
∣∣ (x3 − 1)2 + x2

4 + · · · + x2
n− j+1 = 1

}
.

We perturb Bi by considering, for any v ∈ S, a (2-dimensional) band

B(v) :=
{
(x, y; γ (y)v) ∈ R

2 × R
n− j−1
∣∣∣ |x | � 1

2
, |y| < 3

}
(see Figure 4·3) where γ (y) := exp(−y2/

√
9 − y2). Replacing each Bi with Bi (vi) :=

(Bi \ (Bi � Ui )) � ξ−1
i (B(vi)), we obtain a new ribbon presentation Pv := D � Bv for any

v := (v1, . . . , vk) ∈ (Sn− j−2)×k , where Bv := B1(v1)� · · ·� Bk(vk). Taking the boundary of
the ( j+1)-disk VPv , we have a long embedding ϕv

k , a ‘perturbation’ of ϕk via v ∈ (Sn− j−2)×k .
We can take ϕv

k to be continuous with respect to v (see the remark below). Thus we have a
continuous map

ck : (Sn− j−2)×k −→ Emb(R j , R
n), v �−→ ϕv

k .

This is canonical up to homotopy. We regard the map as a k(n− j−2)-cycle of Emb(R j , R
n).

Moreover, we have not only a family of embeddings but also a family {VPv}v of ribbon
disks. We get a family of paths in Imm(R j , R

n)

[0, 1] × (Sn− j−2)×k −→ Imm(R j , R
n)

such that each path in this family collapses each embedding ϕv
k (v ∈ (Sn− j−2)×k) to the

standard inclusion along the ribbon disk VPv by a regular homotopy. Inverting each path, we
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Fig. 4·4. The polygonal graph �(k).

obtain a map c̃k : (Sn− j−2)×k → Emb(R j , R
n) which extends ck . We will consider c̃k as

representing a cycle of Emb(R j , R
n).

Remark 4·3. A reason why it is possible to take a family of embeddings ck for the family
of submanifolds {∂VPv}v is that the relative smooth (R j , R

j \ D j )-bundle over (Sn− j−2)×k

given by the family {∂VPv}v is trivial because it can be collapsed to a constant family that is
isotopic to the standard inclusion by a sequence of unclaspings on every crossings that are
given through a family of immersions.

The support of the deformation can be restricted inside the union of the crossings. Thus
we may assume that the family {ϕv

k }v is constant outside crossings.

4·1·2. Main evaluation

Let �(k) be the polygonal graph defined by Figure 4·4.
In the rest of this section, we will prove the following theorem.

THEOREM 4·4.
(i) Suppose n, j, k are as in Theorem 3·3 (i); (a) n odd, or (b) n even, j odd and

k � 4, or (c) n � 12 even, j = 3. Then 〈zk, ck〉 = ±[�(k)], where 〈α, ck〉
denotes

∫
(Sn− j−2)×k c∗

kα. Thus both [zk] ∈ H k(n− j−2)

DR (Emb(R j , R
n);Ak) and [ck] ∈

Hk(n− j−2)(Emb(R j , R
n); R) are nontrivial if k � 2 is such that [�(k)] � 0 in

Ak = Ak(n, j).
(ii) If n, j are both even as in Theorem 3·3 (ii), then 〈ẑk, c̃k〉 = ±[�(k)]. Thus both [ẑk] ∈

H k(n− j−2)

DR (Emb(R j , R
n);Ak) and [̃ck] ∈ Hk(n− j−2)(Emb(R j , R

n); R) are nontrivial
if [�(k)]� 0 in Ak . If moreover n � 2 j , then r∗[̃ck] ∈ Hk(n− j−2)(Emb(R j , R

n); R) is
also nontrivial, where r : Emb(R j , R

n) → Emb(R j , R
n) is the forgetting map.

Remark 4·5. What we know about the space Ak are summarized in Proposition 1·2
which will be proved in Section 5. In particular we will show that [�(3)] � 0 in A3 � R

when n is odd and j is even (Proposition 5·19). Hence by Theorem 4·4 (i), [z3] ∈
H 3(n− j−2)

DR (Emb(R j , R
n)) is not zero. To the authors’ knowledge, this is the first cohomo-

logy class of higher degree than the homology classes discussed in [B2] (in the cases where
n is odd and j is even).

The proof is outlined as follows. We may compute 〈zk, ck〉 or 〈ẑk, c̃k〉 in the limit that the
crossings of ϕk ‘shrink to a point’ (see Section 4·2·1) since a shrinking of a crossing does not
change [ck], [̃ck] and since zk, ẑk are closed. We will show in Section 4·3 that, in the limit,

〈I (�), ck〉 −→

⎧⎪⎨⎪⎩
±|Aut �| if � = �(k) polygonal with no

orientation reversing automorphism,

0 otherwise,

and that the value of the correction term for ẑk on c̃k vanishes when n, j are even. Here
Aut � denotes the automorphism group of the underlying (unoriented) graph �. Since the
polygonal graph is unique for each k, the pairing 〈zk, ck〉(= 〈ẑk, c̃k〉 when n, j are even) is
equal to ±[�(k)].
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Fig. 4·5. A shrinking of the crossing (compare it with Figure 4·3).

4·2. Modification of embeddings to convenient ones

For the convenience in evaluating the integral, we deform the family ck = {ϕv
k }v (keeping

the property mentioned in Remark 4·3 satisfied) as follows.

4·2·1. Shrinking

Let ε > 0 be sufficiently small. We choose a ribbon presentation P so that the neigh-
borhoods Ui = ξ−1

i ([−3, 3]n− j+1) of the crossings of ϕk are contained in ε-balls. We also
deform the local model of the crossings of ϕv

k as in Figure 4·5, replacing the bands and the
disks with

B(ε) :=
{
(x, 0, z, 0) ∈ R

3 × {0}n− j−2
∣∣∣−3 � z � −

√
ε2 − x2, |x | � ε2

2

}
,

D(ε) := {(x, 0, z, 0) ∈ R
3 × {0}n− j−2 | x2 + z2 � ε2}

and for any v ∈ S,

B(v, ε) :=
{
(x, y, γ (y)v)

∣∣∣ |x | � 1

2
− 1 − ε2

2
γ (y), |y| < 3

}
(recall γ (y) = e−y2/

√
9−y2

). Replacing Di � Ui , Bi+1 � Ui and Bi (vi) � Ui with

Di(ε) := ξ−1
i (D(ε)), Bi+1(ε) := ξ−1

i (B(ε)), Bi (vi , ε) := ξ−1
i (B(vi , ε)),

we obtain a new perturbation of the ribbon presentation, which we denote by Pv,ε := Dv,ε �
Bε. Then we ‘fatten’ Pv,ε in a similar way to (4·1) to obtain VPv,ε

, but now around Ui we
fatten Di(ε) and Bi (vi , ε) by [−ε/2, ε/2] j−1 and [−ε2/4, ε2/4] j−1 respectively. Taking the
boundary of VPv,ε

, we obtain a family of long embeddings denoted by ϕ
v,ε
k .

Clearly the choice of ε ∈ (0, 1) does not affect the homology classes [ck], [̃ck]. So it is
enough to compute 〈zk, ck〉 in the limit ε → 0.

4·2·2. Crossing as embeddings from standard disks

Definition 4·6 (Crossing). We write Ûi := Ui × [−3/4, 3/4] j−1. Then the intersection of
Ûi with the image of the long embedding ϕ

v,ε
k separates into two components. We denote

them by D̂i(ε)� B̂i(vi , ε), where the two components correspond respectively to Di and Bi .
We call the triple (Ûi , D̂i(ε), B̂i(vi , ε)) the i -th crossing of ϕ

v,ε
k .

D̂i(ε) is diffeomorphic to a punctured j-sphere and B̂i (vi , ε) is diffeomorphic to I ×S j−1.
After a suitable deformation, we may assume that, for any v ∈ (Sn− j−2)×k , the para-
metrization ϕ

v,ε
k : R

j ↪→ R
n is chosen so that Di = Di(ε), Bi = Bi (ε) are mapped
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Fig. 4·6. Di and Bi+1.

homeomorphically onto D̂i (ε) and B̂i (vi , ε) respectively, where

Di(ε) := {(x1, . . . , x j ) ∈ R
j | (x1 − pi )

2 + x2
2 + · · · + x2

j � (ε2)2
}

Bi (ε) := {(x1, . . . , x j ) ∈ R
j | (3ε/4)2 � (x1 − pi−1)

2 + x2
2 + · · · + x2

j � ε2
}
,

and where pi = i/k (1 � i � k − 1), pk = p0 = 0 (see Figure 4·6).

4·3. Evaluation by zk

Here we give a proof of Theorem 4·4. We work with the assumptions on ck = {ϕv,ε
k }v

made in the previous subsection.

4·3·1. Non-corrected case; n, j, k are as in Theorem 3·3 (i)

From now on we compute the value of

〈zk, ck〉 = 1

kS!kT !
∑

�

labelled

[�]〈I (�), ck〉 =
∑

�

unlabelled

[�]
|Aut �| 〈I (�), ck〉,

where in the last term � runs over all unlabelled admissible 1-loop graphs of order k and
where I (�) and [�] are given for some common labelled representative for each unlabelled
graph �. Note that there are kS!kT !/|Aut �| different labellings on a graph � and that the
product [�]I (�) does not depend on the choice of a label. We compute each term 〈I (�), ck〉
explicitly for all �.

Let s = |Vi (�)|, t = |Ve(�)|. Consider the following commutative diagram;

(Sn− j−2)×k × Cs(R
j )

ck×id ��

pr1

��

Emb(R j , R
n) × Cs(R

j )

pr1

��

C�

p���

π�

����������������

(Sn− j−2)×k ck �� Emb(R j , R
n)

where p� is given by (ϕ; x1, . . . , xs; xs+1, . . . , xs+t) �→ (ϕ; x1, . . . , xs). Then

〈I (�), ck〉 =
∫

(Sn− j−2)×k

c∗
k (π�)∗ω� =

∫
(Sn− j−2)×k×Cs (R j )

(ck × id)∗(p�)∗ω�.

LEMMA 4·7. Let V1(i) be the subset of Cs(R
j ) consisting of configurations such that at

most one point of a configuration is in Di(ε) � Bi (ε). Then∫
(Sn− j−2)×k×V1(i)

(ck × id)∗(p�)∗ω� = O(ε)

(this means that the left-hand side converges to zero as ε tends to zero).

Proof. If one of Di and Bi contains no points, then the integral differs only by O(ε) from
an integral of a pullback of a k(n − j − 2)-form on (Sn− j−2)×k−1 ⊂ (Sn− j−2)×k (the comple-
mental direction of the i-th factor) along the projection. This is because we can deform ck in
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Ûi , by a small regular homotopy, so that ck is constant for any vi ∈ Sn− j−2 and the integral
remains to be well-defined all through the deformation. The integral changes only by O(ε)

since the change of φe (regarding as a smooth map from C� × (Sn− j−2)×k , see Section 3.1)
by the deformation can be made arbitrarily small.

The pairing 〈zk, ck〉 is independent of the choice of ε since the homology class [ck] is
independent of ε and zk is closed by the assumption on n, j . Thus by Lemma 4·7 we may
restrict to the integration on the subspace of Cs(R

j ) consisting of configurations such that
at least one point is mapped to both D̂i and B̂i by ϕk (other configurations contribute to the
integral by O(ε)).

Since ck has exactly k crossings (Ûi , D̂i , B̂i), � has to satisfy s � 2k to contribute to the
pairing 〈zk, ck〉 nontrivially in the limit ε → 0. But since � is of order k, we have s + t = 2k
vertices (Definition 2·3) and thus s � 2k. Hence only the graphs with s = 2k (and thus
t = 0, that is, without e-vertices) can contribute nontrivially to the pairing 〈zk, ck〉.

LEMMA 4·8. Let � be an admissible graph without e-vertices, and e = −→pq its η-edge. Let
V2(e) be the subspace of C�(ϕ)�C2k(R

j ) consisting of configurations such that the points
corresponding to p and q are not in the same Si , where Si is a j-ball containing Di � Bi+1

(Bk+1 := B1);

Si := {(x1, . . . , x j ) ∈ R
j | (x1 − pi )

2 + x2
2 + · · · + x2

j � ε2
}

where pi = i/k (1 � i � k − 1), pk = 0. Then∫
(Sn− j−2)×k×V2(e)

(ck × id)∗(p�)∗ω� = O(ε).

Proof. By Lemma 4·7, only the configurations where each one of 2k points belongs to
one Si can contribute nontrivially to 〈zk, ck〉. If the points x p and xq are in different Si ’s,
then the image of the map φe concentrates in some small ball (with radius O(ε)) in S j−1,
because of the assumption for Di(ε) and Bi (ε). Thus the integral of a product of edge forms
over V2(e) is O(ε).

LEMMA 4·9. Let � be an admissible graph without e-vertices, and e = −→pq its θ-edge.
Let V3(e) be the subspace of C�(ϕ) � C2k(R

j ) consisting of configurations with (x p, xq) �
Di × Bi and � Bi × Di for any i . Then∫

(Sn− j−2)×k×V3(e)
(ck × id)∗(p�)∗ω� = O(ε).

Proof. By assumption and Lemma 4·7, we may assume (x p, xq) ∈ Di × Bi ′ or ∈ Bi × Di ′

for some i � i ′. But then the image of φe is in a small (n − 1)-disk (of radius O(ε)) in Sn−1.

LEMMA 4·10. In the limit ε → 0,

〈zk, ck〉 = ± [�(k)]
|Aut �(k)| 〈I (�(k)), ck〉 + O(ε),

where �(k) is the unique polygonal graph (see Figure 4·4) of order k.

Proof. Let � be a graph without e-vertices. If an i-vertex p is trivalent (thus � is not
polygonal), there are two η-edges (say pq and pr ) and one θ-edge emanating from p. Then
by the above Lemma 4·8, the three points x p, xq and xr must be in the same Si . But then
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there must be one Dl or Bl which contains no points in a configuration. Thus for any � which
is not polygonal, we have 〈I (�), ck〉 = O(ε) by Lemma 4·9 and by the identity⋃

e∈Eη(�),e′∈Eθ (�)

(V2(e) � V3(e
′)) = C2k(R

j )

for such a graph �.

The final task is to compute 〈I (�(k)), ck〉, where �(k) is the polygonal graph oriented as
in Figure 4·4. We prove the following lemma.

LEMMA 4·11. If k is such that the polygonal graph �(k) does not have an orientation
reversing automorphism, then

〈I (�(k)), ck〉 = ±|Aut �(k)|.
Otherwise 〈I (�(k)), ck〉 = 0.

Proof. By Lemma 4·7, we may restrict the integration on the configurations where all the
points are in one of D’s or B’s. By Lemma 4·8 it suffices to consider only the case where the
points x2i−1, x2i corresponding to endpoints 2i − 1, 2i of an η-edge must be in Dl and Bl+1

for some l. Then by Lemma 4·9, x2i must be in Bl+1 (hence x2i−1 ∈ Dl) and the endpoint
x2i+1 of a θ-edge other than x2i is forced to be in Dl+1. There are |Aut �(k)| = 2k compon-
ents of such configurations as above (because Aut �(k) is isomorphic to the dihedral group
of the k-gon). By symmetry it is enough to compute the integral on the component �k of
C2k(R

j ) \⋃e,e′ V2(e) � V3(e′) among the 2k components where the configuration satisfies
x2i−1 ∈ Di , x2i ∈ Bi+1 (1 � i � k). Other components contribute to the integral by the same
value modulo signs as the component �k . The sign which is induced by a permutation of
vertices is the same as that induced on the graph by the corresponding permutation. There-
fore the integral 〈I (�(k)), ck〉 vanishes by self-cancelling if �(k) has an orientation reversing
automorphism.

We claim that, when �(k) does not have an orientation reversing automorphism, the in-
tegral 〈I (�(k)), ck〉 restricted to �k is the product of the ‘linking numbers’ of D̂i(ε) with⋃

vi ∈S B̂i(vi , ε) (1 � i � k), which are equal to ±1. We will see this more rigorously now:

To describe 〈I (�(k)), ck〉 explicitly, we define two types of direction maps;

φθ,i : Di × Bi × Sn− j−2 −→ Sn−1, (di , bi , vi) �→ u
(
ϕ

vi
k (di ) − ϕ

vi
k (bi )
)
,

φη,i : Di × Bi+1 −→ S j−1, (di , bi+1) �→ u(bi+1 − di ),

where di ∈ Di , bi ∈ Bi , ϕ
vi
k is the embedding ϕk with its i-th crossing perturbed by vi , and

u(v) := v/|v| for a nonzero vector v. Then, by Lemmas 4·7, 4·8 and 4·9, we have

〈I (�(k)), ck〉 = 2k
∫

�k×(Sn− j−2)×k

k∧
i=1

φ∗
θ,ivolSn−1 ∧ φ∗

η,ivolS j−1 + O(ε). (4·2)

But we can replace φη,i (changing the integral (4·2) only by O(ε)) by

φo
η,i : Bi+1 −→ S j−1, bi+1 �−→ u(bi+1),
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because our Di is quite smaller than Bi+1, and consequently (4·2) can be rewritten as∫
�k×(Sn− j−2)×k

k∧
i=1

φ∗
θ,ivolSn−1 ∧ (φo

η,i

)∗
volS j−1 + O(ε)

=
k∏

i=1

∫
Di ×Bi ×Sn− j−2

φ∗
θ,ivolSn−1 ∧ (φo

η,i−1

)∗
volS j−1 + O(ε).

Then Lemma 4·12 below completes the proof of Lemma 4·11.

LEMMA 4·12. ∫
Di ×Bi ×Sn− j−2

φ∗
θ,ivolSn−1 ∧ (φo

η,i−1

)∗
volS j−1 = ±1 + O(ε).

Proof. Under the identifications Di ≈ D j and Bi ≈ I × S j−1, the map φθ,i × φo
η,i−1 can

be seen as

D j × I × S j−1 × Sn− j−2 −→ Sn−1 × S j−1, (x, t, w, v) �−→ (u(ϕk(x) − ϕv
k (t, w)), w

)
The point ϕv

k (t, u) is in the cylinder B̂i (v, ε) ≈ I × S j−1, which has as its ‘core’ an arc

γ (v, t) = (0, t, v exp(−t2/
√

9 − t2)
)

(see Section 4·1·1), and is fattened by taking a product with a small S j−1 in x1xn− j+2 . . . xn-
direction. Since the radius of the S j−1 is quite smaller (∼ ε2) than that of D̂i(ε) (∼ ε), the
map φθ,i can be replaced (changing the integral only by O(ε)) by the map

φo
θ,i : Di × Bi × Sn− j−2 −→ Sn−1, (x, t, v) �−→ u(ϕk(x) − γ (v, t)).

Thus the integral of the statement is rewritten as∫
S j−1

(
φo

η,i−1

)∗
volS j−1

∫
D j ×I×Sn− j−2

(
φo

θ,i

)∗
volSn−1 + O(ε).

The first integral is obviously one, since φo
η,i−1 restricts to the identity on S j−1. The second

integral is lk(Ai ,S) + O(ε), where lk is the linking number,

Ai :=
⋃
t∈I

⋃
vi ∈Sn− j−2

γ (vi , t) ≈ �Sn− j−2,

and S is a j-sphere obtained from D̂i(ε) by stopping up a small j-ball (corresponding to
Di � Bi+1). S is a unit j-sphere in x2x3xn− j+2 . . . xn-space centered at the origin, and Ai

is a unit (n − j − 1)-sphere in x1x3x4 . . . xn− j+1-space centered at (0, 0, 1, 0, . . . , 0). Thus
lk(Ai ,S) is clearly ±1.

Lemmas 4·10, 4·11 complete the proof of Theorem 4·4 (i).

4·3·2. The correction term; n, j are even

In the case where n, j are both even, instead of evaluating 〈ẑk, c̃k〉, we compute the dif-
ference

〈ẑk, c̃k〉 − 〈ẑk, c̃0
k

〉
for some nullhomotopic cycle c̃0

k of Emb(R j , R
n) given as follows.
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Fig. 4·7. Unclasping by scaling down around a point Oi .

Let ψi denote the restricted embedding ck(v0)|Di : Di ↪→ R
n where v0 ∈ (Sn− j−2)×k is

the basepoint. Let Oi be the center of the j-disk ∂Ûi � (Di × [−ε/2, ε/2] j−1) and fix a
local coordinate around Oi induced from that of R

n so that Oi is the origin. After a suitable
deformation of ck(v)|Di , we may assume that ψi agrees with the standard linear inclusion ι

on r0 � |x | � r1 for some r0, r1 with r0/r1 � 1, with respect to the local coordinate. Then
we set

ψ0
i (x) =

{
λψi (λ

−1x) |x | � r0,

ψi (x) r0 < |x | � r1,

under the local coordinate, for a small constant λ > 0 such that r0/r1 < λ < 1, which
implies r0 < r0/λ < r1. See Figure 4·7. We may also assume that if λ is small enough, then
the ( j + 1)-disk Di(ε) × [−ε/2, ε/2] j−1 (after a suitable deformation) does not intersect
B̂i (vi , ε) for all vi ∈ Sn− j−2. The resulting embedding ψ0

i has the same differential Dψ0
i :

Di → I j (R
n) as ψi up to a relative isotopy of the domain Di . More precisely, by definition

the differential of ψ0
i is

Dψ0
i (x) =

{
Dψi (λ

−1x) |x | � r0,

Dψi (x) (= ι) r0 < |x | � r1.

Note that this is continuous because ψi is standard on r0 � |x | � r1. We deform ψ0
i by a

relative isotopy of (Di , ∂Di) so that Dψ0
i coincides with Dψi (we will denote the resulting

embedding again by ψ0
i ). Replacing ψi with ψ0

i for all i , we get a family of homotopies
through immersions

c̃0
k : (Sn− j−2)×k −→ Emb(R j , R

n)

with the following properties:

LEMMA 4·13.

(i) The correction terms evaluated on c̃k and c̃0
k coincide.

(ii) c̃0
k is nullhomotopic.

(iii) 〈zk, c0
k〉 = 0 where c0

k = r ◦ c̃0
k .

Proof. (ii) is because the family c̃0
k of homotopies is in fact a family of embeddings of

[0, 1] × R
j . (iii) is checked by the same argument as in the computation of 〈zk, ck〉; c̃0

k is
arranged so that the linking numbers of Lemma 4·12 are zero. (i) is proved as follows. The
correction term is defined as in Section 3·6 and its value on c̃k is given by∑

�

[�] ⊗
∫

[0,1]×C1(R j )×(Sn− j−2)×k

D̂∗ρV (�)∗ω̂�

where D̂ : [0, 1]×C1(R
j )×(Sn− j−2)×k → I j (R

n) is given by D̂(t, x, v) := D(̃ck(v)(t))(x)

which is equal to D(̃c0
k(v)(t))(x) by the above definition of c̃0

k . Hence the above integral is
the same as the value on c̃0

k .
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Fig. 4·8.

Proof of Theorem 4·4 (2). By Lemmas 4·10, 4·11 and 4·13 (i), (iii), we have that

〈ẑk, c̃k〉 − 〈ẑk, c̃0
k〉 = 〈zk, ck〉 − 〈zk, c0

k〉 = ±[�(k)].
Moreover 〈ẑk, c̃0

k〉 = 0 by Lemma 4·13 (ii). Thus 〈ẑk, c̃k〉 is equal to ±[�(k)], which is not
zero by the hypothesis. This shows that [̃ck] ∈ Hk(n− j−2)(Emb(R j , R

n)) is not zero.
Next we show that r∗[̃ck] ∈ Hk(n− j−2)(Emb(R j , R

n)) is nontrivial when n, j are even and
n � 2 j . Consider the following commutative diagram associated with the fibration sequence

�Imm(R j , R
n)

i→ Emb(R j , R
n)

r→ Emb(R j , R
n):

πk(n− j−2)(�Imm(R j , R
n))

i∗ �� πk(n− j−2)(Emb(R j , R
n))

r∗ ��

H
��

πk(n− j−2)(Emb(R j , R
n))

H

��
Hk(n− j−2)(Emb(R j , R

n))
r∗ �� Hk(n− j−2)(Emb(R j , R

n)).

Here H and H are the Hurewicz homomorphisms. The top row is a part of the homotopy
exact sequence of the fibration. The maps H and H are injective over R because the com-
ponent of Emb(R j , R

n) or Emb(R j , R
n) ( j � 2) of the standard inclusion is a homotopy

associative H -space (see [MM, p. 263]). Therefore to show the nontriviality of r∗[̃ck] it is
enough to prove the following assertions:

(a) [̃ck] lies in the image of H ;

(b) r∗ H
−1

([̃ck]) is nontrivial.

Then (b) and the injectivity of H would imply the result.
Now note that the wheel-like ribbon presentation P = D � B in R

3 (Definition 4·1)
has the following property: Let P ′ be a wheel-like ribbon presentation obtained from P by
unclasping the pair (D1, B1) as in Figure 4·8. Then we can find a 1-parameter family of
immersions {ϕt} : D2 → R

3, t ∈ [0, 1] such that (i) ϕ0 is the standard inclusion R
j ⊂ R

n ,
(ii) ϕt restricted to ∂ D2 is an embedding for all t , and that (iii) ϕ1 represents P ′. Moreover
we may assume that for a base-point b ∈ ∂ D2 and its small neighbourhood Ub in D2, it
holds that ϕt |Ub = ϕ0|Ub for all t ∈ [0, 1] and thus the connected sum with the standard
plane (as in Definition 4·2) can be done for the entire family. Then the corresponding family
of ribbon ( j + 1)-disks together with embeddings in Emb(R j , R

n) on its boundaries give a
nullhomotopy of a restriction of the map c̃k : (Sn− j−2)×k → Emb(R j , R

n) to any sub-factor
(Sn− j−2)×(k−1) ⊂ (Sn− j−2)×k . Thus [̃ck] lies in the image of H and (a) is proved.

In order to prove (b) we choose a homotopy class βk ∈ πk(n− j−2)(Emb(R j , R
n)) such that

[̃ck] = H(βk), which exists by (a). βk is nontrivial over R since [̃ck] is nontrivial over R.
Therefore it is enough to prove that in a range r∗ on the homotopy group is injective over R.

It is known that πl(�Imm(R j , R
n))⊗R = πl(�

j+1Vj (R
n))⊗R vanishes for l � 2n− j−6

(if n, j are even; see [MT, chapter 3, theorem 3·14]). Thus, r∗ : πk(n− j−2)(Emb(R j , R
n)) ⊗

R → πk(n− j−2)(Emb(R j , R
n))⊗R is injective if k(n − j − 2) � 2n − j − 6. By Proposition

1·2 (which will be proved in Section 5), [̃ck] can be nontrivial only when k � 3 (when n, j
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Fig. 5·1. Two types of paths.

are even). It is easy to see that, if n � 2 j , then the above criterion k(n − j −2) � 2n − j −6
holds for any k � 3.

5. The spaces Ak

In this section we discuss the structure of the vector space Ak .

5·1. Even codimension case

Here we prove the first half of Proposition 1·2.

5·1·1. Wheel-type graphs

Firstly we introduce the notion of wheel-type graphs and show that Ak is generated by
wheel-type graphs in even codimensional case.

Definition 5·1. An admissible 1-loop graph is said to be wheel-type if it is an alternate
cyclic sequence of paths of the form (a) or (b) of Figure 5·1. A single path may form a cycle.
A k-wheel is a wheel-type graph of order k consisting of exactly one path of type (a) (see
Figure 3·6). We call θ-edges sticking into the paths hairs.

Example 5·2. Below we show two examples of wheel-type graphs.

The left-hand graph consists of one type (a) path and one type (b) path and has two hairs,
while the right-hand graph consists of two type (a) paths and two type (b) paths with no hair.

LEMMA 5·3. In even codimension case, Ak is at most one dimensional, possibly gener-
ated by the k-wheel.

Proof. Let � be an admissible 1-loop graph, but not wheel-type. Then � has at least one
tree subgraph T which has � 3 vertices and shares only one vertex r with the unique cycle
(like the third graph of Example 2·4). T has one of the following three subgraphs;

Case (1). By the ST relation in Figure 2·1, T can be transformed in Ak to Case (3).
Case (2). This subgraph is the third one in the ST2 relation (Figure 2·1) with the edge

q ending at a univalent vertex. We can see that the first and the second graphs in the ST2
relation cancel with each other, after the ST and C relations are applied. Thus [�] = 0 ∈ Ak .

Case (3). Such � satisfies [�] = −[�] in Ak and hence vanishes, because there is an
orientation reversing automorphism of � which exchanges p and q.

Thus all the graphs which are not wheel-type vanish in Ak . As explained in [Wa1, page
50], by applying relations (Figure 2·1), we can transform all the wheel-type graphs to the
wheel. This completes the proof.
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Fig. 5·2. Orientations of the k-wheel : the cases that n, j , k odd and that n, j , k even.

Fig. 5·3. Standardly oriented paths (a) and (b).

Fig. 5·4. Standardly oriented graphs.

5·1·2. The case k ≡ n ≡ j modulo 2

Here we prove that the k-wheel vanishes when k ≡ n ≡ j modulo 2. Indeed, if we orient
the k-wheel as in Figure 5·2, then we can define ‘reflective’ automorphisms σ of the k-wheel
which reverses the orientation as follows: when n, j, k are odd, σ permutes the vertices of
the k-wheel by

(1 k)(2 k − 1) · · ·
(

k − 1

2

k + 3

2

)
(k + 1 2k)(k + 2 2k − 1) · · ·

(
3k − 1

2

3k + 3

2

)
(whose sign is (−1)k−1) and reverses all the k edges on the circle. When n, j, k are even,

σ := (1 k)(2 k − 1) · · ·
(

k

2

k + 2

2

)
(k + 1 2k − 1)(k + 2 2k − 2) · · ·

(
3k − 2

2

3k + 2

2

)
(whose sign is (−1)k−1 = −1).

This together with Lemma 5·3 proves the following.

PROPOSITION 5·4. If k ≡ n ≡ j modulo 2, then Ak = {0}.
5·1·3. The case k � n ≡ j modulo 2

Here we will prove that Ak is at least one dimensional if k � n modulo 2. This will be
done by constructing a nontrivial linear map wk : Ak → R, called a weight system, for each
k � n in an analogous way to [Wa1].

Definition 5·5. A standardly oriented wheel-type graph is a wheel-type graph oriented as
in Figure 5·3. When both n, j are odd, the vertex 1 is the ‘first’ vertex of a path of type (a),
and when both n, j are even, the edge 1 is the ‘first’ edge of a path of type (a) (see Figure 5·4
for examples).

Remark 5·6. There is a unique graph of order k consisting of only one type (b) path.
The standard orientation of the graph is given as in Figure 5·5. It is easily checked that this
orientation is independent of choices of i-vertex (resp. η-edge) numbered by 1.
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Fig. 5·5. Graphs consisting of only one path (b).

There are some ambiguities in the definition of the standard orientation; the order of the
labelling of vertices and edges may be either counterclockwise. Moreover the definition of
a standard orientation depends on the choice of i-vertex/θ-edge numbered by 1. But as the
name suggests, the standard orientation is uniquely determined. The proof of the following
Lemma is an elementary sign argument.

LEMMA 5·7. Suppose k � n ≡ j modulo 2. Then any two standard orientations for a
wheel-type graph � of order k are equivalent to each other.

For any oriented wheel-type graph (�, or(�)) of degree k � n modulo 2, define

wk(�, or(�)) := ε(−1)�{hairs of �}

where ε = ±1 is such that ε · or(�) is equivalent to the standard orientation. We extend it to
a linear map wk : Gk → R.

LEMMA 5·8. When k � n ≡ j , the map wk descends to wk : Ak → R.

Proof. We show that wk is compatible with the ST relation (Figure 2·1) when both n and
j are odd. This relation is represented by the sum of two graphs, which we call �1 and
�2 respectively (oriented as in Figure 2·1). If �1 is standardly oriented, then so is �2. But
the numbers of the hairs of �1 is greater than that of �2 by one. Thus we have wk(�2) =
−wk(�1) and hence wk is compatible with the ST relation. In similar ways we can see that
wk is compatible with all the relations in Figure 2·1. For the ST2 relation, we may assume
the endpoint of the edge labelled by q is univalent since all the graphs here are wheel-type,
and then the third graph is zero since it is not wheel-type (see Lemma 5·3).

Proof of Proposition 1·2, even codimension case. The case k ≡ n ≡ j modulo 2 was
proved in Proposition 5·4. When k � n ≡ j , we see that dimAk � 1, since wk(k-wheel) =
±1. Thus by Lemma 5·3, we have Ak �R if k � n ≡ j .

5·2. Odd codimension case

At present we have not determined the structure of Ak in odd codimension cases. Partial
descriptions of Ak will be given in Propositions 5·9, 5·18. The latter half of Proposition 1·2
will be also proved in Proposition 5·19.

We call a graph a chord diagram if it has no e-vertices. By the defining relations (Figures
2·2, 2·3), we can represent every graph as a sum of chord diagrams in Ak . Here we show the
following assertion.

PROPOSITION 5·9. In odd codimension case, Ak is generated by wheel-type chord dia-
grams.

This follows from Proposition 5·12. To prove this, we will show the vanishing of chord
diagrams with large tree subgraphs introduced in the next two definitions.
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Definition 5·10. Let l be a positive integer. A feather of length l (resp. l + 1/2) is the
following subgraph:

where p1, . . . , pl are univalent and pl+1 is at least bivalent. We call the vertex p1 the endpoint
of the feather.

Definition 5·11. A straight line of length l (l ∈ Z>0) is the following subgraph:

The vertex p is univalent, q1, . . . , ql−1 are bivalent and ql is trivalent. We call the vertex p
the endpoint of the straight line.

Notice that the straight lines of length 1, 2 and 3 are equal to feathers of length 1/2, 1 and
1 + (1/2), respectively. Every univalent vertex is an endpoint of a feather or a straight line.
For example, the vertices p2, . . . , pl in a feather are endpoints of straight lines of length 1.

Below we will prove the following.

PROPOSITION 5·12. In odd codimension case, any graph can be represented in Ak as
a sum of chord diagrams all of whose univalent vertices are endpoints of straight lines of
length 1.

Any non wheel-type chord diagram must have a subgraph (1) or (2) in the proof of
Lemma 5·3, and hence have a straight line of length > 1. Hence Proposition 5·12 says that
Ak is generated by wheel-type chord diagrams, and completes the proof of Proposition 5·9.

The following Lemmas 5·13, 5·14 and 5·15 are needed to prove Proposition 5·12.

LEMMA 5·13. If � has a feather of length � 2 + (1/2), then � = 0 in Ak .

Proof. The proof for the length � 3 is as follows:

and the last graph is zero by the IHX relation (see the proof of Lemma 3·7, �A tree case).
The feather of length 2 + (1/2) vanishes as follows, again by IHX relation.

LEMMA 5·14. If � has a straight line of length � 5, then � = 0 in Ak .

Proof. If the length is at least five, then the straight line contains at least two η-edges q1q2

and q3q4 whose endpoints are both bivalent. Apply the ST relation to q1q2 and q3q4, then we
can transform the straight line to the last subgraph in the proof of Lemma 5·13.
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LEMMA 5·15. A straight line of length 4 is equivalent to the feather of length 2.

Proof. Apply the ST relation to the η-edge q1q2, and then use the ST2 relation.

Proof of Proposition 5·12. Let � be a chord diagram. By the above Lemmas 5·13, 5·14
and 5·15 and the fact that the straight lines of length � 3 and the feathers of length < 2 are
equal, we may assume that all the univalent vertices of � are endpoints of straight lines of
length � 4.

Suppose � has a straight line of length > 1. The straight line of length 4 can be written
by using that of length 3 as follows:

The last subgraph is equal to that with no univalent vertices by ST relation.
Next we can transform the straight line of length 3 to a graph with two lines of length 1:

Lastly the straight line of length 2 is a sum of a graph with one line of length 1 and one
with no univalent vertex:

In such ways as above, we can eliminate all the straight lines of length > 1.

We have not yet used the Y relation (Figure 2·2). The following is a consequence of the
ST, STU and Y relations:

Thus we can improve Proposition 5·9 as follows.

PROPOSITION 5·16. Ak is spanned by wheel-type chord diagrams which has no pair of
‘adjacent’ hairs.

As a corollary of Proposition 5·16, we obtain a very rough, but immediate upper bound of
dimAk . There is exactly one chord diagram with no hair (Figure 4·4). Let � be a wheel-type
chord diagrams with m > 0 hairs, any two of which are not adjacent to each other. Then
there are 2(k − m) bivalent vertices on the cycle of �. A configuration of hairs determines a
partition 2(k − m) = n1 + · · · + nm (up to cyclic permutations) with all ni ’s positive even
integers (because there must be even number of bivalent vertices between two non-adjacent
trivalent vertices on the cycle). Then dimAk is bounded by the number of such partitions.

COROLLARY 5·17. We write the number of Young diagrams with x boxes and y rows as
N (x, y) (notice that N (x, y) = 0 if x < y). Then

dimAk � 1 +
∑

1�m��k/2�
(m − 1)! · N (k − m, m).

For example, we have dimA3 � 2, dimA4 � 3, and so on.
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Fig. 5·6. All the chord diagrams in A3 (i-vertices are omitted).

The chord diagrams can be obtained by expanding the wheel by the defining relations.
In this sense the k-wheel can be seen as a ‘source’ of the space Ak . Thus the next Proposi-
tion 5·18 suggests that Ak might be rather small in some cases.

PROPOSITION 5·18.

(i) The k-wheel vanishes in Ak if (1) n is even, j is odd, and k � 1 modulo 4, or if (2)

n is odd, j is even, and k � 3 modulo 4.

(ii) The wheel-type chord diagram which consists of only type (b) paths vanishes if (1) n
is odd, j is even and k � 1 modulo 4, or if (2) n is even, j is odd and k � 3 modulo
4.

Proof. We prove only (i). (ii) can be proved in a similar way.
Consider the case n is even and j is odd. Orient the k-wheel graph as in Figure 3·6

with � replaced by k; (1), . . . , (3k) are S-labels, while 1, . . . , k are T -labels. When k ≡ 3
modulo 4, the proof is the same as the argument in Section 5·1·2; applying the ‘reflective’
permutation which appeared in Section 5·1·2 (whose sign is −1) to each set {(1), . . . , (k)},
{(k +1), . . . , (2k)} and {(2k +1), . . . , (3k)} of the S-labels, we find an orientation reversing
automorphism of the k-wheel. Thus the k-wheel vanishes.

The proof for even k can be done by applying the cyclic permutation of k letters (whose
sign is −1) to each set {(1), . . . , (k)}, {(k + 1), . . . , (2k)} and {(2k + 1), . . . , (3k)} of the
S-labels. The proof for the case n is odd and j is even is similar.

At present it is difficult to give a lower bound of dimAk , but not impossible if k is small.
Indeed, Figure 5·6 shows all the non-zero chord diagrams in A3 which arise from the ex-
pansion of the 3-wheel by the IHX and the STU relations (n odd, j even case). By solving
the system of all possible linear relations among graphs, we can see that all these graphs
are equal to the wheel multiplied by some non-zero constants, and there is no non-trivial
relation among these graphs. Thus we have the following observation.

PROPOSITION 5·19. When n is odd and j is even, the space A3 is one dimensional.

Since the hexagonal graph (the second graph in Figure 5·6) does not vanish in A3,
we obtain a new cohomology class of Emb(R j , R

n) in odd codimension cases; see
Remark 4·5.
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