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I PAPER 

A Noise-Robust Continuous Speech Recognition System Using 
Block-Based Dynamic Range Adjustment 

Yiming SUNta), Nonmember and Yoshikazu MIYANAGA t, Fellow 

SUMMARY A new approach to speech feature estimation under noise 
circumstances is proposed in this paper. It is used in noise-robust contin­
uous speech recognition (CSR). As the noise robust techniques in isolated 
word speech recognition, the running spectrum analysis (RSA), the running 
spectrum filtering (RSF) and the dynamic range adjustment (DRA) meth­
ods have been developed. Among them, only RSA has been applied to a 
CSR system. This paper proposes an extended DRA for a noise-robnst CSR 
system. In the stage of speech recognition, a continuous speech waveform 
is automatically assigned to a block defined by a short time length. The 
extended DRA is applied to these estimated blocks. The average recogni­
tion rate of the proposed method has been improved under several different 
noise conditions. As a result, the recognition rates are improved up to 15% 
in various noises with 10 dB SNR. 
key ~ords: CMS, CSR, DRA, noise-mbust, RSA 

1. Introduction 

Recently, continuous speech recognition (CSR) has made 
great progress and yielded a high recognition rate [1]. The 
hi ah recoanition rate can be achieved under clean and high b b 

SNR, i.e., over 20 dB SNR, environments. However, cur-
rent CSR technology has not matured to provide high recog­
nition accuracy under severe noisy environments, i.e., the 
conditions lower than 20 dB SNR [2]. 

On the other hand, some noise robust speech recog­
nition methods have been developed for isolated speech, 
i.e., isolated words and phrases. For the improvement 
of speech recognition performance, the spectrum subtrac­
tion (SS), RelAtive SpecTrA (RASTA), Cepstral mean sub­
traction (CMS), running spectrum filtering and dynamic 
range adjustment (RSF/DRA) and running spectrum anal­
ysis (RSA) have been used [3]-[5]. They can efficiently re­
duce the noise effects from noisy speech data. Even when 
an environment noise is lower than 20 dB SNR, the isolated 
speech recognition system with noise robust techniques can 
recognize target speech with high recognition rate. 

Although RASTA is a well known method focusing 
on modulation spectrum domain (MSD), a primary RASTA 
employs IIR filtering and it may cause a problem such as 
phase distortion [6]. RSF is based on a FIR filter. RSA is di­
rectly used in the MSD. Compared with RASTA and RSF, 
RSA can realize ideal processing [7], [8]. In this paper, we 
select RSA to reduce any noise effects on the MSD. 
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Among the noise robust methods used in a CSR sys­
tem [9]-[11], a method using RSA and CMS has been de­
veloped in [11] and it can show a little higher performance 
than others. The RSA and CMS are used for the reduction 
of distortion embedded into a training data set and the CMS 
is also used for the time invariant noise reduction to an ob­
served speech waveform in a recognition stage. By using 
the above noise robust techniques, the recognition accuracy 
can be improved. However, compared with the results of 
isolated speech recognition accuracy, its performance is in­
sufficient for many actual applications. 

In this paper, the modified technique of a dynamic 
range adjustment (DRA) is proposed for a CSR system. The 
speech waveform is observed within unlimited time length 
since any continuous speech data are supposed to the CSR 
system. On the other hand, the dynamic range of speech fea­
tures disturbed by any noises should be properly adjusted in 
order to minimize the difference between the dynamic range 
of clean speech features and that of noisy speech features. 
The proposed method introduces a short time length block 
chosen stochastically from the feature sequence of continu­
ous speech. Using these given blocks, the DRA algorithm 
is properly applied. By using such processing, the proposed 
CSR system can show higher speech recognition accuracy 
where 15 different noise types are used with 10, 15 and 
20 dB SNR. 

Section 2 introduces three methods we used in simu­
lation. Section 3 shows influence of noises in continuous 
speech data. Section 4 details a block-based DRA algo­
rithm. Section 5 describes the conditions in the procedure 
of model training and recognition. Section 6 presents all 
conditions and results in modeling and recognition. 

2. Conventional Methods 

2.1 CMS 

CMS is a channel normalization approach to compensate 
for the acoustic channel [12]. The time invariant channel 
parameters in a recording system and convolutional distur­
bance noise are evaluated by CMS and these noises are re­
duced from an observed speech waveform. By using CMS, 
the distOition between training speech data and observed 
speech data can be improved. 

In CMS, the' averages of all MFCC components are 
calculated, and then these averages are subtracted from 
MFCC [l3] components. CMS can remove the channel ef-

Copyright © 2012 The Institute of Electronics, Information and Communication Engineers 



SUN and MIYANAGA: A NOISE-ROBUST CONTINUOUS SPEECH RECOGNITION SYSTEM 

fects happened in the convolutional distortion. Since we 
have no information about the microphone system and any 
other convolutional effects for recording the speech, we 
choose CMS as one of preprocessing methods. 

2.2 RSA 

RSA is applied for both of low and high frequency com­
ponents in modulation spectrum domain (MSD). The com­
ponents of low and high frequency in MSD are reduced by 
using RSA [14]. The reduction of low frequency compo­
nents has the same effect of CMS technique. In addition, 
the reduction of high frequency components results in the 
elimination on time varying noises which cannot be created 
by a human speech production. 

The speech features are calculated from observed 
speech. In this paper, MFCCs are used in a speech feature 
vector. Let us assume that we obtain M speech feature vec­
tors defined as: 

(1) 

where L denotes the number of speech features, i denotes a 
time index, and T stands for a transpose. The above feature 
vector consists of MFCC, L1 MFCC and L1L1 MFCC, where L1 
MFCC is calculated from the differentiation of MFCC and 
L1L1 MFCC is calculated from the differentiation of L1 MFCC. 
In order to obtain the frequency components of MSD, the 
following equations are applied: 

(2) 

(3) 

(4) 

where k = 1,2, ... , M. Equation (3) indicates the function 
of RSA for Pk. RSA reduces the value of PI where t = 0 
and t > N where N is decided as the cut-off frequency of 
higher band in MSD. The vector Sk is RSA speech features 
in which noise components are reduced. 

2.3 DRA 

When any noises are added to speech data, the estimated 
speech features are affected and distorted by these noises. 
The dynamic range of each MFCC component in MSD is 
normally affected. In addition, the RSA which reduces the 
influences of noises changes the dynamic range of MFCC 
component in MSD. From these reasons, the adjustment of 
the dynamic range on MFCC trajectory in MSD has been 
developed [15]. 

The dynamic range adjustment (DRA) adjusts the dy­
namic range of MFCC on MSD by normalizing the ampli­
tude of each component. 

If we define the i-th component of Sk as Sk,i, DRA cal­
culates the following new value: 
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I Sk,i 

sk,i = max.- [s .. ] 
j-I, ... ,M j,1 

(5) 

where S~.i denotes the i-th element of the MFCC feature vec­
tor after DRA. 

3. Influence of Noises in Continuous Speech Data 

3 .1 Noise Disturbance 

Figure 1 shows an example of noise influence in an iso­
lated word. In Fig. 1, there are two different trajectories, 
i.e., the trajectories of the 2nd MFCC calculated from a 
clean speech and a noisy speech with lOdE SNR white 
noise. Note that both MFCC are estimated from the same 
speech sound. However, due to the serious influence of 
noise, the dynamic range of MFCC from the noisy speech 
is much smaller than the others. If a clean speech is used in 
the HMM straining stage, the automatic speech recognition 
(ASR) system cannot correctly recognize any noisy speech 
because of such difference. The DRA method has been de­
veloped as the compensation method for such difference in 
an isolated word and phrase. 

Figure 2 shows an example of a clean continuous 
speech waveform and its instant power trajectory. Normally 
an observed continuous speech consists of many words and 
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Fig. 1 Noise influences in word feature vectors. 

a. Continuous Speech 
<J.) 0.2,-------.-"'"--·----,-----.--.-c--~--~---"--T~ 

"0 

.~ 
P., 

to .2'--------::-::-=-------c:-::-'-::--=--------::~:__--'----'-------"----1 
625 1250 1875 2500 3125 3750 

TIME [msec] 
b. Energy 

I:;~~ 
625 1250 1875 2500 3125 3750 

TIME [msec] 

Fig. 2 Continuous speech in clean condition. 
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phrases and thus its dynamic rage is decided from the max­
imum energy selected among the continuous speech. The 
conventional DRA may employ its maximum value and then 
apply its value to all MFCC components. However, as 
we can easily recognize the §ifference among the dynamic 
ranges of all words in the example of Fig. 2a, the dynamic 
rage should be carefully adjusted in each word. 

Although only a clean continuous speech can be ob­
served, the selection of each word and the dynamic rage ad­
justment for the selected word are not difficult. However, 
under noisy conditions, the selection of words may be diffi­
cult issue. In this paper, the following two step processing 
is considered. 

(1) From an observed noisy continuous speech wave­
form, all shOlt sentences are selected. 

(2) A short sentence is divided into several blocks and 
then each block is independently applied by DRA. 

The above processing is applied to an observed un­
known continuous speech in recognition. 

The definition of the short sentence is given on acousti­
cal conditions. If a speech waveform has a certain length of 
silent, e.g., 200 msec, the location of this silent part is called 
"speech pause". The short sentence consists of "speech 
pause", its following speech and again "speech pause" af­
ter the speech. The defined short sentence may represent a 
word, several words, a phrase and some phrases. Although 
the exact meaning of a sentence cannot be defined on acous­
tic data, the above simple definition can be used in the pro­
posed method. 

In the first step (1), non-speech parts are eliminated. 
A continuous speech has many non-speech parts and only 
noises. These parts effects DRA inappropriately. In the sec­
ond step (2), the unbalance of several dynamic ranges ex­
isted in a continuous speech can be compensated. 

3.2 Sentence Selection 

In the training stage, the set of continuous speech data is 
given as a prior information. From these given speech data, 
a short sentence is manually selected. There are many 
speech waveforms with high SNR environment. Figure 2 
shows one of example. In other words, the selection of a 
short sentence can be easily executed. The length of speech 
pause is defined as 12 window frames. In Fig. 2, we can 
select three short sentences. 

However, in the recognition stage, a speech was nor­
mally observed with several noises where SNR was low. In 
addition, a short sentence should be selected automatically. 
Figure 3 represents an observed speech waveform as an ex­
ample. In order to detect a short sentence, 30-frame-width­
window is used and its window is shifted by 15 frames. We 
define E j•11 (1 ::; n ::; 30) as the energy for the n-th frame in 
the window. In the selected 30-frame-width-window, three 
lowest energy values Ej •n , which satisfy the both limitations 
E j.11 < E j,I1-1 and E j,n < E j,l1+ 1 at the same time among 30 
different energy values, are selected. The average of three 
low energy values is assumed to be noise energy and thus 
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Fig. 3 Continuous speech in 10 dB SNR white noise condition. 

the 1.5 times as much as the average value is defined as a 
threshold. When all 30 energy values in a 30-frame-width­
window are lower than the threshold, this window includes 
non-speech and unvoiced speech. If such windows includ­
ing non-speech and unvoiced speech are succeedingly de­
tected, the zero-crossing point nearest the center point of 
the first window among such succeeding windows is esti­
mated as the end point of a short sentence and that of the 
last window is estimated as the start point of the next short 
sentence. 

4. Block Based DRA 

4.1 A Short Sentence and Blocks 

In this paper, the proposed algorithm identifies a block be­
tween the zero-crossings of pj,i in a short sentence, where 
Pj,; denotes the i-th feature vector in J-th dimension. The 
definition of the block is a part between the zero-crossing 
points in the trajectory of P j,i. Please note that the different 
location of a block is used for P j,i at different i. In an esti­
mated block, we use different maximum value to calculate 
the pi,; from Pj,; by DRA. 

In Fig. 4, the simple concept of block separation is ex­
plained. The algorithm finds out the maximum value in a 
given ShOlt sentence, i.e., "Peak Point" in Fig. 4. From the 
peak point, the Lm length of the forward and backward posi­
tions is decided. In the forward short sentence from the peak 
point, the algorithm finds out the first zero-crossing point 
over the Lm length. In the backward short sentence from the 
peak point, the algorithm finds out the first zero-crossing 
point over the Lm length. The main block is selected be­
tween the above two zero-crossing points. 

In the right-hand side of the short sentence from the 
main block, the algorithm finds out the first zero-crossing 
point over Lw length from the right edge of the main block. 
Between these zero-crossing points, the next block is se­
lected. In the left hand side of the short sentence from the 
main block, the same procedure is applied. 

In a short sentence, the main block has a larger peak 
value than others. In other words, the lengths of 2L", and 
Lw are given by different lengths and they are decided from 
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Peak Point 

) 

Time 

Fig. 4 An example for a short sentence and blocks. 

prior experiments. 

4.2 First Step: Block Separation 

As mentioned in Sect. 4.1, the trajectory of P j,i given in a 
sentence is divided into some blocks with the zero-crossing 
points. The proposed algorithm searches the zero-crossing 
points in P j,i by the equation: 

(6) 

If h,i < 0, there is a zero-crossing point between P j,i-I and 

Pj,i· 
The value of PO,j is defined as the maximum value 

of the peak point. Then Lj(Po) is recorded as the loca­
tion of PO,j. After that, the length of Lm frames is sub­
tracted and added from LiPo), and they are recorded as 
LlP-1) = Lj(Po) - Lm and LlP1) = LiPo) + Lm. Next 
the algorithm searches the zero-crossing points nearest to 
left-hand side of LiP-I) and the right-hand side of LiP]). 
Once the algorithm finds the zero-crossing points, we de­
fine them as the Lj(P_1) and LiPI) as the locations of the 
zero-crossing points in this block. From LlP-I ) to Lj(P1), 

we can get the main block. The range of the main blocks is 
from the start-point as Lj(P_ I ) to the end-pint as Lj(PI ). 

There are numerous zero-crossing points in a short sen­
tence due to noise. Furthermore, the noise caused some 
abrupt changes between zero-crossing points. We consider 
limitations to select the zero-crossing points of blocks. The 
limitations focus on preserving the continuity of the P j,i in 
zero-crossing points. If P j,i is zero-crossing point, Ip j,i+ II < 
2 and Ip j,i-II < 2, it means a smooth variation near this zero­
crossing point. Otherwise, there is a discontinuity between 
Pj,i+ 1 and P j,i-I . In other words, the zero-crossing points 
used in a short sentence are selected under the above limita­
tions. 

We continue to divide the other two segments into 
blocks. The shortest length of a block is defined as Lw, i.e., 
Lj(Pi) - Lj(Pi+1) > Lw. Nearest to L,iCPi+I ), we use Eq. (6) 
to search zero-crossing points which satisfy the limitations. 
Then, we set i = ±i ± 1 to search the next block boundary. 
Symbol ±i is the ±i-th block whose boundary satisfies the 
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Fig. 5 An example of pj,il} = 3) for block separation and determination 
of maximum value. 

above limitations. 
From the above selection, we can get all zero-crossing 

points which give the block boundaries. They are given 
as L,iCP_N), LiPI-N), LiP2-N), ... , Lj(P_ 1), LiP], ... , 
Lj(PM ). The main block is given from Lj(P_ I ) to Lj(PI ). 
In the left-hand side, the -ith block is given from LiP -i-I) 
to LiP -i). In the right-hand side, the i-th block is given 
from Lj(Pi) to LiPi+I). 

Figure 5 shows an example of blocks, where j = 3. In 
Fig. 5, two longer vertical dot-lines show the boundary of 
the main block. S 1 , S 2 and S 3 indicate the main block, the 
left-hand side block and the right-hand side blocks, respec­
tively. The shorter vertical dot-lines show the boundary of a 
block in S 3. 

4.3 Second Step: Determination of the Maximum Value 

, 
From the above step, several blocks are selected and they 
have many peaks. In this step, the algorithm finds out the 
adjustment value used in the block-based DRA. Although 
the conventional DRA employs the maximum value in an 
observed MFCC trajectory as the adjustment value, the pro­
posed block-based DRA has an additional restriction for this 
determination. 

The value of P ±i,j is defined as the maximum value 
within the ±i-th block in a right-hand side block and a left­
hand side block. 

The proposed algorithm uses the assumption in which 
there is not large difference between the adjustment values 
of neighborhood blocks. If we assume such difference value 
is 0P' then the adjustment value in the right-hand side is cal­
culated as follows: 

(1) Determine the maximum value among Pi,j (i = 1,2, 
... , M) as TI,j. 

(2) If PO,j - TI,j < op and Tl,j - Pi,j < 0P' then Pi,j is 
selected the adjustment value in the ±i-th block. 

(3) If PO,j - Tl,j < op or T],j - Pi,j < 0P' then the 
adjustment value is given as T] )'. In other words PI' , = TI '. , 'J J 

(4) If PO,j - TI,j > op and Tl,j - Pi,j > 0P' then the 
adjustment value is give as PO,j - op. In other words, Pi,j = 
PO,j - op. 

In the left-hand side, we apply the same calculation. 
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Fig. 7 Results for block-based DRA algorithm in CSR. 

4.4 Third Step: Using Block-Based DRA 

We have obtained all blocks from a short sentence and de­
termined adjustment values. In each block, the following 
block-based DRA is applied: 

, Pk.i 
Pk.i=~' 

±l.} 

(7) 

Figure 6 shows the same MFCC feature vectors be­
tween the clean and 10 dB SNR white noise conditions. Fig­
ure 7 shows the results for the block-based DRA algorithm. 
In Fig. 6, almost all of Ip j.il in noisy speech are smaller than 
that of clean speech feature at the same time, especially in 
marked position from A to F. If we use the proposed al­
gorithm, we can adjust the features of noisy speech. Fig­
ure 7 shows the adjustment happened at the mark positions 
from A to F. It means the proposed algorithm effectively 
increases the similarity between clean and noisy speech fea­
tures. 

5. Discussion 

In the training ofHMM [16], [17], all sentences are assumed 
to be recorded under clean or low noise situation. In other 
words, any time varying noises and high level noises are 
not considered in this training stage. From these reasons, 
conventional CMS, RSA and DRA are applied to all given 
training speech data set. 

The cepstral variance normalization (CVN) technique 
normalizes the feature variance to the same scale. In partic­
ular, CVN has been developed in [18] which is applied to the 
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Table 1 Long vowel frame average length [%]. 

Phoneme Averages Variance Appear Times 
a: 13.35 13.50 2054 
e: 14.46 15.59 12688 
i: 14.93 20.97 1724 
0: 13.83 19.01 37657 
u: 10.64 17.50 4831 

-

recognition of Japanese digit strings. The cepstral mean nor­
malization (CMN) and CVN are used in cascade to execute 
the mean and variance normalization (MVN). The concept 
of our proposed method is similar to the above method. Our 
proposed method focuses on any Japanese character strings. 
In our method, the segmentation, i.e., 4.2, is designed for 
any character strings against high noisy circumstances. The 
result comparisons are given in Table 4 and from Table 6 to 
Table 11. 

Furthermore, in the recognition, many various and dif­
ferent noises should be considered during the recording to 
speech waveform. Accordingly, the proposed block-based 
DRA is applied. Numerical comparison results for MVN 
and our proposed method will be shown in Sect. 6. 

5.1 Model Training Stage 

Even when the speech data sets for the training are recorded 
under low noise circumstances, the effect of convolutional 
disturbance, i.e., microphone, may influence speech fea­
tures. During the training stage for HMMs, CMS, RSA and 
DRA should be used where conventional systems have em­
ployed only CMS and CMSjRSA. 

As the merit of RSA, the un-speech feature over 15 Hz 
on MSD can be accurately reduced than RSF. In addition, 
using RSA with CMS, the noise and disturbance compo­
nents can be eliminated effectively. 

The effects of CMS and RSF are not small for the 
dynamic range of speech feature trajectory mentioned in 
the previous section. The conventional DRA is applied for 
the dynamic rage normalization of their estimated and pro­
cessed speech features. 

Table 1 shows the averages and variance of five long 
vowels in all training data. 

5.2 Speech Recognition Stage 

CMS and RSA can reduce any impulsive noise before block­
based DRA. In the speech recognition stage, the block­
based DRA is applied. In the speech recognition, it is impos­
sible to know the length of speech waveform as prior infor­
mation. In addition, during recording, some different noises 
and disturbances may happen. For the reduction of noise 
and disturbance, the proposed block-based DRA is applied. 

For conventional DRA, we use ? for normalization. 
O,j 

From the Sect. 4.3 (2) to (4), we can compute the inequality 
PO,j > Pi,j > PO,j - 20p and PO,j > Pi,j > PO,j - op. In 
Sect. 4.3, we have set Pi,j = PO,j - 20p or Pi,j = PO,j - op as 
the adjustment value. If we suppose PO,j = 13, T1,j = 11, 
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Pi,j = 9 and 0 p = 2, it satisfies the Sect. 4.3 (4). Then, we 
substitute Pi,j = PO,j - Op into Eq. (7). For the point Ipj,il = 9 
in Fig. 8, the Ip' ·1 improves 0.1 compared with conventional 

J,l 
DRA. If the values of PO,}, TI,J and Pi,} satisfy Sect. 4.3 (2) 
or (3), we substitute Pi,j =: PO,j - 20p into Eq. (7). The Ipj) 
improves more compared with conventional DRA. There­
for, we set the op to 2 in Sect. 4.3. 

In Fig. 8, the horizontal axis denotes the MFCC value 
before DRA and the vertical axis denotes the MFCC value 
after DRA. We have known as the dynamic range of MFCC 
from the noisy speech is much smaller than the others from 
Fig. 1. In horizontal axis, the large value means the MFCC 
value under clean condition. Otherwise, the small value 
means the MFCC value under noise conditions. 

As well as for the same Ipj,il in Fig.8, if Ipj,il < 2, 
the deviation is less than 0.03 between the neighbor max­
ima. This deviation between the neighbor maxima is ac­
ceptablein the range from -1 to 1 and thus we set Ipj,i-Ii < 
2 or Ip j,i+ Ii < 2 in Sect. 4.2. 

From Table 1, the averages of all vowels are less than 
15. The main block width is longer than 2Lm from Sect. 4.2. 
If we set Lm = 15, the main block width include at least a 
vowel. 

The value of Lw determines the block width. If the 
value of Lw is large, it causes large changes into a block 
and leads to recognition rate abrupt decrease. On the other 
hand, if the value of Lw is small, it causes small changes into 
a block and leads to the recognition rate close to the results 
by using conventional DRA. As Fig. 9 shown, the recogni­
tion result becomes high when we set Lw = 80. 

~max{lp.I} ~ 9 
J,I 

. ..; ~max{lp· .I} ~ 11 
J,I 

.. -max{lp.ll ~ 13 
J,I 

._max{lp· .Il ~ 18 
J,I 

~max{lp· .Il ~ 20 
J,I 

max{lp .. l} ~ 22 
J,I 

5 10 15 20 
Ip· ·1 J,1 

Fig.S The normalization effect by using different maxima for same Ip j,i I. 

80 '100 120 
length of Lw 

Fig. 9 Recognition rate with different Lw. 
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6. Results 

In our experiments, all HMMs have been trained by using 
JNAS database [19]. It is produced by 153 males' native 
Japanese speakers. The conditions on speech analysis are 
given in Table 2. 

We use two criterions for the evaluation of speech 
recognition: 

N-S-D 
Rc = N x 100 [%], (8) 

N-S -D-J 
RA = x 100 [%], 

N 
(9) 

where N is the total number of words in the set of speech 
sentences, S is the number of misrecognized words, D de­
notes the number of words which are not selected as words, 
J denotes the number of words which are misrecognized as 
words, i.e., noise components and non-speech. Above, Rc 
shows the correct word recognition rate for the entire set of 
speech words, and RA shows the accuracy of the total CSR 
performance. 

In recognition, we use the sets of known and unknown 
data for our recognition tests. Known data denotes the test 
data which comes from the training database. Unknown 
data denotes the test data are collected from by Hokkaido 
university students, where the sentences are different from 
the training database. The conditions in this experiment are 
shown as Table 3. Additionally, we use Julius as an evalua­
tion tool in the recognition. 

We have simulated all data under both of clean condi­
tion and noise conditions with different SNRs. We define 15 
kinds noise as Table 5. 

In all tables, the 'Proposed' column denotes the method 

Table 2 Acoustic analysis conditions. 

Sampling frequency 16 kHz 
Frame shift 10.0 ms 
Frame length 25.0ms 
Window type Hanning 
Training data 23651 sentences from 153 people 
Emphasizing of High Frequency I - 0.97z-1 

HMM state nnmber 5 states 
(include start and end states) 

Number of Gaussian Mixtures 16 
Clustering about 2000 states 

Table 3 Recognition conditions. 

Known data for testing 
Unknown data for testing 
Sampling and frame conditions 

50 sentences from 12 people 
180 sentences from 6 people 
the same with Table 2 

Table 4 Recognition rates for clean condition [%J. 

Proposed RSA MVN ConDRA 
COlT Acc Corr Acc Corr Acc Corr Acc 

known data 93.22 92.29 92.55 91.22 91.29 90.09 89.63 88.03 
unknown data 83.90 82.43 82.69 81.00 82.87 81.43 82.69 81.33 
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Table 5 Noise definition. 

Symbol Noise Name Symbol Noise Name Symbol Noise Name 
Nl babble N2 buccaneer 1 N3 buccaneer2 
N4 destroyerenginer N5 destroyerops N6 fl6 
N7 factory 1 N8 factory2 N9 hfchannel 
NIO leopard Nil mlO9 N12 machinegun 
N13 pink NI4 - volvo N15 white 

Table 6 Known data recognition rates at 20 dB SNR [%]. 

Proposed RSA MVN ConDRA 
Corr Acc Corr Acc Corr Acc C~ Nl 76.06 70.84 76.46 73.01 76.26 68.48 75.1 2.76 

N2 76.46 74.87 73.40 71.68 72.33 71.00 70.69 69.59 
N3 76.86 74.34 73.94 72.74 74.52 73.59 69.22 67.84 
N4 75.66 73.67 77.39 75.93 75.20 74.00 73.80 71.94 
N5 81.65 80.32 82.85 81.78 80.04 79.11 79.79 78.86 
N6 78.32 76.86 74.60 72.74 75.85 74.79 74.34 72.87 
N7 81.65 80.32 77.79 76.60 77.79 76.46 75.80 74.87 
N8 87.90 86.97 77.79 76.60 80.90 79.84 75.80 74.87 
N9 67.42 64.49 57.31 55.05 64.36 62.33 63.56 60.77 

NIO 85.64 81.65 86.57 83.11 85.64 81.52 82.63 81.24 
NIl 88.56 87.50 89.89 88.96 88.09 87.89 87.23 86.30 
N12 84.04 78.19 80.98 74.47 82.91 75.86 81.48 75.92 
N13 80.32 79.26 76.99 76.06 79.78 78.45 79.41 78.09 
N14 89.89 88.83 91.09 89.89 90.69 89.36 90.43 88.83 
N15 68.22 65.65 69.95 68.62 69.40 68.07 63.56 61.84 
Ave 80.08 77.72 77.80 75.82 78.25 76.05 76.19 74.44 

Table 7 Known data recognition rates at 15 dB SNR [%]. 

Proposed RSA MVN ConDRA 
Corr Acc Corr Acc COlT Acc Corr Acc 

Nl 62.90 55.32 62.63 59.31 59.84 48.54 55.23 50.33 
N2 54.79 52.93 41.49 40.65 50.24 47.71 54.52 53.17 
N3 60.11 57.31 44.02 41.89 52.63 50.9 52.53 50.04 
N4 63.83 60.24 56.78 54.79 52.63 49.44 58.27 55.80 
N5 74.07 71.81 66.36 64.63 65.80 63.40 68.44 65.67 
N6 64.23 62.23 54.39 52.26 57.95 55.69 60.18 58.41 
N7 65.03 63.30 55.72 54.26 55.69 52.77 6l.l6 59.16 
N8 77.93 76.46 77.26 75.53 76.99 75.26 73.49 71.42 
N9 47.61 43.35 35.77 32.85 46.28 43.25 45.55 42.27 
NIO 81.91 76.06 82.18 77.53 80.38 75.00 75.57 72.40 
NIl 85.11 84.04 81.38 80.05 80.30 80.11 77.11 75.11 
N12 80.98 72.47 78.86 69.81 80.31 71.27 74.63 66.01 
N13 65.82 64.76 49.07 47.07 58.06 55.69 57.81 55.73 
N14 89.89 88.83 91.36 90.16 89.69 88.49 79.71 77.45 
N15 46.68 43.09 39.23 36.04 42.98 39.79 39.56 37.14 
Ave 68.06 64.81 61.10 58.40 63.32 59.82 62.25 59.34 

using CMS, RSA and conventional DRA for HMM training, 
and using CMS and block-based DRA for recognition. The 
'RSA' column denotes the method using CMS and RSA for 
HMM training, and using CMS for recognition. The 'MVN' 
column denotes CMS, RSA and MVN for HMM training 
and using CMS and MVN for recognition. The 'Con DRA' 
column denotes the method using CMS, RSA and conven­
tional DRA for HMM training, and using CMS and con­
ventional DRA for recognition. 'Ave' denotes the average 
recognition rate in all Tables. Table 4 shows the results in 
the clean conditions, Table 6, 7 and 8 show the recognition 
results on training data with 20, 15 and 10 dB SNR condi­
tions. The Table 9, 10 and 11 show the recognition results 
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Table 8 Known data recognition rates at 10 dB SNR [%]. 

Proposed RSA MVN ConDRA 
Corr Acc Corr Acc Corr Acc Corr Acc 

NI 36.84 25.80 36.04 32.05 36.30 22.61 34.49 25.90 
N2 30.19 28.19 15.56 14.63 25.90 22.45 30.35 28.62 
N3 34.31 32.31 18.08 16.87 31.62 29.23 30.51 28.88 
N4 40.96 38.03 24.07 23.14 34.22 29.70 38.84 37.07 
N5 51.33 49.07 34.18 33.24 47.58 43.)9 47.41 43.57 
N6 39.10 36.17 24.07 23.14 36.82 32.29 31.86 30.61 
N7 42.15 39.23 25.93 25.00 36.28 31.49 39.63 38.46 
N8 61.70 58.64 52.66 51.06 52.64 48.91 53.12 51.24 
N9 25.54 23.24 15.29 13.96 18.80 16.10 18.00 16.08 
NI0 79.26 73.81 77.93 72.87 77.39 70.61 72.21 68.55 
NIl 74.07 72.07 61.30 59.97 67.39 65.00 67.04 64.78 
N12 79.46 69.88 77.53 66.89 79.19 69.35 72.13 59.54 
N13 36.64 33.91 19.28 18.09 35.88 33.75 34.62 33.14 
N14 90.03 88.38 88.96 87.50 88.23 87.50 78.21 76.90 
N15 28.32 25.00 17.55 16.22 24.04 21.25 23.30 21.49 
Ave 49.93 46.25 39.23 36.98 46.15 41.86 44.78 41.66 

Table 9 Unknown data recognition rates at 20 dB SNR [%]. 

Proposed RSA MVN ConDRA 
Corr Acc Corr Acc Corr Acc Corr Acc 

Nl 73.72 70.14 73.38 69.42 72.96 69.15 73.38 69.42 
N2 70.66 68.51 67.46 65.69 70.11 67.85 70.14 68.02 
N3 69.61 67.23 66.63 64.74 67.98 65.83 67.36 64.80 
N4 77.91 75.17 69.65 67.84 72.66 71.00 72.51 70.89 
N5 77.64 75.49 77.11 75.45 77.56 75.08 77.15 75.04 
N6 73.00 71.68 70.81 69.16 71~ 69.42 72.93 71.53 
N7 73.04 71.34 72.81 71.53 72. 70.21 73.27 71.53 
N8 78.39 76.92 80.09 78.92 79.34 77.19 77.87 76.21 
N9 62.10 59.58 60.26 58.63 61.97 60.20 60.07 59.58 
NI0 76.21 73.30 77.39 74.81 76.13 73.00 75.98 72.85 
NIl 80.77 79.37 82.65 81.45 80.96 79.03 80.69 79.37 
N12 77.92 71.70 76.06 69.57 76.85 71.23 76.06 69.57 
N13 74.13 72.44 70.32 68.51 73.77 72.19 73.94 72.13 
N14 80.05 77.87 81.83 79.71 81.83 80.13 80.13 77.90 
N15 61.16 58.90 60.41 58.07 60.57 58.08 60.63 58.79 
Ave 73.76 71.31 72.46 70.23 73.08 70.63 72.81 70.51 

Table 10 Unknown data recognition rates at 15 dB SNR [%]. 

Proposed RSA MVN ConDRA 
Con' Acc COlT Acc Corr Acc Corr Acc 

Nl 65.20 60~ 65.27 63.08 55.20 48.26 53.28 51.04 
N2 54.64 53. 41.25 40.08 48.14 46.03 48.45 47.64 
N3 52.71 50.15 40.05 38.54 48.11 45.92 47.78 45.92 
N4 58.61 56.03 53.09 51.36 52.22 51.22 51.85 50.39 
N5 68.44 65.80 63.16 61.49 65.59 62.38 61.12 59.53 
N6 60.78 58.79 51.58 49.96 53.91 51.80 52.68 51.35 
N7 60.97 59.01 54.22 52.83 55.14 52.58 53.67 52.61 
N8 73.27 71.42 71.42 70.02 74.19 72.63 73.47 7l.l8 
N9 45.85 42.72 39.22 37.37 42.74 40.63 42.69 39.36 

NI0 75.64 72.55 76.24 72.51 74.68 71.21 72.68 70.19 
NIl 77.26 75.49 78.17 76.89 76.49 74.38 74.67 73.60 
N12 74.52 65.82 74.96 66.10 74.24 65.57 73.25 68.41 
N13 58.37 56.26 45.29 43.78 52.22 49.99 46.20 44.65 
NI4 79.64 77.45 81.98 79.90 80.67 79.02 78.23 77.36 
N15 39.22 36.88 36.73 35.33 40.45 38.04 37.67 35.41 
Ave 63.01 60.14 58.18 55.95 59.60 56.64 57.85 55.91 

on unspecific speakers with 20, 15 and 10 dB SNR condi­
tions. All averaged results have shown highest accuracy on 
the proposed method under noisy conditions. Especially, at 
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Table 11 Unknown data recognition rates at 10dB SNR [%]. 

Proposed RSA MVN ConDRA 
Corr Acc Corr Acc Corr Acc Corr Acc 

NI 44.72 36.05 38.80 36.69 33.51 32.65 32.80 30.69 
N2 30.24 28.43 14.48 13.88 24.01 22.09 14.48 13.88 
N3 31.l1 29.52 18.93 18.29 26.54 25.35 18.93 18.29 
N4 38.35 36.20 21.08 20.51 34.12 31.67 21.08 20.51 
N5 49.98 47.18 34.92 34.28 42.64 39.13 34.92 34.28 
N6 41.70 40.42 19.42 18.55 36.08 34.08 19.42 18.55 
N7 39.44 38.08 23.23 22.89 31.03 28.73 23.23 22.89 
N8 62.97 60.90 54.86 53.51 52.08 51.l2 51.86 50.51 
N9 22.81 20.59 14.29 13.57 16.06 14.10 14.29 13.57 
NIO 74.21 70.14 72.21 68.55 72.25 68.55 74.74 71.98 
Nil 69.85 67.55 59.31 57.88 68.78 66.02 59.31 57.88 
NI2 74.21 61.46 72.13 59.54 74.06 62.86 73.19 60.48 
N13 36.29 34.90 17.87 17.16 33.44 31.63 17.87 17.16 
N14 79.32 77.24 78.21 76.90 79.05 77.05 78.09 76.12 
N15 24.04 22.62 16.25 15.61 19.41 17.68 16.25 15.61 
Ave 47.91 44.75 37.06 35.19 42.87 40.18 36.70 34.95 

10 dB SNR, all results have been improved, and the average 
recognition rate has been improved by more than 10%. 

7. Conclusions 

In this paper, a new noise robust continuous speech recogni­
tion system has been proposed. In this system, a new block­
based dynamic range adjustment (DRA) algorithm has been 
implemented into the module of unspecific speaker recog­
mtlOn. The proposed method has enhanced the recogni­
tion rate under lower SNR noise environments. The DRA 
normalizes the maximum amplitudes of MFCC in each se­
lected block. The proposed CSR system can show higher 
accuracy than conventional systems under 20, 15 and 10 dB 
SNR noise environments. Especially in destroyerenginer, 
destroyerops, factoryl and pink noise environment, more 
than 15% improvement can be obtained for known and un­
known data. Our target is noise-robust Japanese character 
string recognition. Compared with [20] and [21], the both 
paper are aiming to Japanese digital strings recognition. The 
training database and language model are different as well. 
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