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Quantum Mechanical Plasma Scattering
Shun-ichi OIKAWA, Tsuyoshi OIWA and Takahiro SHIMAZAKI

Faculty of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-8628, Japan

(Received 7 December 2009 / Accepted 16 April 2010)

We have solved the two-dimensional time-dependent Schödinger equation for a particle with and without the
interparticle potential in a fusion plasma. It was shown that spatial extent of a free particle grows monotonically in
time. Such expansion leads to a spatial extent or size of a proton of the order of the average interparticle separation
Δ� ≡ n−1/3 ∼ 2 × 10−7 m in a time interval of 106 × Δ�/vth ∼ 10−7 sec for a plasma with a density n ∼ 1020 m−3

and a temperature T = mv2
th/2 ∼ 10 keV. It was also shown that, under a Coulomb potential, the wavefunction

of a charged particle first shrink and expand in time. In the expansion phase, at times t ≥ 10−10 sec, the size of
particle in the presence of a Coulomb potential is much larger than that in the absence of it.
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1. Introduction
In considering the diffusion of plasmas correctly, it

was pointed out more than half a century ago [1, 2] that
one must consider the wave character of charged particles
when the temperature T is high, i.e. the relative speeds of
interacting particles are fast. The criterion on the classical
theory to be valid in terms of relative speed g in a hydrogen
plasma is given in Ref. [2], as

g � 2e2

4πε0�
= 4.4 × 106 m/s, (1)

where e = 1.60 × 10−19 C and � ≡ h/2π = 1.05 × 10−34

J·s stand for the elementary electric charge and the reduced
Planck constant. As discussed in Ref. [2], an electron pass-
ing through a circular aperture of radius a will be spread
out by diffraction through angles of about λ/2πa, where λ
is the material wavelength h/mg. If this angle exceeds the
classical deflection angle, χ = 2 arctan(Zie2/4πε0mg2a),
for an electron passing by at a distance a from an ion of
charge Zie, the deflections produced by the most distant
encounters will be materially increased. The ratio of the
quantum mechanical to the classical deflection is 2Ziαc/g,
where α ≡ e2/4πε0�c ≈ 1/137 is the fine structure con-
stant. If Zi is unity, this ratio equals one for a velocity of
4.4 × 106 m/s, as shown on the right hand side of Eq. (1).

In contemporary fusion plasmas with T ∼ 10 keV or
higher, ions as well as electrons should be treated quan-
tum mechanically. In current plasma physics, however, the
quantum mechanical effects enters as a minor correction to
the Coulomb logarithm, lnΛ, in the case of close encoun-
ters [3]. Nonetheless, the neoclassical theory [4] is capable
of predicting a lot of phenomena such as those related to
the current conduction. Such phenomena linearly depend
on the change in velocity Δu or in position Δr. The average
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or expectation value of Δu ≡ u (t + Δt) − u (t) conforms to
the classical prediction CLΔu due to the Ehrenfest’s theo-
rem: for operators ξ̂ = u = − (i�/m)∇, and r〈

Δξ̂
〉
=

〈
CLΔξ + QMΔξ̂

〉
=CLΔξ, (2)

since the quantum-mechanical changes, QMΔξ̂ due to
quantum-mechanical force, are averged out. However, dif-
fusion is quadratic in Δg or Δr:〈(

Δξ̂
)2
〉
=

(
CLΔξ

)2
+

〈(
QMΔξ̂

)2
〉
>

(
CLΔξ

)2
. (3)

Thus,
〈
(Δr)2

〉
and

〈
(Δg)2

〉
are always larger than the clas-

sical predictions. It shold be noted that the latter quantity
is closely related to the scattering cross section, and ac-
cordingly to diffusion. This might be the reason why we
cannot understand the so-called anomalous diffusion using
classical theories that only give correct

〈
Δξ̂

〉
.

In this connection, we have shown in Ref. [5, 6] that
(i) for distant encounters in typical fusion plasmas of
T = 10 keV and n = 1020 m−3, the average potential en-
ergy 〈U〉 ∼ 30 meV is as small as the uncertainty in en-
ergy ΔE ∼ 40 meV, and (ii) for a magnetic field B = 2 T,
the spatial size of the wavefunction in the plane perpen-
dicular to the magnetic field is as large as �B ∼ 2 × 10−8 m
which is much larger than the typical electron wavelength
λe ∼ 10−11 m. So we will numerically solve the time-

dependent Schrödinger equation to find
〈(
Δξ̂

)2
〉
.

2. Schrödinger Equation
The unsteady Schrödinger equation for wavefunction

ψ (r, t), at a position r and a time t, is given by

i�
∂ψ

∂t
=

{
1

2 m

(
−i�∇

)2
+ U

}
ψ, (4)

where U = U(r) stands for the potential energy, m the mass
of the particle under consideration, i ≡ √−1 the imaginary
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unit, and � ≡ h/2π the reduced Planck constant. When the
corresponding classical particle has a momentum p0 = mu0
at a position r = r0 at a time t = 0, the initial condition for
the wavefunction is given by

ψ(r, 0) =
1√
πσ0

exp
⎛⎜⎜⎜⎜⎝− (r − r0)2

2σ2
0

+ ik0 · r
⎞⎟⎟⎟⎟⎠ , (5)

where r0 is the initial center of ψ, σ0 is the initial standard
deviation and k0 is the initial wave vector, k0 = mu0/�.

We will solve Eqs. (4) and (5) using the finite differ-
ence method (FDM) in space with the Crank-Nicholson
scheme(

I − Δt
2i�

H
) {
ψn+1

}
=

(
I +
Δt
2i�

H
)
{ψn} , (6)

where I is a unit matrix, and

{ψn} ≡ {ψ (xi = iΔx, jΔy, tn = nΔt)} , (7)

stands for the discretized set of the two-dimensional time-
dependent wavefunction ψ (x, y, t) at a discrete time tn =
nΔt to be solved numerically. The numerical Hamiltonian
operator H on {ψ} is defined as{

1
2 m

(
−i�∇

)2
+ U

}
ψ→ H {ψ} . (8)

We will adopt the successive over relaxation (SOR)
scheme for time integration in Eq. (6). The corresponding
classical equation of motion will also be solved in order to
check the validity of the numerical results.

In the nemerical analysis of one-dimensional
Schrödinger equation for a free particle (U = 0), the initial
momentum is given, using a one-dimensional version of
Eq. (5), as

〈p0〉 = �k0

∞∑
i=−∞

sin k0Δx
k0Δx

∣∣∣ψi

∣∣∣2Δx, (9)

which becomes �k0 in the limit of Δx→ 0, i.e., sin k0Δx →
k0Δx. Therefore, the size of spatial discretization for the
two-dimensional FDM in (x, y) plane should be sufficiently
small to satisfy

Δx ∼ Δy � 1
k0
=
λ0

2π
, (10)

where λ0 is the de Broglie wavelength. This restriction
Eq. (10) on Δx and Δy demands a lot of computer mem-
ory for fast particles. When Eq. (10) does not hold, the
initial momentum vector 〈p (t = 0)〉 numerically points to
untiparallel direction to �k0.

3. Numerical Results
We will consider a hydrogen ion in a fusion plasma

which has the density of n = 1020 m−3 and a temperature
of T = 10 keV in the presence of a magnetic flux density
B = 2 T. In what follows lengths and velocities are normal-
ized by the average interpaticle separation Δ� ≡ n−1/3 ∼

2 × 10−7 and the thermal speed vth ≡ √2T/m ∼ 106 m/s,
respectively.

The magnetic length [7] for a proton in B = 2 T,

�B ≡
√
�

eB
∼ 2 × 10−8 m (11)

is a measure for the spread of a wave function in a direction
perpendicular to magnetic field, and is around one-tenth of
the average interparticle separation Δ�.

3.1 Free particle
First let us assume U = 0 in Eq. (4), i.e. a free particle.

The exact solution for a two-dimensional case is known as

∣∣∣ψ (r, t)
∣∣∣2 = exp

[
− (r − r0 − u0t)2

σ2 (t)

]
πσ2 (t)

, (12)

where

σ (t) =

√√
1 +

⎛⎜⎜⎜⎜⎝ �t
mσ2

0

⎞⎟⎟⎟⎟⎠2

σ0. (13)

Even in this simple case, a great deal of the computer
memory and CPU time will be required in order to solve
the Schrödinger equation for a plasma particle, because the
de Broglie wavelength decreases inversely in proportion to
v0 = |u0|. Therefore, v0 is assumed to be 10 m/s.

Figure 1 shows the time-dependent standard devia-
tion σ = σ (t) for the an impact parameter of b = Δ�/2,
which increases by a factor of 3.4 during a time interval of
Δt = Δ�/v0 = n−1/3/v0 with n = 1020 m−3. In other words,
the wavefunction of a particle with arbitrary speed spreads
spatially 3.4 times the initial size when particle interactions
are so weak that free particle approximation holds. The
calculated σ(t) is in good agreement with the theoretical
value given by Eq. (13).

It should be noted that the numerical results on σ (t)
for different initial speed v0 are the same as Fig. 1 with v0 =

10 m/s, as suggested in Eq. (13) that does not depend on v0.

Fig. 1 Normalized standard deviation, σ, in position vs time t
with v0 = 10 m/s. The impact parameter is b = Δ�/2.
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Such expansion leads to a spatial extent or size of
a proton of the order of the average interparticle sepa-
ration Δ� ≡ n−1/3 ∼ 2 × 10−7 meter in a time interval of
10 × Δ�/vth ∼ 10−12 sec for a plasma with a density n ∼
1020 m−3 and a temperature T = mv2

th/2 ∼ 10 keV.

3.2 Effects of interparticle potential
Here we have assumed that the scatterer is also a

quantum-mechanical particle centered at the origin with
the wavefunction ψs similar to that given in Eq. (5), but
is fixed in space and time, as

ψs(r) =
1√
π�B

exp
⎛⎜⎜⎜⎜⎝− r2

2�2
B

⎞⎟⎟⎟⎟⎠ . (14)

In a non-dimensional form, the Coulomb potential U (r)
due to distributed particle is given as

U (r) =
b0

r
erf

(
r
�B

)
, (15)

where b0 = e2/4πε0Δ�mv2
th stands for the impact parameter

for π/2 scattering normalized by Δ�. When the scatterer is
a point charge, the error function erf(·) in Eq. (15) should
be replaced by unity.

3.2.1 Momenta of particles
Figures 2 and 3 show the time-dependent momentum

p =
(
px, py

)
for v0 = 1 m/s with the impact parameters of

b = Δ�/2 and b = 0, respectively. Here, u0 is the initial
velocity directed to +y. Obtained time evolutions of parti-
cle’s momenta agree with the classical ones until the nor-
malized time of approximately t ∼ 500 with the velocity
v(t = 500) ∼ 100 × v0 due to acceleration by the Coulomb
force. After this time, however, the numerical momenta
deviate from classical ones. The reason for this deviation
is that, at around t ∼ 500, the wavenumber becomes large,
k ∼ 100 × k0, as a result the restriction, Eq. (10), on the
spatial grid size breaks. The relative error in momentum
px can be expressed as

sin kyΔy
kyΔy

−1 = − 1
3!

(
kyΔy

)2
+

1
5!

(
kyΔy

)4
+ · · · , (16)

which, at t ∼ 500 and later times, is 104 times or more as
large as that at t = 0. Therefore, even though the grid size
satisfies the restriction, Eq. (10), at t = 0, the acceleration
makes it at stake in time.

3.2.2 Spatial extent of particles
Figure 4 depicts the evolution of the spatial extent of

a particle σ = σ (t):

σ2 (t) =
∫

ψ∗ (r, t)
(
r − 〈r〉

)2
ψ (r, t) d2r, (17)

for the initial speed v0 of 1, 10 and 100 m/s with that for
the free particle. It is seen in Fig. 4 that, at first, all wave-
functions contract, or shrink, in time, i.e. σ(t) < σ(0),

Fig. 2 Time evolution of normalized momenta px (top) and py
(bottom) for v0 = 1 m/s and b = Δ�/2.

Fig. 3 Time evolution of normalized momenta px (top) and py
(bottom) for v0 = 1 m/s and b = 0, i.e. head-on collision.
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Fig. 4 Normalized standard deviation, σ, in position vs normal-
ized time t with initial speeds of v0 = 1, 10 and 100 m/s.
Impact parameter is b = Δ�/2.

Fig. 5 Normalized standard deviation, σ, in position vs normal-
ized time t with initial speeds of v0 = 1, and 10 m/s. Im-
pact parameter is b = 0.

then they gradually expand. Such contraction and ex-
pansion correspond to phases of approaching- and going-
away-from the scatterer of the classical particle. The spa-
tial size of particles under the Coulomb potential is larger
than that of free particles at normalized times of t > 1500,
i.e., 1.5× 10−10 sec for ions in fusion plasmas, as shown in
Fig. 4.

As was shown in Figs. 2 and 3 with Eq. (16), the nu-
merical errors in momenta at t > 500 due to acceleration
become larger than those at t ∼ 0, and so do those in σ (t).
In spite of this, the time evolution of σ (t) for different
initial speeds seems the same, as shown in Fig. 4. If the
difference of σ (t), especially between v0 = 1 m/s and
v0 = 10 m/s, is solely due to the numerical origin, i.e., in-

sufficient grid divisions, it would not be required to solve
the Schrödinger equation for faster particles with speeds of
v > 4.4 × 106 m/s, as stated in Eq. (1).

4. Summary
We have solved the two-dimensional time-dependent

Schödinger equation for a particle with and without the
interparticle potential in a fusion plasma. It was shown
that spatial extent of a free particle grows monotonically in
time. Such expansion leads to a spatial extent or size of a
proton of the order of the average interparticle separation
Δ� ≡ n−1/3 ∼ 2 × 10−7 m in a time interval of 106×Δ�/vth ∼
10−7 sec for a plasma with a density n ∼ 1020 m−3 and a
temperature T = mv2

th/2 ∼ 10 keV. Unfortunately, the cal-
culation presented here is valid for a time t much less than
the cycrotron period of the order of 10−8 sec for ions, be-
cause the initial wavefunction adopted includes the mag-
netic length, �B =

√
�/qB.

It was also shown that, under a Coulomb potential
due to a distributed particle, the wavefunction of a charged
particle first shrink and expand in time, and that the ex-
pansion is much faster than that for free ions at times
of t > 1500 × Δt ∼ 3 × 10−10 sec for b = Δ�/2 and t >

530 × Δt ∼ 10−10 sec for b = 0, respectively.
In summary, quantum-mechanical analyses are nec-

essary for magnetized plasmas, since the wavefunction of
their constituents overlaps with one another in a short time
compared to the classical collision times.
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