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Abstract

After the publication of Ravallion’s (1988) seminal work on chronic
and transient poverty, wide attention has been given to the components
of poverty. We propose a Bayesian mixture model to measure poverty and
divide it into chronic and the transient poverty using the Foster, Greer
and Thorbecke (FGT) measure. These two types of poverty are illustrated
using the Panel Study of Income Dynamics (PSID) data.
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measure, Gibbs sampling, Markov chain Monte Carlo (MCMC).

JEL Classification: C11, C15, D63

1 Introduction

Conquering poverty has been one of the most important problems for not only
national but also international society. Although there is a huge amount of
international and domestic aid for societies and people suffering from poverty,
the fact that poverty does not vanish poses difficult questions about how to deal
with it. It is likely that policies and measures aimed at eradicating poverty have
not matched with types of poverty. Policy-makers should notice the character-
istics of the type of poverty in question and adopt policies that correspond to
it. It has been pointed out recently that there are two components of poverty
observed. They are “transient poverty” and “chronic poverty.” In Jalan and
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Ravallion (1998), transient poverty is considered as poverty that arises due to
variability in income or consumption over time and chronic poverty is considered
as poverty that persists in mean consumption over time.

In the seminal study by Ravallion (1988) components of poverty are distin-
guished by examining the relationship between risk and poverty. Households in
the agriculture sector, for example, face risk due to weather that causes vari-
ability in their income. When an index that measures poverty, the headcount
ratio for example, rises above, or falls below, the poverty line as a result of
social mobility in the population, we cannot say definitely whether the change
is led by households which cross the poverty line temporarily because of the risk
they face. Ravallion (1988) examines, “whether risk induced welfare variability
increases or decreases aggregate poverty,”1 and shows the importance of distin-
guishing transient poverty from chronic poverty. The article defines these two
components of poverty and presents a method for measuring them empirically
with panel data for households in dry regions of Central India by using the
poverty measure proposed by Foster, Greer ant Thorbecke (FGT) (1984).

Thereafter, some empirical analyses to distinguish transient poverty from
chronic poverty have been presented. Since considerable transient poverty is
found in the consumption panel data of Hungarian households used in Ravallion
et al. (1995) and that of the region of rural China in Jalan and Ravallion
(1998), it has been confirmed that differences in the two types of poverty play an
important role when choosing a policy for dealing with poverty. Gibson (2001)
proposed a new method for decomposing cross-sectional poverty estimates into
chronic and transient components using household survey data from Papua New
Guinea.

Most of the earlier studies, however, only report values for three types of
poverty measures descriptively, and do not use statistical inference. The pur-
pose of this article is to introduce a statistical model and propose a Bayesian
approach for estimating chronic poverty and transient poverty. We begin by
introducing a multivariate distribution for panel data on income. Since the
multivariate distribution may possess a complicated form, we use a finite mix-
ture of normal distributions for income.2 Ferguson (1983) suggests that an
arbitrary probability density function on the real line can be approximated by
a countable mixture of normal densities. We are, therefore, able to obtain
a rich class of distributions for the income distribution. The finite mixture
model in the Bayesian context was developed by Diebolt and Robert (1994).
Diebolt and Robert (1994) assume that the number of components, say k, is
known. Recently, Richardson and Green (1997) and Stephens (2000) consider
the case where k is unknown. Richardson and Green (1997) use the reversible
jump method (Green, 1995) that requires the complex calculation of a Jaco-
bian matrix, while Stephens (2000) proposes an alternative to the reversible
jump method by using the birth-death process. In this article, the method in
Stephens (2000) is used for practical reasons.3

The Bayesian approach has several advantages when estimating poverty. In

1See Ravallion (1988, p.1172).
2For a mixture model for income distribution, see Pittau and Zelli (2004) and Pittau (2005).
3As Hurn et al. (2003) comment, both methods are equally valid on theoretical grounds.

However, the birth-death procedure avoids the complex calculation of a Jacobian that is
required in the reversible jump method. Furthermore, the implementation of the birth-death
procedure is independent of the MCMC algorithm (Hurn et al., 2003, p.70).
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the context of survey data, observed income data usually suffers from survey er-
rors, such as interviewer’s error (Groves, 1989). This corresponds to the ‘errors-
in-variables (EIV) model’ in econometrics. There are two ways of incorporating
the necessary information: the non-Bayesian and Bayesian approaches. In the
non-Bayesian approach, the EIV model can be estimated using instrumental
variables (IV). In the Bayesian approach, no additional variation data (i.e., IV)
are required and a prior information on errors is incorporated instead.4 This
enables us to measure poverty based on not only observed data, but also the
true income excluded by errors in the observed data. On the contrary, it is
difficult to calculate poverty measure from unobserved true income using the
non-Bayesian approach.

Our Bayesian approach also has the advantage that the model permits het-
erogeneity in individual incomes. This approach divides individual income into
several income groups as part of the estimation procedure. In this sense, the
possibility of dependency among individual incomes exists, although they are as-
sumed to be independent.5 Bayesian posterior analysis is often associated with
a computational burden. However, using a recent development in the Markov
chain Monte Carlo (MCMC) method, posterior analysis can be implemented
easily.

We estimate the FGT poverty measures for total, chronic and transient
poverty using samples from the posterior distributions of the observed and un-
observed data. In order to verify the effectiveness of our method, we define
the posterior intervals. These intervals include poverty measures by Ravallion’s
method. The chronic poverty measure based on the posterior results for unob-
served true data can be regarded as a poverty measure for a stationary state.
Comparing this chronic poverty and the total poverty derived from the observed
data, we can measure the difference between total poverty in the data, which is
predicted to be observed, and true poverty.

This article is organized as follows. In Section 2, we present a Bayesian
mixture model for density estimation. In Section 3, the poverty measures for
three types of poverty (total poverty, chronic poverty and transient poverty) are
described. In Section 4, an application of our approach to the Panel Study of
Income Dynamics (PSID) data is provided for illustration. Finally, in Section
5, a brief summary and some extensions of our approach are given.

2 Bayesian Mixture Model

2.1 The Basic Model and Ravallion’s Decomposition

Let Xit denote the income of the ith individual (or household) at period t. We
use xit as a logarithm of Xit, that is xit = logXit. It is assumed that xit is
generated by the following model:

xit = μi + uit, i = 1, · · · , n; t = 1, · · · , T. (1)

In (1), μi is the ith individual’s steady-state logarithm of income and is assumed
to be constant over time. uit is a transitory component that determines the
deviation from the steady-state logarithm of income over time.

4See, for example, Florens et al. (1974), and Hasegawa and Kozumi (2001).
5See Hasegawa and Kozumi (2003, p.278) for more details on this point.
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Ravallion (1988) proposed a method for decomposing total poverty into
chronic and transient components. Following Ravallion (1988) and Jalan and
Ravallion (1998), we define total, chronic and transient poverties. Let Υ denote
a poverty line and υ = log Υ. We also use the poverty measure proposed by
Foster, Greer and Thorbecke (FGT) (1984). The discrete formulation of FGT
at period t is defined as

Π(Υ : t) =
1
n

∑
Xit<Υ

(
1 − Xit

Υ

)ζ

=
1
n

∑
xit<υ

(
1 − exit−υ

)ζ
, t = 1, · · · , T,

(2)

where ζ ≥ 0 is a sensitivity parameter of the poverty measure. Since the steady-
state logarithm of income μi is unobservable, Ravallion’s decomposition replaces
μi with X̄i =

∑T
t=1Xit/T . Thus, total, chronic and transient poverties are

defined as follows:

Total poverty: ΠF (Υ) =
1
T

T∑
t=1

Π(Υ : t) (3)

Chronic poverty: ΠC(Υ) =
1
n

∑
X̄i<Υ

(
1 − X̄i

Υ

)ζ

(4)

Transient poverty: ΠT (Υ) = ΠF (Υ) − ΠC(Υ). (5)

The poverty measures defined in (3), (4) and (5) are descriptive. Alterna-
tively, in this article we begin by introducing a statistical model for xit. Let
define xi = [xi1, · · · , xiT ]′. It is difficult to estimate a multivariate density of xi

using a single distribution. Therefore, we assume that the distribution of xi is
a mixture of normal distributions with k components. That is,

xi|{wj , μj ,Σj}j=1,··· ,k ∼
k∑

j=1

wj N (μj ,Σj),
k∑

j=1

wj = 1, i = 1, · · · , n. (6)

Once we have estimated the income distribution of xi, we can use the distri-
bution for calculating Ravallion’s poverty indices. In the next subsection, we
extend the mixture model (6) to a model with errors-in-variables and present
the estimation method by using simulation-based Bayesian statistics.

2.2 Bayesian Mixture Model with Errors-in-Variables

Observed income data are collected from surveys, so that the data usually suffers
from survey errors, such as interviewer’s errors and errors due to respondents.6

We, therefore, introduce explicitly the errors in the observed income. Now, it is
considered that xit in (6) is logarithm of unobserved true income and observed
income is denoted by Yit. Let us define yit = logYit, and assume that yit is
generated by the following model:

yit = xit + εit, i = 1, · · · , n; t = 1, · · · , T, (7)

6See, for example, Groves (1989).
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where εit is an error term.7 Defining yi = [yi1, · · · , yiT ]′ and εi = [εi1, · · · , εiT ]′,
(7) is summarized as

yi = xi + εi, i = 1, · · · , n. (8)

Here xi is not a vector of observations, but can be considered as a vector of
unobserved parameters. So in our Bayesian context, (6) is regarded as a prior
of xi. We also assume that εi is normally distributed. That is,

xi|θ ∼
k∑

j=1

wj N (μj ,Σj),
k∑

j=1

wj = 1, i = 1, · · · , n (9)

εit|θ ∼ N (0, σ2
t ), i = 1, · · · , n; t = 1, · · · , T, (10)

where θ is a vector of other parameters except for xi’s. To complete the Bayesian
model, we introduce the following prior distributions:8⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μj ∼ N (ξ, κ−1)
Σ−1

j |β ∼ W(2α, (2β)−1)
β ∼ W(2g, (2h)−1)
w ∼ D(δ, · · · , δ)
σ−2

t ∼ Ga(a, b),

(11)

where w = [w1, · · · , wk]′, W(a,A) denotes a Wishart distribution with degrees
of freedom a and scale parameters matrix A, D(δ1, · · · , δk) denotes a Dirichlet
distribution and Ga(a, b) denotes a gamma distribution with shape parameter
a and scale parameter b.

When considering a mixture distribution, it is convenient to introduce latent
variables zi with a probability mass function:

P(zi = j|θ) = wj , i = 1, · · · , n; j = 1, · · · , k.

Conditional on z = [z1, · · · , zn]′, the distributions of x1, · · · , xn are assumed to
be

p(xi|zi = j, θ) = N (xi|μj ,Σj), i = 1, · · · , n.

Integrating out zi, we have the model (9):

p(xi|θ) =
k∑

j=1

P(zi = j|θ)p(xi|zi = j, θ) =
k∑

j=1

wj N (xi|μj ,Σj).

Using the latent variables z, we can classify x1, · · · , xn. Let us define a set
Ij = {i|zi = j} and a number of observations allocated to class j, say nj =
#{i|zi = j}. We can derive the full conditional distributions (FCD) of θ, xi and

7This specification is familiar in the literature on demand analysis. See, for example,
Lewbel (1996) and Hasegawa and Kozumi (2001).

8These prior distributions are same as those in Stephens (2000).
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zi (i = 1, · · · , n) as follows: for i = 1, · · · , n; t = 1, · · · , T ; j = 1, · · · , k,

P(zi = j|θ, xi, yi) =
wj N (xi|μj ,Σj)
k∑

l=1

wl N (xi|μl,Σl)

(12)

μj | · · · ∼ N
((
κ+ njΣ−1

j

)−1 (
κξ + njΣ−1

j x̄j

)
,
(
κ+ njΣ−1

j

)−1
)

(13)

Σ−1
j | · · · ∼ W

⎛
⎜⎝2α+ nj ,

⎡
⎣2β +

∑
i∈Ij

(xi − μj)(xi − μj)′

⎤
⎦
−1
⎞
⎟⎠ (14)

β| · · ·W

⎛
⎜⎝2g + 2kα,

⎡
⎣2h+ 2

k∑
j=1

Σ−1
j

⎤
⎦
−1
⎞
⎟⎠ (15)

w| · · · ∼ D(δ + n1, · · · , δ + nk) (16)

σ−2
t | · · · ∼ Ga

(
a+

n

2
, b+

1
2

n∑
i=1

(yit − xit)2
)

(17)

xi| · · · ∼ N
((

Σ−1
j + Ψ−1

)−1 (
Σ−1

j μj + Ψ−1yi

)
,
(
Σ−1

j + Ψ−1
)−1
)
, (18)

where Ψ = diag{σ2
1 , · · · , σ2

T }, x̄j =
1
nj

∑
i∈Ij

xi, and ‘| · · · ’ denotes conditioning

on the values of all other parameters.
Since the data y and the predictive data ỹ are conditionally independent

given θ∗ = {θ, x, z}, the predictive distribution can be written as follows:

p(ỹ|y) =
∫
p(ỹ|θ∗)p(θ∗|y)dθ∗ (19)

Therefore, p(ỹ|θ∗) can be used to estimate poverty indices for y.
The degrees of heterogeneity of income are usually unknown. The number

of components in the mixture model k is, therefore, also unknown. When k is
unknown, we can use the reversible jump method (Richardson and Green, 1997)
and its alternative proposed by Stephens (2000), which is based on the birth-
death process. Following Hurn et al. (2003), we use the birth-death process
approach for practical considerations (see the footnote 4). Stephens’ (2000)
algorithm will be discussed briefly in the appendix.

3 Poverty Measures

We use the poverty measure proposed by Foster, Greer and Thorbecke (FGT)
(1984), as mentioned in Section 2.1. The continuous formulation of FGT is
defined as

Π(υ) =
∫ υ

−∞
(1 − ey−υ)ζdF (y), (20)
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where Υ denotes a poverty line and υ = log Υ. The discrete formulation of FGT
with sample size N corresponding to (20) is defined as

Π(υ) =
1
N

∑
yi<υ

(
1 − eyi−υ

)ζ =
1
N

∑
Yi<Υ

(
1 − Yi

Υ

)ζ

. (21)

Applying the discrete formulation of FGT in (21) to Yit (i = 1, · · · , n; t =
1, · · · , T ), we define the sample FGT on Y at period t by

Πy(Υ : t) =
1
n

∑
Yit<Υ

(
1 − Yit

Υ

)ζ

, t = 1, · · · , T. (22)

Ravallion’s total, chronic and transient poverties on Y are written as follows:

Total poverty: Πem
F (Υ) =

1
T

T∑
t=1

Πy(Υ : t) (23)

Chronic poverty: Πem
C (Υ) =

1
n

∑
Ȳi<Υ

(
1 − Ȳi

Υ

)ζ

(24)

Πem
T (Υ) = Πem

F (Υ) − Πem
C (Υ), (25)

where Ȳi =
∑T

t=1 Yit/T .
Now, we define the total, chronic and transient poverties using the posterior

results. First, we simulate x̃ = [x̃1, · · · , x̃T ]′ from its FCD and define the poverty
measure based on x̃t at period t as follows:

Πx(υ : t) =
∫ υ

−∞
(1 − ex̃t−υ)ζdF (x̃t), t = 1, · · · , T.

Using Πx(υ : t), we define total poverty as follows:

Total poverty based on x: Πpost
F (υ) =

1
T

T∑
t=1

Πx(υ : t). (26)

Furthermore, we calculate ¯̃x =
∑T

t=1 x̃t/T and define chronic poverty as the
FGT of ¯̃x:

Chronic poverty: Πpost
C (υ) =

∫ υ

−∞
(1 − e¯̃x−υ)ζdF (¯̃x) (27)

Finally, we define transient poverty in a manner similar to (25):

Transient poverty based on x: Πpost
T (υ) = Πpost

F (υ) − Πpost
C (υ). (28)

The poverty measures based on y are also available from the predictive dis-
tribution. That is, we simulate ỹ = [ỹ1, · · · , ỹT ]′ from p(ỹ|θ∗) and define a
poverty measure at period t as follows:

Πy(υ : t) =
∫ υ

−∞
(1 − eỹt−υ)ζdF (ỹt), t = 1, · · · , T.
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Using Πy(υ : t), we define total poverty as follows:

Total poverty based on y: Πpost
Fy (υ) =

1
T

T∑
t=1

Πy(υ : t). (29)

We define the transient poverty based on y:

Transient poverty based on y: Πpost
Ty (υ) = Πpost

Fy (υ) − Πpost
C (υ). (30)

The discrete formulation of FGT with sample size N defined in (21) converges to
the continuous formulation defined in (20) as N → ∞. Therefore, we calculate
the discrete formulations of (26) to (30) for a large number of N . Furthermore,
since the values of (26) to (30) are obtained for each iteration in the MCMC
simulation, statistical inference can be carried out on the three types of pover-
ties.

4 Empirical Example

4.1 Model Specification and Data

For an illustration of our Bayesian approach, we use the Panel Study of Income
Dynamics (PSID) for waves 21–26 (1988–1993) of family data.9 There are 5, 371
records for the heads of family interviewed successively during the period, and
we select 1, 532 records satisfying the following conditions from them : a) the
record is for a head of family, b) the data for annual family income, family
composition, and the number of children by sex and age are available, c) the
family consists of a husband, a wife and a child/children, d) the family income
in a record is greater than 1 and an exact value.

We use “total family money income” as family income, which is sum of the
taxable incomes of the head and wife, total transfers to the head and wife, tax-
able prorated income of others, and total prorated transfers of others. Although
it is common that heads in the records we pick up have a family that consists
of a married-couple and a single child or children, family size can vary with the
number of children. This raises a problem in how to compare the poverty of
people whose family sizes are different, and thus we have to count how many
adults a child or two children correspond to. Therefore, it is required that
the per capita income be adjusted for the demographic differences to overcome
such demographic difficulties. In order to calculate per capita income deflated
by equivalence scale from family income, we use the following formulation for
equivalence scale proposed by Citro and Michael (1995):

scale value = (A+ PK)F , (31)

where A is the number of adults in a family, K is the number of children, each
of whom is treated as a proportion P of an adult, and F is the scale economy
factor.10 The values we use for both P and F are 0.7, as recommended in Citro

9We use the data for 1988–93 to estimate poverty measures for 1988–92, since we need
the income data for 1988–1992, but the PSID income data for a given year give data for the
previous year.

10See Citro and Michael (1995, p.161).
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and Michael (1995). The income for estimation is converted into real income
using the Consumer Price Index (CPI).11

Tables 1 and 2 show summary statistics and the correlation matrix of the
data, respectively. From Table 2, we can observe that the logarithms of the
real income deflated by equivalence scale for the respective years are highly
correlated. This fact justifies the formulation of a multivariate distribution of
x in (6) or (9). Figure 1 shows the histograms of y = log Y for each year.12

Table 3 shows the total, the chronic and the transient poverty in the data using
the method in Ravallion (1988). In this table, we use ζ = 0, 1 and 2, which
correspond to the headcount ratio, the poverty gap and the squared poverty
gap, respectively.

We set the hyperparameter values as follows:13

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ξ =

[
miny1 +

R1

2
, · · · ,minyT +

RT

2

]′
κ = diag

{
0.1
R2

1

, · · · , 0.1
R2

T

}

α = 6.0, g = 0.1α, h = diag
{

100g
αR2

1

, · · · , 100g
αR2

T

}
δ = 1.0, a = 2.0, b = 0.002, λ = 1 (birth rate),

(32)

where

max
yt

= max{y1t, · · · , ynt}, min
yt

= min{y1t, · · · , ynt}, Rt = max
yt

−min
yt

.

The initial value of k is set as k = 1. For a large sample size N , the discrete
formulation of FGT converges to the continuous formulation. We can simulate
the samples with a large N from the posterior predictive distributions. We set
N = 20, 000. The MCMC simulation was run for 40, 000 iterations and the first
10, 000 samples were discarded as a burn-in period.

4.2 Posterior Results

Table 4 shows the posterior results of β, σ2
t and k. The CD denotes the con-

vergence diagnostic statistic proposed by Geweke (1992).14 The sixth column
of Table 4 shows the p values for CD and the convergence of the posterior dis-
tribution would be confirmed from them. Further, the posterior mean and the

11We obtained the data for the CPI from the web-site of the Bureau of Labor Statistics,
U.S. Department of Labor (http://stats.bls.gov/).

12The posterior results obtained afterward are generated by using DIGITAL Visual Fortran
version 6.6 and all figures are drawn using Ox version 3.40 (Doornik 2001).

13These values are similar to those of Stephens (2000).
14The CD can be defined as follows: for the given sequence {g(j) | j = 1, 2, · · · , ns}, if the

sequence is stationary,

CD =
ḡA − ḡB

ŜA(0)/nA + ŜB(0)/nB

→ N (0, 1),

where

ḡA =
1

nA

nAX

j=1

g(j), ḡB =
1

nB

nsX

j=n∗
g(j) (n∗ = ns − nB + 1),

and ŜA(0) and ŜB(0) denote consistent spectral density estimates. In this article, we set

nA = 3, 000 and nB = 15, 000, and calculate ŜA(0) and ŜB(0) using Parzen windows with
bandwidths of 300 and 1, 500, respectively.
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standard deviation of the number of components in the mixture k is about 23.7
and 3.8, respectively. Using the following posterior interval

(posterior mean − 2 × posterior standard deviation,
posterior mean + 2 × posterior standard deviation), (33)

roughly speaking, the number of components k varies from 16 to 31. Figure 2
shows the estimated densities of x. It seems that the densities fit the histograms
of the data appropriately.

Table 5 shows the result of sensitivity analysis to choice of hyperparameter
values and to the number of distributions k in the mixture. In the table, the
case (a) has the hyperparameter values given in (32). The other cases change
the hyperparameter values as follows:

(b) κ = diag{1/R2
t}, (c) κ = diag{0.01/R2

t}, (d) h = diag{200g/αR2
t}

(e) h = diag{50g/αR2
t}, (f) b = 0.2, (g) λ = 3.

The cases (b) to (e) give the similar value of k as in the case (a). Therefore,
whether κ and h are more informative or less informative does not affect the
posterior results. The case (f) of more informative value of b = 0.2 gives smaller
number of k than that in the case (a) (b = 0.002). The case (g) of λ = 3 gives
larger number of k than that in the case (a) (λ = 1). This result is the same
as a result in Stephens (2000, p.57). Figure 3 shows the estimated densities of
x in 1988 for the cases (b) to (g).15 From this figure, we can observe that the
estimated densities are very similar, although the estimated density of case (f)
is slightly steeper than that of the case (a).

Table 6 shows the posterior results for total, chronic and transient poverty.
The higher the poverty line is, the higher the ratio of mean to standard deviation
for the poverty measures (mean/sd) is. When the poverty line is higher than
3, 000, which is the minimal poverty line we set, all the ratios are higher than
2. The range of poverty line in the table is not unrealistic, because the actual
poverty line in USA lies within the range we set, according to the web-site of
US Census Bureau.16 This implies that the estimated poverty measures are
significant and our method is appropriate for measuring poverty.

Figure 4 reports total, chronic and transient poverty for the data and pos-
terior results. The horizontal and the vertical axes denote the poverty line and
the poverty measure. The solid lines, with the symbols ‘•’ and ‘+’, denote the
poverty measure computed by Ravallion’s method using the observed data and
the posterior mean of poverty measure, respectively. The dotted lines denote
the upper and the lower bounds of the posterior intervals (33). There are 5
graphs for each ζ, which show the total and transient poverty derived from y
and x, and the chronic poverty from x.

We compare the three types of poverty measure calculated by our method
with those calculated by Ravallion’s method. It is observed, according to Figure
4, that the transient poverty calculated by Ravallion’s method fluctuates and

15We have the same results of estimated densities in the other years as those in 1988.
16The poverty threshold of a family that consists of two adults and one child, for exam-

ple, in 1988 is 9, 522 dollars according to the web-site. Using (31) and CPI, we obtain its
real per capita value, deflated by equivalence scale, as approximately 4, 016 dollars. See
http://www.census.gov/.
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at some points jumps out of the posterior interval based on both y and x, when
ζ = 0.

FGT poverty measures with ζ = 0 or 1 are well-known poverty measures:
the headcount ratio and the poverty gap. However, it is pointed out by Kurosaki
(2005) that these measures have faults in that they do not reflect the degree of
poverty well, and that the adoption of the FGT poverty measure with ζ > 1
implies that the social planner is assumed to be risk-averse and inequality averse.
Therefore, the FGT is often used as ζ = 2 (the squared poverty gap) in the
literature of development economics.17

Figure 5 shows the increment of the total and the chronic poverty measures
by Ravallion’s method defined as

ΔΠem
F (Υl) = Πem

F (Υl) − Πem
F (Υl−1), l = 2, · · · , L (34)

ΔΠem
C (Υl) = Πem

C (Υl) − Πem
C (Υl−1), l = 2, · · · , L, (35)

where Πem
F (Υl) and Πem

C (Υl) are defined in (23) and (24), and L is the number
of poverty lines. The total poverty and chronic poverty measures for ζ = 0
fluctuate more than for ζ = 1 or 2 in the figure. It is interesting that the
chronic poverty measure, which ought to be constant or move stably, fluctuates
according to the poverty line we assume when ζ = 0. These fluctuations cause
the unstable movement of the transient poverty measures by Ravallion’s method
in Figure 4. Figures 4 and 5 suggest that the headcount ratio (the case of ζ = 0)
may not capture poverty sufficiently, especially transient poverty.

5 Concluding Remarks

As shown in Ravallion’s seminal work, poverty can be decomposed into two
components, chronic poverty and transient poverty. This article provided an
alternative empirical method to measure them. Specifically, we proposed the
Bayesian mixture model with an unknown number of mixtures developed by
Stephens (2000). Our Bayesian approach in this article has the following merits:

1. No additional data (i.e., IV) are required for the estimation of EIV.

2. The Bayesian model in this article permits heterogeneity in individual
income by using the mixture model.

3. Unobserved incomes can be derived from the posterior results, and using
them, we can use statistical inference on the total, chronic and transient
poverties.

In our real example using the PSID data, the ratios of posterior mean to pos-
terior standard deviation are fairly high for the actual level of the poverty line.
Furthermore, in most cases the posterior intervals include poverty measures
calculated using Ravallion’s descriptive statistics. Regarding that Ravallion’s
method has been supported, it shows that the plausible poverty measures can
be obtained by our method.
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17See, for example, Jalan and Ravallion (1998).
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Appendix

Stephens’ birth-death algorithm is as follows:18

Stephens’ birth-death algorithm Let define φj = (μj ,Σj) and ψ = {(w1, φ1),
· · · , (wk, φk)} and the birth rate as λ.

1. Calculate the death rate for each component. The death rate for the
jth component is given by

νj = λ
L(ψ \ (wj , φj))

L(ψ)
p(k − 1)
kp(k)

, j = 1, · · · , k,

where L(·) is the likelihood function.

2. Calculate the total death rate as ν =
∑k

j=1 νj .
3. Simulate the time to the next jump from an exponential distribution

with mean
1

λ+ ν
.

4. Simulate the type of jump: birth or death with respective probabili-
ties

P(birth) =
λ

λ+ ν
, P(death) =

ν

λ+ ν
.

5. Adjust ψ to reflect the birth or death:

birth : ψ ∪ (wb, φb)
= {(w1(1 − wb), φ1), · · · , (wk(1 − wb), φk), (wb, φb)}

death : ψ \ (wj , φj) =

{(
w1

1 − wj
, φ1

)
, · · · ,

(
wj−1

1 − wj
, φj−1

)
,

(
wj+1

1 − wj
, φj+1

)
, · · · ,

(
wk

1 − wj
, φk

)}
.

Birth: Simulate wb and φb independently from densities k(1−wb)k−1

and p(φb|θ), respectively.
Death: Select a component to die: (wj , φj) ∈ ψ being selected with
probability

νj

ν
for j = 1, · · · , k

6. Return to step 1.

In the birth-death process, we use a truncated Poisson prior with λ on the
number of components k (Stephens, p.50, 2000):

p(k) ∝ λk

k!
, k = 1, · · · , kmax = 100.

18Algorithm 3.1 in Stephens (2000).
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Table 1: Summary statistics

equivalence scale
1988 1989 1990 1991 1992

mean 2.37395 2.38834 2.39820 2.39844 2.38234
sda 0.31713 0.31249 0.30965 0.30923 0.30923
m/sd 7.48563 7.64290 7.74484 7.75616 7.70405
min 2.00426 2.00426 2.00426 2.00426 2.00426
max 4.39901 4.39901 4.39901 4.13590 4.13590
2.50%b 2.00426 2.00426 2.00426 2.00426 2.00426
5% 2.00426 2.00426 2.00426 2.00426 2.00426
25% 2.00426 2.00426 2.35524 2.35524 2.00426
50% 2.35524 2.35524 2.35524 2.35524 2.35524
75% 2.68503 2.68503 2.68503 2.68503 2.68503
95% 2.99826 2.99826 2.99826 2.99826 2.99826
97.50% 2.99826 2.99826 2.99826 2.99826 2.99826

Y
1988 1989 1990 1991 1992

mean 16218.5 16383.5 16719.9 16802.8 17623.8
sd 11531.0 12112.2 13057.1 13809.0 12673.8
m/sd 1.40651 1.35264 1.28052 1.2168.0 1.39058
min 704.8 700.4 190.9 280.6 613.3
max 167643.3 190723.1 164896.3 266611.5 143240.4
2.50% 3286.4 2968.1 2777.7 2732.6 2920.0
5% 4307.1 4133.4 4008.3 4265.8 4391.9
25% 9152.1 9655.9 9518.2 9662.9 9981.2
50% 14060.9 14038.7 14287.8 13957.0 15010.3
75% 19733.5 19839.4 20569.8 20574.6 22330.8
95% 33961.1 35062.5 34970.6 34874.0 37624.7
97.5% 42243.2 43848.7 43327.7 43959.2 48542.3

y = log Y
1988 1989 1990 1991 1992

sd 0.63807 0.64952 0.66858 0.67004 0.67972
m/sd 14.88860 14.63348 14.23047 14.20222 14.07497
min 6.55796 6.55166 5.25160 5.63680 6.41890
max 12.02959 12.15858 12.01307 12.49355 11.87228
2.50% 8.09756 7.99568 7.92939 7.91300 7.97935
5% 8.36802 8.32686 8.29612 8.35838 8.38752
25% 9.12174 9.17532 9.16097 9.17605 9.20846
50% 9.55116 9.54957 9.56716 9.54374 9.61649
75% 9.89007 9.89543 9.93158 9.93181 10.01372
95% 10.43297 10.46489 10.46226 10.45950 10.53542
97.50% 10.65120 10.68850 10.67655 10.69102 10.79019

a: ‘sd’ denotes the standard deviation.

b: ‘c%’ denotes the c percent point of data.
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Table 2: Correlation matrix of y

1988 1989 1990 1991 1992
1988 1 0.87963 0.82729 0.7886 0.72356
1989 0.87963 1 0.86713 0.82506 0.75361
1990 0.82729 0.86713 1 0.86283 0.77849
1991 0.7886 0.82506 0.86283 1 0.82324
1992 0.72356 0.75361 0.77849 0.82324 1

Table 3: Total, chronic and transient poverty measures from data

ζ = 0
Υ = eυ Total Chronic Transient
3000 0.02532637 0.01436031 0.01096606
4000 0.04464752 0.03067885 0.01396867
5000 0.06657963 0.04699739 0.01958225
6000 0.09778068 0.07832898 0.0194517
7000 0.13250653 0.11031332 0.02219321
8000 0.17062663 0.15274151 0.01788512
9000 0.21710183 0.19843342 0.01866841
10000 0.2689295 0.2421671 0.02676240

ζ = 1
Υ = eυ Total Chronic Transient
3000 0.00811119 0.0035336 0.0045776
4000 0.01463314 0.00796997 0.00666318
5000 0.02280064 0.01412318 0.00867746
6000 0.03268208 0.02216516 0.01051692
7000 0.04435189 0.03237172 0.01198016
8000 0.0577535 0.04464175 0.01311175
9000 0.07286232 0.05902915 0.01383316
10000 0.08994078 0.07520106 0.01473972

ζ = 2
Υ = eυ Total Chronic Transient
3000 0.00392037 0.00132993 0.00259043
4000 0.0071759 0.00323238 0.00394351
5000 0.01135056 0.00606911 0.00528144
6000 0.01634945 0.0097172 0.00663225
7000 0.0222336 0.01436342 0.00787017
8000 0.02899371 0.02000952 0.00898419
9000 0.03661186 0.0266792 0.00993266
10000 0.04512168 0.03436908 0.0107526
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Table 4: Posterior results

meana sda mean/sd CDb CD p-value
β11 1.72674 0.28653 6.02646 0.14767 0.88260
β12 1.58823 0.2767 5.73981 -0.078920 0.93710
β13 1.51405 0.26663 5.67847 -0.032986 0.97369
β14 1.45526 0.26535 5.48425 0.14685 0.88325
β15 1.36285 0.26095 5.22267 -0.012566 0.98997
β22 1.71669 0.29081 5.90321 -0.48495 0.62771
β23 1.58672 0.2783 5.70149 -0.19332 0.84670
β24 1.52712 0.27597 5.53357 0.016996 0.98644
β25 1.43597 0.2722 5.27534 -0.34426 0.73065
β33 1.73896 0.29052 5.98561 -0.38570 0.69972
β34 1.63252 0.28246 5.77963 -0.23942 0.81078
β35 1.52599 0.27601 5.52869 -0.33643 0.73655
β44 1.79868 0.29676 6.06108 -0.34411 0.73077
β45 1.58585 0.28139 5.63577 -0.27149 0.78602
β55 1.74932 0.2951 5.92786 -0.40052 0.68878
σ2

1 0.0011 0.00067 1.63995 0.25149 0.80143
σ2

2 0.00084 0.00044 1.88625 -1.8229 0.068325
σ2

3 0.00089 0.00053 1.6649 -0.83710 0.40254
σ2

4 0.00083 0.00043 1.94973 1.7216 0.085139
σ2

5 0.00108 0.00072 1.4979 1.3147 0.18861
k 23.7454 3.79746 6.25297 1.0764 0.28173

a: ‘mean’ and ‘sd’ denote the posterior mean and the posterior standard deviation,
respectively.

b: ‘CD’ denotes the convergence diagnostic statistic of MCMC proposed by Geweke

(1992).

Table 5: Comparison of posterior results for k

meana sda mean/sd
(a)b 23.7454 3.79746 6.25297
(b) 23.1065 3.40147 6.79309
(c) 23.9645 3.33524 7.18525
(d) 22.9075 3.50345 6.53855
(e) 23.2462 3.44160 6.75449
(f) 19.4390 3.74489 5.19080
(g) 29.1526 3.69131 7.89763

a: ‘mean’ and ‘sd’ denote the posterior mean and the posterior standard deviation,
respectively.
b: The case (a) has the hyperparameter values given in (32). The other cases change
the hyperparameter values as follows:

(b) κ = diag{1/R2
t }, (c) κ = diag{0.01/R2

t }, (d) h = diag{200g/αR2
t }

(e) h = diag{50g/αR2
t }, (f) b = 0.2, (g) λ = 3.
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Table 6: Total, chronic and transient poverty measures from
posterior results

ζ = 0

Υ = eυ Total (y) Total (x) Chronic Transient (y) Transient (x)

3000 meana 0.02731893 0.02727368 0.01590985 0.01140908 0.01136383
sda 0.00317278 0.00317286 0.00291239 0.00122075 0.00121899

4000 mean 0.04681263 0.04672895 0.03166074 0.01515189 0.01506822
sd 0.00421828 0.00421858 0.00407234 0.00141076 0.0014077

5000 mean 0.07173526 0.07159818 0.05333663 0.01839863 0.01826155
sd 0.00523897 0.00524136 0.00519019 0.00156528 0.00156304

6000 mean 0.10265384 0.10245039 0.08156317 0.02109067 0.02088722
sd 0.00624255 0.00624686 0.00629741 0.00167403 0.00166991

7000 mean 0.13973727 0.13947279 0.11671308 0.02302419 0.02275971
sd 0.00723133 0.00724068 0.00741385 0.00174528 0.00173844

8000 mean 0.18254901 0.1822352 0.15853889 0.02401011 0.0236963
sd 0.00815178 0.00816169 0.00849056 0.00183797 0.00183053

9000 mean 0.23008393 0.22974655 0.20614708 0.02393684 0.02359947
sd 0.00895475 0.00896629 0.0094533 0.00191798 0.00191156

10000 mean 0.28094416 0.28061214 0.2580891 0.02285506 0.02252304
sd 0.00959933 0.00961201 0.01022574 0.00199301 0.00198606

ζ = 1

Υ = eυ Total (y) Total (x) Chronic Transient (y) Transient (x)

3000 mean 0.00955136 0.0095358 0.00451094 0.00504042 0.00502486
sd 0.00148649 0.00148617 0.00117329 0.00063994 0.0006394

4000 mean 0.0163228 0.01629547 0.00921085 0.00711195 0.00708462
sd 0.0019771 0.00197681 0.00168675 0.00072034 0.00071965

5000 mean 0.02481727 0.02477371 0.01576494 0.00905233 0.00900877
sd 0.00245645 0.00245632 0.00219325 0.00077997 0.00077913

6000 mean 0.03512734 0.03506278 0.02428456 0.01084278 0.01077822
sd 0.00292255 0.0029226 0.00268945 0.00082228 0.00082146

7000 mean 0.04735069 0.04726171 0.03489508 0.01245561 0.01236662
sd 0.00337605 0.00337656 0.00317369 0.00084773 0.00084691

8000 mean 0.06151954 0.06140511 0.04767046 0.01384907 0.01373465
sd 0.00381591 0.00381692 0.0036488 0.00085892 0.00085838

9000 mean 0.07757048 0.07743194 0.06258645 0.01498403 0.01484549
sd 0.00423826 0.00424002 0.00411166 0.00086173 0.00086155

10000 mean 0.0953435 0.09518496 0.0795098 0.0158337 0.01567516
sd 0.00463689 0.00463943 0.0045558 0.0008606 0.00086084

a: ‘mean’ and ‘sd’ denote the posterior mean and the posterior standard deviation,

respectively.
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Table 6: Continued
ζ = 2

Υ = eυ Total (y) Total (x) Chronic Transient (y) Transient (x)

3000 mean 0.00496513 0.00495709 0.00197067 0.00299447 0.00298642
sd 0.00096918 0.0009689 0.00067769 0.00049341 0.00049311

4000 mean 0.0084615 0.00844762 0.00409298 0.00436852 0.00435464
sd 0.00128968 0.00128938 0.00099506 0.00055774 0.00055736

5000 mean 0.01282438 0.01280277 0.0071018 0.00572257 0.00570097
sd 0.00160591 0.00160562 0.00131773 0.00060761 0.00060715

6000 mean 0.01806409 0.01803258 0.01103818 0.00702591 0.0069944
sd 0.00191617 0.00191592 0.00163886 0.00064684 0.00064636

7000 mean 0.02421111 0.02416756 0.01594876 0.00826235 0.0082188
sd 0.00221942 0.00221927 0.00195558 0.00067708 0.0006766

8000 mean 0.03129402 0.03123677 0.02187725 0.00941676 0.00935952
sd 0.00251543 0.00251544 0.00226671 0.00069907 0.00069864

9000 mean 0.03932323 0.03925135 0.02884997 0.01047326 0.01040139
sd 0.00280377 0.00280401 0.00257209 0.00071401 0.00071372

10000 mean 0.04828269 0.04819615 0.03686562 0.01141708 0.01133054
sd 0.00308371 0.00308423 0.00287133 0.00072317 0.00072309
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Figure 1: Histograms of y = log Y
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Figure 2: Estimated densities of x
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Figure 3: Comparison of estimated densities of x a

a: The case (a) has the hyperparameter values given in (32). The other cases change
the hyperparameter values as follows:

(b) κ = diag{1/R2
t }, (c) κ = diag{0.01/R2

t }, (d) h = diag{200g/αR2
t }

(e) h = diag{50g/αR2
t }, (f) b = 0.2, (g) λ = 3.
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ζ = 0
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Figure 4: Total, chronic and transient povertya

a: The dotted lines denote the following posterior interval:

(posterior mean − 2 × posterior sd, posterior mean + 2 × posterior sd).
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ζ = 2

3000 4000 5000 6000 7000 8000 9000 1000011000

0.025

0.050

Total (y)
data posterior 

3000 4000 5000 6000 7000 8000 9000 1000011000

0.025

0.050

Total (x)
data posterior 

3000 4000 5000 6000 7000 8000 9000 1000011000

0.02

0.04

Chronic
data posterior 

3000 4000 5000 6000 7000 8000 9000 1000011000

0.005

0.010

Transient (y)
data posterior 

3000 4000 5000 6000 7000 8000 9000 1000011000

0.005

0.010

Transient (x)
data posterior 

Figure 4: Continued
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Figure 5: Fluctuation of total and chronic poverty on data by
Ravallion’s method
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