Title	Identification and isolation of active N2O reducers in rice paddy soil
Author(s)	Ishii, Satoshi; Ohno, Hiroki; Tsuboi, Masahiro; Otsuka, Shigeto; Senoo, Keishi
Citation	ISME Journal, 5(12), 1936-1945 https://doi.org/10.1038/ismej.2011.69
Issue Date	2011-12
Doc URL	http://hdl.handle.net/2115/49343
Туре	article (author version)
File Information	ISMEj5-12_1844-1856.pdf

Identification and Isolation of Active N2O Reducers in Rice Paddy Soil

Satoshi Ishii^{1,2,*}, Hiroki Ohno¹, Masahiro Tsuboi¹, Shigeto Otsuka¹, and Keishi Senoo¹

¹Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan

²Present address: Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan

Running title: N₂O reducers in paddy soil

^{*}Corresponding author: Satoshi Ishii, Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan; Phone: +81-11-706-7162; Fax: +81-11-706-7162; Email: s.ishii@eng.hokudai.ac.jp

ABSTRACT

Dissolved N₂O is occasionally detected in surface and ground water in rice paddy fields, while little or no N₂O is emitted to the atmosphere above these fields. This indicates the occurrence of N₂O reduction in rice paddy fields; however, identity of the N₂O reducers is largely unknown. In this study, we employed both culture-dependent and culture-independent approaches to identify N₂O reducers in rice paddy soil. In a soil microcosm, N₂O and succinate were added as the electron acceptor and donor, respectively, for N₂O reduction. For the stable isotope probing (SIP) experiment, ¹³C-labeled succinate was used to identify succinate-assimilating microbes under N₂O-reducing conditions. DNA was extracted 24 h after incubation, and heavy and light DNA fractions were separated by density gradient ultracentrifugation. Denaturing gradient gel electrophoresis and clone library analysis targeting the 16S rRNA and the N₂O reductase gene were performed. For culture-dependent analysis, the microbes that elongated under N₂O-reducing conditions in the presence of cell division inhibitors were individually captured by a micromanipulator and transferred to a low-nutrient medium. The N₂O-reducing ability of these strains was examined by gas chromatography/mass spectrometry. Results of the SIP analysis suggested that Burkholderiales and Rhodospirillales bacteria dominated the population under N₂O-reducing conditions, in contrast to the control sample (soil incubated with only ¹³C-succinate added). Results of the single-cell isolation technique also indicated that the majority of the N₂O-reducing strains belonged to the genera Herbaspirillum

(Burkholderiales) and Azospirillum (Rhodospirillales). In addition, Herbaspirillum strains reduced N_2O faster than Azospirillum strains. These results suggest that Herbaspirillum spp. may play an important role in N_2O reduction in rice paddy soils.

Key words: denitrification / *Herbaspirillum* / nitrous oxide / rice paddy soil / single-cell isolation / stable isotope probing

INTRODUCTION

Nitrous oxide (N_2O) is considered a major greenhouse gas and is a significant contributor to ozone layer destruction (Zumft and Kroneck, 2006). N_2O is mainly produced by denitrification, a microbial respiratory process in which nitrate/nitrite are reduced to gaseous forms (NO, N_2O , and N_2); however, other microbial processes, such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA), can also produce N_2O (Conrad, 1996).

Agricultural fields are one of the main sources of N₂O emission (Philippot *et al.*, 2007; Minamikawa *et al.*, 2010). In contrast to upland crop fields, little N₂O is emitted from rice paddy soils, even though paddy fields are known to have strong denitrification activity (Akiyama *et al.*, 2006). Dissolved N₂O is occasionally detected in surface and ground water in rice paddy fields, while little or no N₂O is emitted to the atmosphere above these fields (Xiong *et al.*, 2006; Minamikawa *et al.*, 2010). This indicates that water-dissolved N₂O is possibly reduced by N₂O-reducing microorganisms in rice paddy fields.

 N_2O can serve as an electron acceptor for microbial respiration. The standard reduction potential (E_0 ' at pH 7) of the reaction ($N_2O + 2H^+ + 2e^- \rightarrow N_2 + H_2O$) is 1.35 V with ΔG_0 ' of -339.5 kJ mol⁻¹ (Zumft and Kroneck, 2006). Phylogenetically diverse bacteria and archaea have the ability to reduce N_2O . Although the reduction of N_2O to N_2 gas is part of denitrification, some denitrifiers do not have the ability to reduce N_2O (Tiedje, 1994).

Both N₂O-reducing strains and non-reducing strains may be present within the same species (Sameshima-Saito *et al.*, 2006). In addition, some DNRA bacteria have the ability to reduce N₂O (Conrad, 1996). Therefore, it is difficult to use 16S rRNA gene sequences alone to identify N₂O reducers. Instead, the gene encoding N₂O reductase (*nosZ*) has been used to detect potential N₂O reducers in various environments (Rich *et al.*, 2003). Although *nosZ* phylogeny is generally in agreement with 16S rRNA gene phylogeny, horizontal gene transfer may have occurred among closely related microorganisms (Dandie *et al.*, 2007; Jones *et al.*, 2008) and we therefore cannot identify N₂O reducers on the basis of *nosZ* sequence information alone.

One approach to link microbial identity to a specific function is stable isotope probing (SIP) of nucleic acids (Radajewski *et al.*, 2000; Gutierrez-Zamora and Manefield, 2010). In the SIP approach, microbes that have incorporated heavy stable isotopes (e.g., ¹³C, ¹⁵N, ¹⁸O) into their DNA (or RNA) can be identified by analyzing the heavy DNA fractions separated by density gradient ultracentrifugation. Using the SIP approach, we can analyze the 16S rRNA and functional gene diversities of microbial populations involved in specific functions. Previously, ¹³C-assimilating populations under denitrifying conditions were analyzed by DNA-based SIP analysis (Ginige *et al.*, 2004; Osaka *et al.*, 2006; Osaka *et al.*, 2008; Saito *et al.*, 2008). However, microbial populations responsible for N₂O reduction have not been examined to date.

Another approach to identifying such populations is to isolate and analyze N₂O reducers that are active and dominant in the environment. We previously developed a single-cell isolation technique to obtain actively growing microorganisms from environmental samples and designated it the functional single-cell (FSC) isolation method (Ashida et al., 2010). In this method, individual cells growing in response to certain conditions (e.g., denitrification-inducing conditions) are elongated or enlarged, and can be individually captured with a micromanipulator. Single-cell isolation techniques provide an environment without resource competition, thereby allowing microbes, including slow-growing microorganisms, to multiply without interference from fast-growing ones (Ishii et al., 2010a). The FSC isolation method allowed us to obtain denitrifiers that were shown to be active and dominant by culture-independent analyses (Ishii et al., 2011). By analyzing the isolated strains, we were able to directly link the 16S rRNA gene and functional gene phylogenies. In addition, various cell properties, such as denitrification and N₂O reduction rates, could also be measured (Tago *et al.*, 2011).

Consequently, the objectives of the current study were (1) to identify 13 C-assimilating populations under N_2 O-reducing conditions by SIP, (2) to isolate N_2 O-reducing microorganisms from rice paddy soil by using the FSC isolation method, (3) to examine the N_2 O reduction rates of the isolated strains, and (4) to compare the results obtained by SIP and the FSC isolation method.

MATERIALS AND METHODS

Soil microcosm. Soil samples were collected from rice paddy fields at the Institute for Sustainable Agro-Ecosystem Services, The University of Tokyo, Nishitokyo City, Tokyo, Japan (Saito et al., 2008). A soil microcosm setup was established based on the previous reports (Saito et al., 2008; Ishii et al., 2009b), except N₂O was used as an electron acceptor instead of nitrate. Succinate was used as an electron donor for N₂O reduction in this study. Because succinate is a member of TCA cycle and is considered as a non-fermentable carbon substrate, it can be used by various N₂O-reducers, but not by fermenting microbes. The optimum concentrations of electron acceptor and donor (N2O and succinate, respectively) were determined by adding several combinations of N₂O (0%, 0.5%, 1%, 2%, 5%, and 20% in Ar base) and succinate (0, 0.01, 0.025, 0.05, 0.1, 0.25, and 0.5 mg C per g soil), and were set at 5% N₂O and 0.1 mg succinate C per g soil. For SIP, ¹³C-labeled succinate (Cambridge Isotope Laboratories, Andover, MA, USA) was used (0.1 mg [= $8.3 \mu mol$] of 13 C per g soil). For FSC isolation, cell-division inhibitors (20 μg nalidixic acid, 10 µg pipemidic acid, 10 µg piromidic, and 10 µg cephalexin) (Joux and Lebaron, 1997) were added to the vial together with N₂O and succinate. The vial was then incubated under an Ar:N₂O (95:5) atmosphere and static conditions at 30°C for 24 h.

CO₂ and N₂O gases in the headspace of the vial were quantified by gas chromatography (GC) as described previously (Saito *et al.*, 2008). When ¹³C-labeled

succinate and ¹⁵N-labeled N₂O (¹⁵N, 99 atom. %; Cambridge Isotope Laboratories) were used, ⁴⁴CO₂, ⁴⁵CO₂, ⁴⁴N₂O, ⁴⁶N₂O, ²⁸N₂, and ³⁰N₂ were separately quantified by GC-mass spectrometry (GC/MS) using the gas chromatograph/mass spectrometer QP5050 (Shimadzu, Kyoto, Japan) as described elsewhere (Miyahara *et al.*, 2010). Succinate was extracted from soil with 5 ml water and quantified by high-performance liquid chromatography as described previously (Saito *et al.*, 2008). Fe²⁺ was anaerobically extracted from soil with 1 M ammonium acetate solution (pH 3) and quantified colorimetrically as described previously (Ishii *et al.*, 2009b).

SIP. DNA was extracted from the soil microcosms (n = 10) amended with N₂O and 13 C-succinate (sample 13SN) using ISOIL for bead beating (Nippon Gene, Tokyo, Japan). As controls, DNA was also extracted from the soil microcosms (n = 10) amended with N₂O and 12 C-succinate (sample 12SN), 13 C-succinate only (sample 13Su), and 12 C-succinate only (sample 12Su). Community structures among the replicate samples were analyzed and compared by PCR-denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA gene as described previously (Ishii *et al.*, 2010b). After confirming that the DGGE profiles looked similar among the replicate samples, purified DNA from 10 replicate samples was pooled to ensure a sufficient amount of DNA for ultracentrifugation. Cesium chloride density gradient ultracentrifugation was performed as described by Neufeld *et al.* (2007) at an average of 177,000 ×g (53,200 rpm) using a P100VT rotor (Hitachi Koki, Tokyo, Japan).

After 40 h centrifugation, gradients of density-resolved DNA were fractionated and purified as described elsewhere (Neufeld *et al.*, 2007). The copy number of the 16S rRNA gene in each fraction was determined by quantitative PCR as described previously (Fierer *et al.*, 2005; Ishii *et al.*, 2009b). Community structures among the DNA fractions were analyzed by the 16S rRNA gene-based PCR-DGGE and principal component analysis (PCA), as described previously (Ishii *et al.*, 2009a) and clone library analysis as described below.

Single-cell isolation. Metabolically active cells were stained with 5-carboxyfluorescein diacetate acetoxymethyl ester as described previously (Ashida *et al.*, 2010). Fluorescing cells were observed under a fluorescent microscope (Diaphot 300, Nikon, Tokyo, Japan) with 400–1000× magnification.

Single cells were isolated using a micromanipulator (MTA-31, Daiwa Union, Iida, Nagano, Japan) equipped with a microinjector (UJI-A, Daiwa Union) as described previously (Ashida *et al.*, 2010). After a single cell was captured in the capillary of the micromanipulation system, the tip of the capillary was soaked in 70% ethanol for 30 s to disinfect its outside. The captured cell was then ejected into a test tube containing 100-fold diluted nutrient broth (Hashimoto *et al.*, 2009) supplemented with 4.4 mM succinate (DNB-S medium) and incubated at 30°C under N₂O-reducing conditions for 2 weeks. To obtain purified isolates, the cultures in the DNB-S media were streaked onto DNB-S agar and incubated at 30°C for 2 weeks.

N₂O reduction and denitrification activities of the strains. Each strain was inoculated into 5 ml of DNB-S medium in a 10 ml glass serum vial, and the headspace air was replaced with Ar:¹⁵N-labeled N₂O (95:5) gas. After incubation at 30°C for 1 week, the amounts of ¹⁵N-labeled N₂ and N₂O were measured by GC/MS as described above.

Denitrification activities of the strains were also measured in duplicate (two vials for each strain) by the acetylene block method (Tiedje, 1994) described previously (Ishii *et al.*, 2011; Tago *et al.*, 2011).

For selected strains, the N_2O -reducing rate was also measured. Cells were grown in DNB-S medium in a vial with 5% nonlabeled N_2O gas in Ar base. After 1 week incubation, cells were harvested and inoculated, in triplicate (three vials for each strain), into fresh 5 ml of DNB-S medium at 10^5 cells ml⁻¹. The headspace air was replaced with Ar: ^{15}N -labeled N_2O (95:5) gas, and the vial was then incubated at 30°C. Amounts of ^{15}N -labeled N_2O were measured at 3, 6, 9, 12, 18, and 24 h after inoculation by GC/MS as described above.

PCR, cloning, and sequencing. For culture-independent clone library analysis of the microbial community in the heavy fractions from 13SN and 13Su samples, the 16S rRNA gene and *nosZ* were PCR-amplified using primers m-27F and m-1492R (Tyson *et al.*, 2004) and nosZ-F-1181 and nosZ-R-1880 (Rich *et al.*, 2003), respectively. PCR was performed using a Veriti 96-well thermal cycler (Applied Biosystems, Foster City, CA,

USA) under conditions described elsewhere (Ishii *et al.*, 2009b; Rich *et al.*, 2003). After removing excess primers and dNTP by using a Wizard DNA Cleanup system (Promega, Madison, WI, USA), PCR products were cloned into a pGEM-T Easy vector (Promega) and transformed into *Escherichia coli* JM109 high efficiency competent cells (Promega) according to the manufacturer's instructions. DNA inserts from randomly selected clones were amplified by PCR with vector primers T7-1 and SP6, and sequenced as described previously (Saito *et al.*, 2008).

For isolated strains, DNA was extracted from cells as described previously (Ashida *et al.*, 2010). PCR was performed to amplify the 16S rRNA gene and *nosZ* as described above. In addition, the nitrite reductase gene (*nirK* or *nirS*) was amplified using primers F1aCu and R3Cu (Throbäck *et al.*, 2004) or cd3aF and R3cd (Throbäck *et al.*, 2004), respectively, as described previously (Yoshida *et al.*, 2010). PCR products were purified using a Wizard DNA Cleanup system (Promega) and directly sequenced as described previously (Ashida *et al.*, 2010).

DNA fingerprinting analysis. Repetitive element palindromic-PCR (rep-PCR)

DNA fingerprinting was performed using the BOXA1R primer according to the protocol described by Rademaker et al. (Rademaker et al., 2008) to examine the relatedness of the strains (Ishii and Sadowsky, 2009). The amplified DNA fragments were separated by electrophoresis on 1.5% agarose gel at 80 V for 8 h, and the image was visualized under UV

light. The image was digitalized and analyzed as described previously (Ishii *et al.*, 2009a).

Strains with >80% DNA fingerprint similarity were considered identical.

Phylogenetic analysis. The nucleotide sequences were trimmed and assembled as described previously (Ishii et al., 2009b; Ashida et al., 2010). Taxonomic assignment of the clones or strains was performed based on their 16S rRNA gene sequences by using the Ribosomal Database Project classifier program (Wang et al., 2007) with 80% as the bootstrap cutoff. Operational taxonomic units were determined at 97% nucleotide sequence similarity by using MOTHUR program (Schloss et al., 2009). The nucleotide or deduced amino acid sequences from multiple strains were aligned with reference sequences obtained from the DDBJ/EMBL/GenBank databases. A phylogenetic tree was constructed based on the maximum likelihood method by using MEGA version 5 (Tamura et al., 2007).

Nucleotide sequence accession numbers. The nucleotide sequences of the 16S rRNA gene and *nosZ* from the isolated strains were deposited in the DDBJ/EMBL/GenBank databases under the accession numbers AB545618–AB545660 and AB545661–AB545698, respectively (Table S1). The nucleotide sequences of the 16S rRNA gene and *nosZ* from the culture-independent analysis were also in the databases under the accession numbers AB608638-AB608703 and AB608704-AB608729, respectively.

RESULTS

Evaluation of the soil microcosm. Based on the preliminary experiments, all of the added N_2O disappeared within 24 h of incubation when <2% N_2O was added (data not shown). Since N_2O should always be present to minimize utilization of succinate by metal reducers, the concentration of N_2O should be >2%. Based on the Bunsen absorption coefficient and Henry's law, the concentration of the water-dissolved N_2O would be 1 mM when 5% N_2O was added to a 10 ml vial containing 1 g soil submerged in 1 ml water. This concentration is 10- to 100-fold less than the N level found in the rice paddy field right after the fertilizer application (Saito *et al.*, 2008).

Preliminary experiments also showed that the addition of less than 0.1 mg succinate C did not significantly enhance N_2O reduction (Table S2). Addition of >0.1 mg succinate C significantly enhanced N_2O reduction (Table S2), but 33% and 58% of the added succinate remained unused when 0.25 and 0.5 mg succinate C was added, respectively. In the presence of 5% N_2O , all of the added succinate (0.1 mg C) was consumed within 24 h, while 32% of the added succinate remained unused in the absence of N_2O . Concentrations of Fe^{2+} in the soil significantly increased (p < 0.05) after 24 h anaerobic incubation with 0.1 mg succinate C, but not after anaerobic incubation with 0.1 mg succinate C and 5% N_2O nor after anaerobic incubation without succinate addition (Table S3). These results suggest that succinate is likely used by N_2O reducers when N_2O is

present, but it can be used by metal reducers when N_2O is absent. Based on these results, we considered 0.1 mg succinate C per gram soil to be sufficient and the minimum required for enhancing N_2O reduction.

Figure 1 shows time-course changes in N_2O , N_2 , and CO_2 in the soil microcosms amended with the optimum concentrations of N_2O and succinate (5% and 0.1 mg C, respectively). The quantity of 15 N-labeled N_2 0 increased along with the decrease in 15 N-labeled N_2O in the microcosm, suggesting that N_2O was reduced to N_2 . The N_2O decrease was larger than the amount of N_2 produced. This unbalanced N_2O mass may be attributed to N_2 fixation or other N_2O metabolism such as N_2O oxidation. The amount of 13 C-labeled CO_2 gradually increased and reached a plateau after 18 h, while nonlabeled CO_2 continued to increase after 24 h. About 10% of the added succinate (0.1 mg C = 8.3 µmol) was oxidized to CO_2 . Because all of the added succinate was consumed within 24 h, the remaining ca. 90% of the added succinate was assumed to be used as a C source by actively growing microbes.

Identification of N₂O reducers by SIP. SIP was performed to study succinate-assimilating populations under N₂O-reducing and non-reducing conditions. Figure 2 shows the relative amount of the 16S rRNA gene in DNA fractions separated by CsCl density gradient ultracentrifugation. All four samples had peaks in the light DNA fractions (L fraction) with buoyant densities of 1.70–1.715 g cm⁻³. An additional peak was also

observed in the 13SN sample in the heavy DNA fraction (H fraction) with buoyant densities of 1.73–1.75 g cm⁻³. A small amount of DNA was also seen in the H fraction from the 13Su sample.

PCR-DGGE analysis showed that the community structure differed between the H and L fractions within a sample (Fig. 3). The community structure also differed among the H fractions originating from the 13SN, 13Su, and 12SN samples. Bands specific to each fraction were excised and sequenced (Table S2). While most bands originated from bacteria belonging to the orders *Burkholderiales* (class *Betaproteobacteria*) and *Rhodospirillales* (class *Alphaproteobacteria*) in the H fraction of the 13SN sample (Fig. 4A), many bands were from bacteria belonging to the order *Desulfuromonadales* (class *Deltaproteobacteria*) in the H fraction of the 13Su sample (Fig. 4B). Bands appearing in the H fraction of the 12SN sample were similar to that of the 16S rRNA gene sequence of bacteria belonging to the orders *Bacillales* and *Clostridiales* (phylum *Firmicutes*) and the order *Rhodospirillales* (Table S4).

In order to examine the community structure in the H fractions of the 13SN and 13Su samples in detail, we performed clone library analysis based on the near-full length 16S rRNA gene. Similar to the PCR-DGGE results, most clones were related to the orders *Burkholderiales* and *Rhodospirillales* in the H fraction of the 13SN sample (Fig. 4C).

Among these, clones closely related to the genus *Herbaspirillum* (order *Burkholderiales*)

were most frequently obtained. In contrast, clones related to the genus *Geobacter* (order *Desulfuromonadales*) dominated the H fraction of the 13Su sample (Fig. 4D).

Isolation of N_2O reducers. In addition to the culture-independent analyses, culture-based analysis was also performed in this study. During FSC isolation, 61 elongated single cells were captured from the soil microcosm incubated under N_2O -reducing conditions. No elongated cells were observed in the sample without cell-division inhibitors. After single-colony isolation and GC/MS analysis, 33 N_2O -reducing strains were obtained.

Similar to the results obtained by clone library analysis, strains closely related to the genus *Herbaspirillum* were most frequently obtained (20 strains; Fig. 4E). 16S rRNA gene sequences of the isolated *Herbaspirillum* strains were >98% similar to the SIP clones obtained in this study (Fig. 5A). Strains related to the genera *Azospirillum* (seven strains) and *Burkholderia* (three strains) were the second and third most frequently obtained, respectively.

N₂O reductase gene. nosZ was detected in all N₂O-reducing strains. Diverse nosZ sequences were also obtained from the clone library constructed based on the H fraction of the 13SN sample. Figure 5B shows the phylogenetic tree constructed based on the nosZ sequences obtained in this study. With some exceptions, similar nosZ sequences were obtained from phylogenetically closely related strains. For example, nosZ sequences of most Burkholderiales bacteria (Burkholderia spp., Herbaspirillum spp., and Massilia spp.)

were clustered together (cluster I). The *nosZ* sequences of some *Herbaspirillum* strains were distantly related to these sequences and were more closely related to the *nosZ* of *Azospirillum* spp. (cluster II).

Figure 5B also shows the relatedness between *nosZ* sequences obtained from SIP and FSC analyses. From the H fraction of the 13SN sample, *nosZ* sequences in cluster I were most frequently obtained (78%), and these sequences were >76% similar to those of *Burkholderiales*. We did not find 100% match in the *nosZ* sequences between isolated strains and SIP clones. This may due, in part, to the formation of chimeric sequences in SIP analysis.

 N_2O reduction and denitrification activities. Based on the *nosZ* sequence information and rep-PCR DNA fingerprinting, three *Herbaspirillum* strains (TSO23-1, TSO35-1, and TSO37-1), three *Azospirillum* strains (TSO5, TSO22-1, and TSO41-3), and two *Burkholderia* strains (TSO10-2 and TSO47-3) were selected for measurement of N_2O reduction activity. Since both an electron acceptor and an electron donor were abundantly present under the experimental conditions, the reaction ($N_2O + 2H^+ + 2e^- \rightarrow N_2 + H_2O$) followed zero-order kinetics. The N_2O reduction rates of *Herbaspirillum* spp., *Burkholderia* spp., and *Azospirillum* spp. were 1.72 ± 0.13 , 1.39 ± 0.24 , and 0.65 ± 0.06 pmol h^{-1} cell⁻¹, respectively; these differed by genus (p < 0.05) but not by *nosZ* cluster (cluster I *vs.* II + III).

The majority (76%) of the N₂O-reducing strains carried *nirS*, which encodes cytochrome *cd*₁ nitrite reductase, and were able to perform denitrification (Table S1). No strains were detected with *nirK*, which encodes copper-containing nitrite reductase. We could not amplify the nitrite reductase gene from the denitrifying *Azospirillum* strains TSO5, TSO7, TSO9, and TSO35-2. *Azospirillum* sp. strain TSO41-3, *Burkholderia* sp. strain TSO11-3, and *Massilia and Bacillus* strains did not show denitrification activity and nitrite reductase genes were not detected.

DISCUSSION

Although denitrifying and nitrate-reducing communities have been studied in various environments including rice paddy soils (Philippot et al., 2007; Ishii et al., 2009b), microbial communities responsible for N₂O reduction have not been well characterized. In the present study, we employed both culture-independent (SIP) and culture-dependent (FSC isolation) techniques to analyze N₂O reducers in rice paddy soil. Populations that assimilated succinate under N₂O-reducing conditions were examined by SIP analysis. The FSC isolation method was used to isolate microbes that were ready to grow under the same N₂O-reducing conditions used for the SIP analysis. Combined analysis of the results obtained by SIP and FSC isolation allowed us to assess the phylogeny, function, and physiology of the microbes responsible for N₂O reduction.

In the present study, succinate was used as an electron donor by the N_2O reducers. Previous studies have shown that anaerobic incubation of soil with nitrate and succinate greatly enhances denitrification activity (Saito *et al.*, 2008; Ishii *et al.*, 2009b). Under such conditions, succinate could be used by various denitrifiers, whereas there would be little utilization of succinate for other functions, such as fermentation, DNRA, and metal and sulfate reduction (Saito *et al.*, 2008; Ishii *et al.*, 2009b). Oxidation of succinate (E_0 ' = +33 mV) can also be coupled with reduction of N_2O (E_0 ' = +1355 mV). According to the thermodynamic theory (Thauer *et al.*, 1977), N_2O is the preferred electron acceptor to Mn^{4+} , Fe^{3+} , and sulfate. Our results support this notion since the production of Fe^{2+} was suppressed by the addition of N_2O .

Succinate-assimilating populations under N₂O-reducing and non-reducing conditions were examined by SIP. Under non-N₂O-reducing conditions (sample 13Su), clones related to the genus *Geobacter* (order *Desulfuromonadales*) were most frequently (42%) obtained (Fig. 4D). Because production of Fe²⁺ was observed in the 13Su sample, bacteria identified in the 13Su clone library may be involved in metal reduction with succinate as an electron donor. The *Geobacter* species is well known for its capacity to reduce metals (Lovley *et al.*, 2004). Similar to our study, RNA-based SIP analysis has revealed that *Geobacter*, *Anaeromyxobacter*, and a novel *Betaproteobacteria* closely related to the order *Rhodocyclales* were acetate-assimilating iron reducers in Italian rice paddy soil

(Hori et al., 2010). In the present study, Herbaspirillum spp. and other Burkholderiales bacteria were also detected in the H fraction of the 13Su sample. Because these bacteria were not detected in the control sample (H fraction of the 12SN sample), they are most likely enriched under succinate-assimilating and metal-reducing conditions. Similar to our study, clones related to Herbaspirillum have been frequently obtained in a sediment sample (collected at Oak Ridge, TN, USA) incubated without nitrate (Li and Krumholz, 2008) and in a sediment sample (collected at Hanford, WA, USA) incubated with organic acids (Lee et al., 2010).

In contrast to the results obtained from the 13Su sample, clones related to *Herbaspirillum* spp. and other *Burkholderiales* bacteria dominated the population in the clone library constructed from the H fraction of the 13SN sample (N₂O-reducing conditions) (Fig. 4C). Involvement of these bacteria in N₂O reduction was also supported by culture-dependent FSC isolation (Fig. 4E). *Herbaspirillum* strains obtained by FSC isolation carried *nosZ* and reduced exogenous N₂O to N₂. The majority of the SIP *nosZ* clones were similar to *nosZ* of *Herbaspirillum* and other *Burkholderiales* N₂O reducers (Fig. 5). Similar *nosZ* clones have also been obtained from other paddy fields (e.g., GenBank Accession No. ACI48848) and maize rhizospheric soils (Mounier *et al.*, 2004; Dambreville *et al.*, 2006; Henry *et al.*, 2008). Considering the general agreement between the 16S rRNA gene and *nosZ* phylogenies (Jones *et al.*, 2008; Palmer *et al.*, 2009), these results suggested that

Herbaspirillum and other Burkholderiales bacteria may be important players in N₂O reduction, not only in rice paddy soils but also in other environments. Herbaspirillum strains were previously shown to be involved in nitrate reduction of rice paddy soil (Ishii et al., 2009b; Ishii et al., 2011), but the present study showed that they are also important players in N₂O reduction. Although some Herbaspirillum species (e.g., Herbaspirillum seropedica) can colonize rice roots and stems and fix atmospheric N₂ (Baldani et al., 1986; Elbeltagy et al., 2001), almost all strains obtained in this study did not show N₂-fixing ability (S. Ishii, unpublished data). In addition, 16S rRNA gene similarities between the Herbaspirillum strains obtained in this study and other Herbaspirillum species were less than 97%. These results suggest that the N₂O-reducing Herbaspirillum strains obtained in this study may constitute a new species.

The SIP and FSC isolation results also suggested that *Azospirillum* spp. and other *Rhodospirillales* bacteria were responsible for N₂O reduction. The N₂O reduction rates suggested that *Azispirillum* spp. reduced N₂O more slowly than *Herbaspirillum* spp.

Although their *in situ* N₂O reduction rates are not known, these results indicated that the relative contribution of *Azospirillum* strains to N₂O reduction might be smaller than that of *Herbaspirillum* strains. Similar to other *Azospirillum* strains (e.g., *Azospirillum brasilense* and *Azospirillum* sp. B510; Isawa *et al.*, 2010), our *Azospirillum* strains also showed N₂-fixing ability (S. Ishii, unpublished data). Relatively close phylogenetic relationship

between the *Azospirillum* strains obtained in this study and other *Azospirillum* strains (Fig. 5A) also suggested that they may be able to colonize plant roots and fix N₂.

Some Azospirillum, Burkholderia, Massilia, and Bacillus strains did not have a detectable nitrite reductase gene and did not show denitrification ability. The lack of detection of a nitrite reductase gene may be attributed to the primers used in this study, since there are no annealing sites for the currently available PCR primers on the nirK sequence of Azospirillum sp. B510 (Ishii et al., 2011). However, it is also possible that these strains lack a nitrite reduction pathway since nirK of several Azospirillum strains is located on plasmids (Pothier et al., 2008; Kaneko et al., 2010).

In conclusion, our results suggest that most N₂O reducers are denitrifiers under the present study conditions, although some DNRA bacteria are known to reduce N₂O (Conrad, 1996). Among the N₂O reducers, *Burkholderiales* bacteria, especially those belonging to the genus *Herbaspirillum*, may play an important role in N₂O reduction in rice paddy soil.

Because *Herbaspirillum* bacteria are potential key players in nitrate reduction (Ishii *et al.*, 2009b), these bacteria can be used for the removal of contaminated nitrate from environments (e.g., groundwater) while minimizing the emission of N₂O. Our study also identified several N₂O reducers lacking denitrification activity. These bacteria could be used to mitigate N₂O emission from agricultural fields while minimizing the loss of fertilizer N.

ACKNOWLEDGMENTS

We thank Daisuke Sasaki and Yasuo Igarashi at the University of Tokyo for their help with ultracentrifugation and fractionation. We also thank Hirofumi Shoun and Takayoshi Wakagi at the University of Tokyo, for allowing us to use their GC/MS instrument, and Takashi Tsuji and Yoshitaka Yoshimura at Tamagawa University for allowing us to use their micromanipulator.

This work was supported by the Programme for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN).

REFERENCES

- Akiyama H, Yan X, Yagi K. (2006). Estimations of emission factors for fertilizer-induced direct N₂O emissions from agricultural soils in Japan: summary of available data. *Soil Sci Plant Nutr* **52:** 774-787.
- Ashida N, Ishii S, Hayano S, Tago K, Tsuji T, Yoshimura Y *et al.* (2010). Isolation of functional single cells from environments using a micromanipulator: application to study denitrifying bacteria. *Appl Microbiol Biotechnol* **85:** 1211-1217.
- Baldani JI, Baldani VLD, Seldin L, Döbereiner J. (1986). Characterization of *Herbaspirillum seropedicae* gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. *Int J Syst Bacteriol* **34:** 451-456
- Conrad R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H₂, CO, CH₄, OCS, N₂O, and NO). *Microbiol Rev* **60:** 609-640.
- Dambreville C, Hallet S, Nguyen C, Morvan T, Germon J-C, Philippot L. (2006). Structure and activity of the denitrifying community in a maize-cropped field fertilized with composted pig manure or ammonium nitrate. *FEMS Microbiol. Ecol.* **56:** 119-131.
- Dandie CE, Burton DL, Zebarth BJ, Trevors JT, Goyer C. (2007). Analysis of denitrification genes and comparison of *nosZ*, *cnorB* and 16S rDNA from culturable denitrifying bacteria in potato cropping systems. *Syst Appl Microbiol* **30**: 128-138.
- Elbertagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T *et al.* (2001). Endophytic colonization and *in planta* nitrogen fixation by a *Herbaspirillum* sp. isolated from wild rice species. *Appl Environ Microbiol* **67:** 5285-5293
- Fierer N, Jackson JA, Vilgalys R, Jackson RB. (2005). Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. *Appl Environ Microbiol* **71:** 4117-4120.
- Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J, Blackall LL. (2004). Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence *in situ* hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. *Appl Environ Microbiol* **70:** 588-596.

- Gutierrez-Zamora M-L, Manefield M. (2010). An appraisal of methods for linking environmental processes to specific microbial taxa. *Rev Environ Sci Biotechnol* **9:** 153-185.
- Hashimoto T, Koga M, Masaoka Y. (2009). Advantages of a diluted nutrient broth medium for isolating N₂-producing denitrifying bacteria of α-Proteobacteria in surface and subsurface upland soils. *Soil Sci Plant Nutr* **55:** 647-659.
- Henry S, Texier S, Hallet S, Bru D, Dambreville C, Chèneby D *et al.* (2008). Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. *Environ Microbiol* **10**: 3082-3092.
- Hori T, Muller A, Igarashi Y, Conrad R, Friedrich MW. (2009). Identification of iron-reducing microorganisms in anoxic rice paddy soil by ¹³C-acetate probing. *ISME J* **4:** 267-278.
- Isawa T, Yasuda M, Awazaki H, Minamisawa K, Shinozaki S, Nakashita H. (2010). *Azospirillum* sp. strain B510 enhances rice growth and yield . *Microbes Environ* **25:** 58-61 .
- Ishii S, Kadota K, Senoo K. (2009a). Application of a clustering-based peak alignment algorithm to analyze various DNA fingerprinting data. *J Microbiol Methods* **78**: 344-350.
- Ishii S, Sadowsky MJ. (2009). Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution. *Environ Microbiol* **11:** 733-740.
- Ishii S, Yamamoto M, Kikuchi M, Oshima K, Hattori M, Otsuka S *et al.* (2009b). Microbial populations responsive to denitrification-inducing conditions in rice paddy soil, as revealed by comparative 16S rRNA Gene Analysis. *Appl Environ Microbiol* **75:** 7070-7078.
- Ishii S, Tago K, Senoo K. (2010a). Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. *Appl Microbiol Biotechnol* **86:** 1281-1292.
- Ishii S, Yamamoto M, Tago K, Otsuka S, Senoo K. (2010b). Microbial populations in various paddy soils respond differently to denitrification-inducing conditions, albeit background bacterial populations are similar. *Soil Sci Plant Nutr* **56:** 220-224.

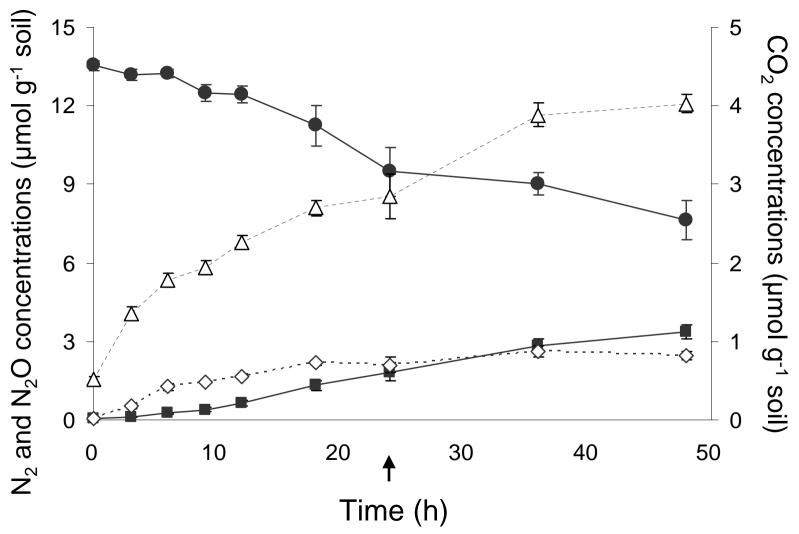
- Ishii S, Ashida N, Otsuka S, Senoo K. (2011). Isolation of oligotrophic denitrifiers carrying previously uncharacterized functional gene sequences. *Appl Environ Microbiol* **77:** 338-342.
- Jones CM, Stres B, Rosenquist M, Hallin S. (2008). Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. *Mol Biol Evol* **25:** 1955-1966.
- Joux F, Lebaron P. (1997). Ecological implications of an improved direct viable count method for aquatic bacteria. *Appl Environ Microbiol* **63:** 3643-3647.
- Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y *et al.* (2010). Complete genomic structure of the cultivated rice endophyte *Azospirillum* sp. B510. *DNA Res* **17:** 37-50.
- Lee JH, Lin X, Kennedy DW, Plymale AE, Kukkadapu RK, Kemner KM *et al.* (2010) Biogeochemical redox activities and linked microbial community of Hanford 300 area subsurface sediments. 13th International Symposium on Microbial Ecology, August 22-27, 2010, Seattle, WA, USA. PS.01.047
- Li X, Krumholz LR. (2008). Influence of nitrate on microbial reduction of pertechnetate. *Environ Sci Technol* **42:** 1910-1915.
- Lovley DR, Holmes DE, Nevin KP. (2004). Dissimilatory Fe(III) and Mn(IV) reduction. *Adv Microbial Physiol* **49:** 219-286.
- Minamikawa K, Nishimura S, Sawamoto T, Nakajima Y, Yagi K. (2010). Annual emissions of dissolved CO₂, CH₄, and N₂O in the subsurface drainage from three cropping systems. *Glob Change Biol* **16:** 796-809.
- Miyahara M, Kim S-W, Fushinobu S, Takaki K, Yamada T, Watanabe A *et al.* (2010). Potential of aerobic denitrification by *Pseudomonas stutzeri* TR2 to reduce nitrous oxide emissions from wastewater treatment plants. *Appl Environ Microbiol* **76:** 4619-4625.
- Mounier E, Hallet S, Chèneby D, Benizri E, Gruet Y, Nguyen C *et al.* (2004). Influence of maize mucilage on the diversity and activity of the denitrifying community. *Environ Microbiol* **6:** 301-312.

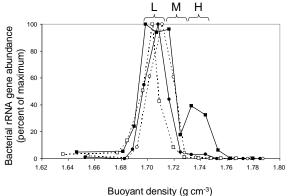
- Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW *et al.* (2007). DNA stable-isotope probing. *Nat Protocols* **2:** 860-866.
- Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N, Inamori Y. (2006). Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. *Microb Ecol* **52:** 253-266.
- Osaka T, Ebie Y, Tsuneda S, Inamori Y. (2008). Identification of the bacterial community involved in methane-dependent denitrification in activated sludge using DNA stable-isotope probing. *FEMS Microbiol Ecol* **64:** 494-506.
- Palmer K, Drake HL, Horn MA. (2009). Genome-derived criteria for assigning environmental *narG* and *nosZ* sequences to operational taxonomic units of nitrate reducers. *Appl Environ Microbiol* **75:** 5170-5174.
- Philippot L, Hallin S, Schloter M. (2007). Ecology of denitrifying prokaryotes in agricultural soil. *Adv Agron* **96**: 249-305.
- Pothier JF, Prigent-Combaret C, Haurat J, Moënne-Loccoz Y, Wisniewski-Dyé F. (2008). Duplication of plasmid-borne nitrite reductase gene *nirK* in the wheat-associated plant growth–promoting rhizobacterium *Azospirillum brasilense* Sp245. *Mol Plant-Microbe Interact* 21: 831-842.
- Radajewski S, Ineson P, Parekh NR, Murrell JC. (2000). Stable-isotope probing as a tool in microbial ecology. *Nature* **403**: 646-649.
- Rademaker J, Louws F, Versalovic J, de Bruijn F. (2008). Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In: Kowalchuk G, de Bruijn F, Head I, Akkermans A, van Elsas J (eds). *Molecular Microbial Ecology Manual*, 2nd edn. Springer: Dordrecht. pp 611-644.
- Rich JJ, Heichen RS, Bottomley PJ, Cromack K, Jr., Myrold DD. (2003). Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. *Appl Environ Microbiol* **69:** 5974-5982.
- Saito T, Ishii S, Otsuka S, Nishiyama M, Senoo K. (2008). Identification of novel *Betaproteobacteria* in a succinate-assimilating population in denitrifying rice paddy soil by using stable isotope probing. *Microbes Environ* **23:** 192-200.

- Sameshima-Saito R, Chiba K, Minamisawa K. (2006). Correlation of denitrifying capability with the existence of *nap*, *nir*, *nor* and *nos* genes in diverse strains of soybean bradyrhizobia. *Microbes Environ* **21:** 174-184.
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB *et al.* (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl Environ Microbiol* **75**: 7537-7541.
- Tago K, Ishii S, Nishizawa T, Otsuka S, Senoo K. (2011). The phylogenetic and functional diversities of denitrifying bacteria isolated from various rice paddy and rice-soybean rotation fields. *Microbes Environ*. **26:** 30-35.
- Tamura K, Dudley J, Nei M, Kumar S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. *Mol Biol Evol* **24:** 1596-1599.
- Thauer RK, Jungermann K, Decker K. (1977). Energy conservation in chemotrophic anaerobic bacteria. *Microbiol Mol Biol Rev* **41:** 100-180.
- Throbäck IN, Enwall K, Jarvis Å, Hallin S. (2004). Reassessing PCR primers targeting *nirS*, *nirK* and *nosZ* genes for community surveys of denitrifying bacteria with DGGE. *FEMS Microbiol Ecol* **49:** 401-417.
- Tiedje J (1994). Denitrifiers. In: Weaver R, Angle J, Bottomley P (eds). *Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties*. Soil Science Society of America: Madison. pp 245-267.
- Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM *et al.* (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. *Nature* **428**: 37-43.
- Wang Q, Garrity GM, Tiedje JM, Cole JR. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ Microbiol* **73**: 5261-5267.
- Xiong ZQ, Xing GX, Zhu ZL. (2006). Water dissolved nitrous oxide from paddy agroecosystem in China. *Geoderma* **136**: 524-532.

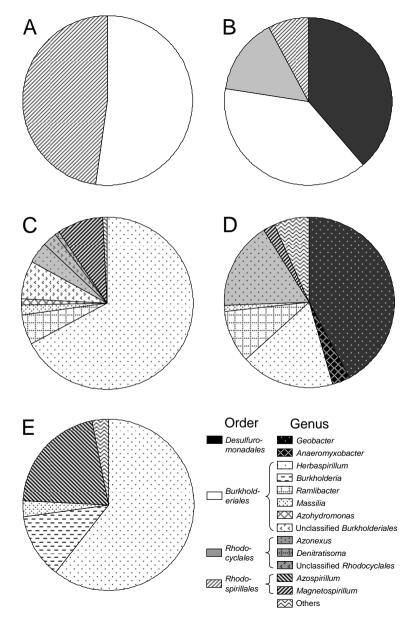
Yoshida M, Ishii S, Otsuka S, Senoo K. (2010). *nirK*-harboring denitrifiers are more responsive to denitrification- inducing conditions in rice paddy soil than *nirS*-harboring bacteria. *Microbes Environ* **25:** 45-48.

Zumft WG, Kroneck PMH. (2006). Respiratory transformation of nitrous oxide (N₂O) to dinitrogen by bacteria and archaea. *Adv Microb Physiol* **52:** 107-227.


FIGURE LEGENDS


- Figure 1. Time-course changes in ${}^{46}N_2O$ ($-\bullet-$), ${}^{30}N_2$ ($-\bullet-$), ${}^{45}CO_2$ ($-\circ-$), and ${}^{44}CO_2$ ($-\triangle-$) in soil microcosms amended with ${}^{46}N_2O$ and ${}^{13}C$ -labeled succinate. Mean \pm SE (n = 3) is shown. An arrow indicates the time when DNA was extracted (24 h).
- Figure 2. CsCl density gradient centrifugation of DNA extracted from soil. Buoyant densities of the light (L), heavy (H), and middle (M) density fractions were 1.70–1.715, 1.715–1.73, and 1.73–1.75 g cm⁻³, respectively. Legend: 13SN sample (-■-), 13Su sample (-●-), 12SN sample (-□-), and 12Su sample (-□-).
- Figure 3. Community structure assessed by DGGE analysis. (A) DGGE banding profile from each fraction separated by CsCl density gradient centrifugation. Gel region shown is between 44% and 54% denaturant concentrations, as estimated by the DGGE marker II (Nippon Gene, Tokyo, Japan). L, M, and H correspond to the light, middle, and heavy DNA fractions as shown in Fig. 2. Bands specific to the H fractions of each sample (indicated by arrows) were excised, cloned, and sequenced (Table S2). (B) Principal component analysis plot based on the DGGE profile. The normalized location and intensity of each DGGE band were used (Ishii et al., 2009a). The numbers in the plot correspond to the lanes in panel A. The percentages in parentheses are the percentages of variation explained by the components.


- Figure 4. Taxonomic classification of the (A) DGGE band excised from the H fraction of the 13SN sample, (B) DGGE band excised from the H fraction of the 13Su sample, (C) clones obtained from the H fraction of the 13SN sample, (D) clones obtained from the H fraction of the 13Su sample, and (E) strains obtained by the FSC isolation method. Taxonomic assignment was performed using the Ribosomal Database Project classifier program (Wang *et al.*, 2007) at the order and genus level for the DGGE results (*ca.* 180 bp) and clone library results (*ca.* 1450 bp), respectively. Relative intensities of the DGGE bands (see Table S2) correspond to the fraction of the assigned taxon.
- Figure 5. Phylogenetic relationships between SIP clones and FSC isolates. The phylogenetic trees were constructed based on (A) the 16S rRNA gene sequences and (B) deduced *nosZ* amino acid sequences, by using the maximum likelihood method.


 Clones obtained from the H fractions of the 13SN and 13Su samples are shown in green closed circle and blue open circle, respectively; strains obtained by the FSC isolation method are shown in red square. Taxonomic assignment of the strains obtained by the FSC isolation method was performed using the Ribosomal Database Project classifier program (Wang *et al.*, 2007). The numbers in parentheses are the numbers of clones in the operational taxonomic units (for SIP) or the number of strains that have the identical DNA fingerprinting patterns as the

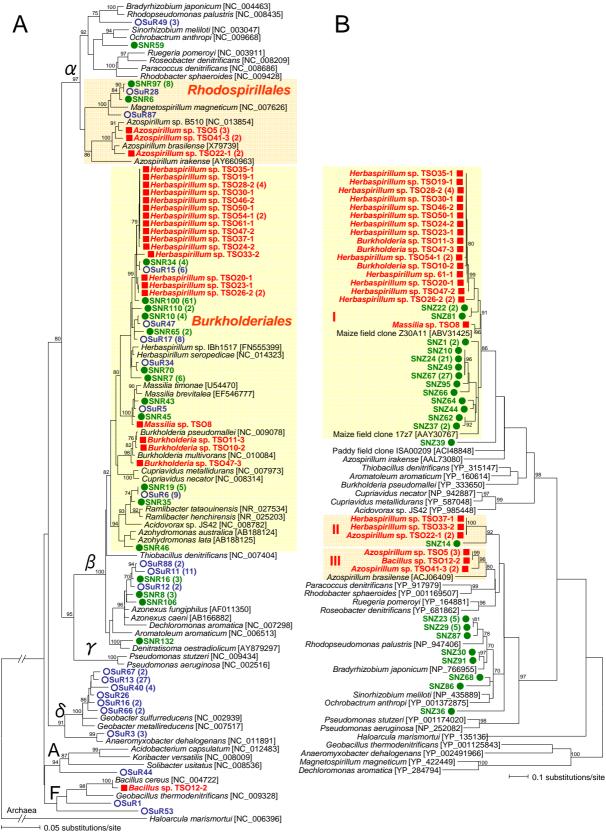

representatives (for FSC isolation). The accession numbers of the reference strains in the DDBJ/EMBL/GenBank databases are indicated in brackets. The bootstrap values (>70%) from 500 replicates are indicated next to the branches.

Table S1. Denitrification activity and the nucleotide sequence accession numbers for 16S rRNA gene, *nosZ*, and *nirS* of the strains obtained in this study.

Genus	Strain	Denitrification	16S rRNA	nosZ	nirS	
Genus	Strain	activity [%] ^a	105 INNA	nosz		
	TSO5	100	AB545618	AB545661	_b	
	TSO7	100	AB545619	AB545687	-	
	TSO9	90	AB545621	AB545688	-	
Azospirillum	TSO22-1	55	AB545647	AB545697	AB545721	
	TSO32-4	43	AB545633	AB545690	AB545710	
	TSO35-2	30	AB545654	AB545698	-	
,	TSO41-3	10	AB545635	AB545691	-	
	TSO19-1	39	AB545622	AB545662	AB545699	
	TSO20-1	23	AB545623	AB545663	AB545700	
	TSO23-1	30	AB545624	AB545664	AB545701	
	TSO24-2	32	AB545648	AB545677	AB545722	
	TSO26-2	41	AB545626	AB545666	AB545703	
	TSO28-2	37	AB545628	AB545667	AB545705	
	TSO29-2	48	AB545630	AB545669	AB545707	
	TSO30-1	53	AB545649	AB545678	AB545723	
	TSO32-1	31	AB545632	AB608727	AB545709	
	TSO33-2	35	AB545652	AB545681	AB545726	
Herbaspirillum	TSO35-1	40	AB545653	AB545682	AB545727	
	TSO37-1	88	AB545634	AB545671	AB545711	
	TSO45-3	41	AB545636	AB608728	AB545712	
	TSO46-2	29	AB545637	AB545672	AB545713	
	TSO47-2	33	AB545638	AB545673	AB545714	
	TSO49-1	27	AB545655	AB545683	AB545728	
	TSO50-1	34	AB545640	AB545674	AB545716	
	TSO54-1	33	AB545641	AB545675	AB545717	
	TSO56-1	56	AB545657	AB545685	AB545730	
	TSO56-2	32	AB545658	AB545686	AB545731	
	TSO61-1	47	AB545659	AB608729	AB545732	
	TSO10-2	0		AB545694	AB545720	
Burkholderia	TSO11-3	0	AB545645	AB545695	_	
	TSO47-3	0		AB545692	AB545715	
Massilia	TSO8	0		AB545689	-	
Bacillus	TSO12-2	3	AB545646	AB545696	-	

 $^{^{\}text{a}}\text{proportion}$ of nitrate reduced to N_2O in the medium, as determined by acetylene block method (n=2)

^b-, not detected by PCR

Table S2. Concentration of N_2O after 24-h incubation

Amount of succinate added	N ₂ O conc	·.
(mg C g ⁻¹ soil)	$(\%)^{a}$	
0.50	2.94 ± 0.70	A
0.25	3.55 ± 0.32	A
0.10	3.68 ± 0.25	AB
0.05	4.52 ± 0.05	BC
0.025	4.69 ± 0.07	C
0.01	4.58 ± 0.07	C
0	4.77 ± 0.01	C

^aMeans \pm SE followed by the same letter are not significantly different (P > 0.05, n = 3)

Table S3. Concentration of Fe²⁺ in soil samples

Sample ^a	Additive	Fe ²⁺ conc. (g kg ⁻¹	soil)b
BI	-	2.22 ± 0.28	A
Su	Succinate only	3.52 ± 0.27	В
SN	Succinate $+ N_2O$	2.92 ± 0.35	AB
N2O	N ₂ O only	2.43 ± 0.32	A

 a BI, unincubated control; Su, soil sample incubated with 0.1 mg C succinate; SN, soil sample incubated with 0.1 mg C succinate and 5% N₂O; N2O, soil sample incubated with 5% N₂O.

^bMeans \pm SE followed by the same letter are not statistically different (P > 0.05, n = 3)

Table S4. Taxonomic assignment of the 16S rRNA gene clones recovered from the DGGE bands shown in Fig. 3A. Relative intensity of each band is also shown.

Comple	Band	Accession	Relative	Classifier results (bootstrap value %)					
Sample	ID	ID number intensity (9					Genus		
13Su	a	AB608638	15.8	Desulfuromonadales	100%	Geobacteraceae	99%	Geobacter	99%
	b	AB608639	6.0	Desulfuromonadales	97%	Geobacteraceae	96%	Geobacter	96%
	c	AB608640	11.4	Burkholderiales	99%	Oxalobacteraceae	99%	Massilia	75%
	d	AB608641	4.8	Burkholderiales	100%	Comamonadaceae	99%	Ramlibacter	48%
	e	AB608642	13.9	Desulfuromonadales	98%	Geobacteraceae	85%	Geobacter	85%
	f	AB608643	11.4	Burkholderiales	98%	Burkholderiaceae	88%	Cupriavidus	54%
	g	AB608644	2.7	Desulfuromonadales	88%	Geobacteraceae	69%	Geobacter	69%
	h	AB608645	11.3	Burkholderiales	100%	Comamonadaceae	99%	Ramlibacter	51%
	i	AB608646	15.0	Rhodocyclales	100%	Rhodocyclaceae	100%	Thauera	43%
	j	AB608647	7.7	Rhodospirillales	100%	Rhodospirillaceae	100%	Azospirillum	100%
	k	AB608648	1.7	Burkholderiales	96%	Burkholderiaceae	91%	Ralstonia	39%
	1	AB608649	6.7	Burkholderiales	98%	Burkholderiaceae	87%	Cupriavidus	58%
	m	AB608650	2.5	Burkholderiales	96%	Oxalobacteraceae	94%	Massilia	41%
	n	AB608651	2.8	Burkholderiales	99%	Oxalobacteraceae	97%	Massilia	41%
	0	AB608652	3.2	Burkholderiales	76%	Burkholderiaceae	80%	Cupriavidus	42%
13SN	p	AB608653	4.1	Burkholderiales	100%	Comamonadaceae	100%	Ramlibacter	56%
13811	q	AB608654	6.1	Rhodospirillales	84%	Rhodospirillaceae	77%	Magnetospirillum	65%
	r	AB608655	25.2	Burkholderiales	92%	Burkholderiaceae	74%	Cupriavidus	31%
	S	AB608656	6.0	Burkholderiales	99%	Comamonadaceae	98%	Ramlibacter	53%
	t	AB608657	9.7	Rhodospirillales	94%	Rhodospirillaceae	94%	Magnetospirillum	91%
	u	AB608658	23.4	Rhodospirillales	91%	Rhodospirillaceae	87%	Magnetospirillum	84%
	V	AB608659	8.5	Rhodospirillales	74%	Rhodospirillaceae	72%	Magnetospirillum	30%
12SN	W	AB608660	29.6	Bacillales	100%	Bacillaceae	99%	Bacillus	77%
	X	AB608661	44.8	Rhodospirillales	96%	Rhodospirillaceae	92%	Magnetospirillum	85%
	у	AB608662	25.6	Clostridiales	80%	Incertae Sedis XVIII	79%	Symbiobacterium	79%