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Abstract: Coupled-mode and coupled-power theories are described for 
multi-core fiber design and analysis. First, in order to satisfy the law of 
power conservation, mode-coupling coefficients are redefined and then, 
closed-form power-coupling coefficients are derived based on exponential, 
Gaussian, and triangular autocorrelation functions. Using the coupled-mode 
and coupled-power theories, impacts of random phase-offsets and 
correlation lengths on crosstalk in multi-core fibers are investigated for the 
first time. The simulation results are in good agreement with the 
measurement results. Furthermore, from the simulation results obtained by 
both theories, it is confirmed that the reciprocity is satisfied in multi-core 
fibers. 

©2011 Optical Society of America 
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1. Introduction 

Multi-core fibers (MCF) are now intensively studied for space-division multiplexing (SDM). 
Low-crosstalk design is indispensable for realizing SDM-based long-haul transmission. 
Recently, a coupled-mode theory (CMT) and a coupled-power theory (CPT) have been 
introduced to estimate inter-core crosstalk in various MCF [1–5]. In CMT [1,2], a phase offset 
between two cores is treated as a random variable because it is easily fluctuated by bending 
and twisting MCFs. Although average crosstalk values calculated from CMT agree well with 
the measurement results [2], an appropriate interval (hereafter called segment length) for 
applying random phase-offsets to all cores has remained unclear. Furthermore, in the earlier 
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CMT [1,2], conventional coupled-mode equations (CME) without higher-order terms are 
employed and the mode-coupling coefficients (MCC) are not symmetric. Therefore, total 
power may not be conserved. In CPT [3–5], on the other hand, the power-coupling 
coefficients (PCC) for MCF have not been fully investigated and therefore, there is about 10-
dB difference between the simulation and the measurement results [4]. 

In this paper, first, in order to satisfy the law of power conservation, we redefine MCCs 
and reveal that in the CMT analysis, the crosstalk in bent and twisted MCF is strongly 
dependent on the segment length. Then, for the CPT analysis, we propose closed-form PCCs 
based on exponential autocorrelation function (EAF), Gaussian autocorrelation function 
(GAF), and triangular autocorrelation function (TAF) for describing random imperfections 
along fiber direction and reveal that the crosstalk in bent and twisted MCF is also strongly 
dependent on the correlation length included in the autocorrelation functions. The simulation 
results obtained by CMT and CPT with EAF and TAF are in good agreement with the 
measurement results [4]. Furthermore, from the simulation results obtained by both theories, it 
is confirmed that the reciprocity is satisfied in MCFs. Propagation constants of each core and 
MCCs between two cores in a straight MCF necessary for the solutions of CMT and CPT are 
accurately evaluated with the finite element method [6] which can treat measured refractive-
index profiles. 

2. Coupled-mode theory 

2.1 Redefinition of mode-coupling coefficients 

Conventional coupled-mode equations (CME) without higher-order terms for bent multi-core 
fibers (MCF) shown in Fig. 1(a) are written as [1,2] 

 ( ) exp( ) ( )m

mn n mn

n m

dA
j A z j z f z

dz
κ β

≠

= − ∆∑  (1) 

where Am is the mode amplitude in core m, z is the propagation direction, κmn is the mode-

coupling coefficient (MCC) from core n to core m, ∆βmn = βm−βn = −∆βnm is the propagation- 
constant difference with βm and βn being the propagation constants of modes in core m and 
core n, respectively, and f is the phase function describing bending and twisting effects. The 

phase function is separated into two parts. One is the deterministic part, exp[j(φm−φn)], and the 
other is the random part, δf, 

 ( ) exp[ ( )] ( )
m n

f z j f zφ φ δ= −  (2) 

 

Fig. 1. Schematics of (a) bent multi-core fiber and (b) fiber cross-section. 

with φm being the phase in core m caused by bend and/or twist. For regular 7-core fibers as 

shown in Fig. 1(b), φ1 = 0 and φ2 to φ7 are expressed as [2] 
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where Λ is the core pitch, Rb is the bending radius, and θm, 

 
0

( ) ( 2)
3

m
z z m

π
θ γ θ= + − +  (4) 

with γ and θ0 being the twist pitch and the twist offset, respectively. The phase in core m, φm, 
for arbitrarily located cores is also reported in [1]. 

For loss-less MCFs, MCCs should be symmetric, κmn = κnm. However, for non-identical 
cores, they are not symmetric and therefore, when using conventional CMEs, total power is 
not conserved. In this case, using the cross-power term, Cmn = Cnm, the relation between κmn 
and κnm is rewritten as [7,8] 

 
nm mn mn mn

Cκ κ β= − ∆  (5) 

and the maximum power-conversion efficiency from core n to core m is also rewritten as [7,8] 

 
2

2

( / 2)

( / 2)

mn mn mn

mn

mn nm mn

C
F

κ β
κ κ β

− ∆
=

+ ∆
 (6) 

Noting that for identical cores (κmn = κnm, Cmn = 0), the maximum power-conversion 
efficiency is reduced to 

 
2

2 2
( / 2)

mn

mn

mn mn

F
κ

κ β
=

+ ∆
 (7) 

We redefine MCCs as 

 
2

mn

mn mn mnC
β

κ
∆

Κ ≡ −   (8) 

and 

 
2 2

nm mn

nm nm nm nm mnC C
β β

κ κ
∆ ∆

Κ ≡ − = +  (9) 

Considering Eq. (5), the redefined MCCs, Kmn and Knm, can be written as average of usual 
MCCs, κmn and κnm, 

 
2

mn nm

mn nm

κ κ+
Κ = = Κ  (10) 

The redefined MCCs are symmetric and therefore, we can use the conventional CMEs and 
the law of power conservation is satisfied. The average MCCs have been introduced to the 
analysis of propagation constants of super-modes in coupled waveguides [9] but have not 
been applied to power-coupling problems. 

In order to consider the random part of phase function, δf, the total link is divided into 
finite segments of arbitrary but equal length, ds, as shown in Fig. 2, and then, random phase-

offsets generated by using uniform random numbers, exp(jφrnd), are applied to all cores at 
every segment. The segment length used in CMT is thought to be a stochastic parameter 
corresponding to the correlation length used in CPT. 
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Fig. 2. Random phase-offsets applied to all cores at every segment. 

2.2 Simulation results 

We consider a quasi-homogeneous 7-core fiber as shown in Fig. 3 [4]. The core pitch is about 
39.2 µm and the diameter of center core (core 1) is 8.05 µm. The diameters of outer cores are 
assumed to be 7.63 µm (core 2), 7.83 µm (core 3), 7.69 µm (core 4), 7.93 µm (core 5), 7.70 
µm (core 6), and 7.94 µm (core 7) used for simulation in [4]. The outer cores whose diameters 
are categorized into two groups (cores 2, 4, and 6, and cores 3, 5, and 7) are arranged 
alternately circumference direction. The relative refractive-index differences of all cores are 
assumed to be 0.4%. The mode-field diameters range from 9.57 to 9.77 µm at a wavelength of 
1550 nm. 

 

Fig. 3. Cross-section of a quasi-homogeneous 7-core fiber [4]. 

 

Fig. 4. Bending-diameter dependence of crosstalk calculated from coupled-mode theory. 
Dotted line: ds = 0.01 m, solid line: ds = 0.05 m, dashed line: ds = 0.1 m, dashed and dotted 
line: ds = 0.5 m, closed circles: measured data [4]. 

Figure 4 shows the bending-diameter dependence of crosstalk from center core to outer 
cores in the quasi-homogeneous 7-core fiber (see Fig. 3) with length of 100 m [4], where the 
twist rate is assumed to be 5 turns per 100 m [4] (the crosstalk distribution is less sensitive to 
the twist rate [2]) and the crosstalk values are averaged over 100 samples. The crosstalk is 
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degraded at small radii due to index-matching, in other words, phase-matching resonances 
between adjacent cores [1,2]. In the phase-matching region, the crosstalk is independent of the 
segment length and therefore, bend perturbations are crucial. In the non-phase-matching 
region, on the other hand, the crosstalk is strongly dependent on the segment length and 
therefore, the crosstalk is dominated by the statistical properties. The simulation results with 
ds = 0.05 m agree well with the measurement results [4]. 

3. Coupled-power theory 

3.1 Derivation of power-coupling coefficients 

Coupled-power equations (CPE) are written as [10] 

 ( )[ ( ) ( )]m

mn n m

n m

dP
h z P z P z

dz ≠

= −∑  (11) 

where Pm is the average power in core m and hmn is the power-coupling coefficient (PCC). As 
PCCs should be symmetric, the starting point for deriving PCCs is CMEs with redefined 
MCCs, Kmn = Knm. In order to obtain longitudinally varying, in other words, local PCCs, 

considering Eq. (3) and defining the local propagation-constant difference at z = z’, 
mn

β ′∆ , 

 
b

[ cos ( ) cos ( )]
( )

mn mn m m n nz z
R z

β β β θ β θ
Λ

′ ′ ′∆ = ∆ + −
′

 (12) 

CMEs with redefined MCCs are reduced to 

 ( ) exp( ) ( )m

mn n mn

n m

dA
j A z j z f z

dz
β δ

≠

′= − Κ − ∆∑  (13) 

The remaining random part of phase function, δf, is assumed to be stationary and the 

ensemble average is equal to zero, ( ) 0f zδ = . Using the solutions of Eq. (13), the average 

power at a point z sufficiently close to z = 0, 
2

( ) ( )
m m

P z A z= , is given by [1,10] 
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 (14) 

Rewriting this equation as 

 2 *

0 0
( ) (0) exp[ ( )] ( ) ( )

z z

m mn n mn
P z P d j f f dη β ξ η δ ξ η ξ′= Κ ∆ −∫ ∫  (15) 

and changing the variable, ζ = ξ−η, we obtain 

 
2 *

0 0
( ) (0) exp( ) ( ) ( )

z z

m mn n mnP z P d j f f dη β ζ δ η ζ δ η ζ ′= Κ ∆ +  ∫ ∫  (16) 

The random part of phase function, δf, is a stationary random process and therefore, it has 

an autocorrelation function, 
*

( ) ( ) ( )R f fζ δ η ζ δ η= + , and the variance is equal to one, 

R(0) = 1. Noting that the first integral in Eq. (16) yields the fiber length, z, and that the 
autocorrelation function contributes only over the order of the correlation length, Eq. (16) is 
rewritten as 

 
2

( ) (0) exp( ) ( )
2

mn

m n mnP z zP j R dβ ζ ζ ζ
∞

−∞

Κ
′= ∆∫  (17) 
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Finally, we obtain the following longitudinally varying, local PCC with the power spectral 

density, ( )
mn

S β ′∆ , which is the Fourier transform of the autocorrelation function: 

 
2( )

( )
(0) 2

m mn

mn mn

n

P z
h S

zP
β

Κ
′= = ∆  (18) 

Here, we consider three types of autocorrelation functions, exponential autocorrelation 
function (EAF), 

 
c

( ) expR
d

ζ
ζ

 
= − 

 
 (19) 

Gaussian autocorrelation function (GAF), 

 

2

c

( ) expR
d

ζ
ζ

  
 = − 
   

 (20) 

and triangular autocorrelation function (TAF) 

 
c

c

c

1 ,
( )

0,

d
R d

d

ζ
ζ

ζ

ζ


− ≤

= 
 >

 (21) 

where dc is the correlation length. The corresponding PCCs are, for EAF, 

 
[ ]

2

c

2

c

( )
1 ( )
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d
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z dβ

Κ
=
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 (22) 

for GAF, 
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c c
( )

( ) exp
2 2

mn mn
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d z d
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π β ′Κ ∆  
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and for TAF, 
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[ ]
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where ( )
mn

zβ ′∆  is the local propagation-constant difference defined as Eq. (12). In the earlier 

CPT [3–5], the following local PCC was adopted: 

 

[ ]

2

22

4
( )

4 ( )

mn

mn

mn mn

h z

zπ β

Κ
=

′Κ + ∆
 (25) 

which is defined as the ratio of maximum power-conversion efficiency to coupling length. 
EAF and GAF have been introduced to microbending-loss analysis [11,12]. 

3.2 Simulation results 

Figure 5 shows the bending-diameter dependence of crosstalk in the quasi-homogeneous 7-
core fiber (see Fig. 3) calculated by CPT with EAF. In this figure, the results of the earlier 
CPT based on Eq. (25) [4] are also plotted. In the phase-matching region, the crosstalk is 
independent of the correlation length. In the non-phase-matching region, on the other hand, 
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the crosstalk is strongly dependent on the correlation length. As in CMT with segment length 
of 0.05 m, the simulation results with correlation length of 0.05 m agree well with the 
measurement results [4] and therefore, the correlation length of this fiber is thought to be 5 cm 
or so. 

 

Fig. 5. Bending-diameter dependence of crosstalk calculated from coupled-power theory with 
exponential autocorrelation function. Dotted line: dc = 0.01 m, solid line: dc = 0.05 m, dashed 
line: dc = 0.1 m, dashed and dotted line: dc = 0.5 m, dashed and double-dotted line: Eq. (25) 
[4], closed circles: measured data [4]. 

Figure 6 shows the propagation-distance dependence of PCCs between center core and 
outer cores for the bending diameter of 250 mm. We can see that the phase-matching 
resonances do occur in all cores. The average values of PCCs over the twist pitch, in this case, 
20 m, are almost the same for all the correlation lengths. This is the reason why in the phase-
matching region, the crosstalk is independent of the correlation length. 

In Fig. 7, the bending diameter is taken as 1,000 mm. The phase-matching resonances do 
not occur in cores 2, 4, and 6, and the average values of PCCs over the twist pitch are 
decreased with increasing correlation length, resulting in the correlation-length dependence of 
crosstalk in the non-phase-matching region. 

 

Fig. 6. Propagation-distance dependence of power-coupling coefficients for bending diameter 
of 250 mm. Dotted line: dc = 0.01 m, solid line: dc = 0.05 m, dashed line: dc = 0.1 m, dashed 
and dotted line: dc = 0.5 m. 
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Fig. 7. Propagation-distance dependence of power-coupling coefficients for bending diameter 
of 1,000 mm. Dotted line: dc = 0.01 m, solid line: dc = 0.05 m, dashed line: dc = 0.1 m, dashed 
and dotted line: dc = 0.5 m. 

Figure 8 shows the simulation results obtained by CPT with GAF. The crosstalk behaviors 
are well simulated in the phase-matching region because in this region, the crosstalk is 
independent of statistical properties. However, in the non-phase-matching region, the 
crosstalk behaviors are not well simulated. 

The simulation results in Fig. 9 are obtained by CPT with TAF and surprisingly, are in 
excellent agreement with those of CMT (see Fig. 4). In CMT, in order to obtain sufficiently 
accurate average values of crosstalk, we should simulate a large number of samples, in this 
simulation, 100 samples. In CPT, on the other hand, the average crosstalk values can be 
obtained by only one simulation. 

 

Fig. 8. Bending-diameter dependence of crosstalk calculated from coupled-power theory with 
Gaussian autocorrelation function. Dotted line: dc = 0.01 m, solid line: dc = 0.05 m, dashed 
line: dc = 0.1 m, dashed and dotted line: dc = 0.5 m, closed circles: measured data [4]. 
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Fig. 9. Bending-diameter dependence of crosstalk calculated from coupled-power theory with 
triangular autocorrelation function. Dotted line: dc = 0.01 m, solid line: dc = 0.05 m, dashed 
line: dc = 0.1 m, dashed and dotted line: dc = 0.5 m, closed circles: measured data [4]. 

Finally, in order to check whether the reciprocity is satisfied in MCFs or not, the 
simulation results obtained by CMT and CPT with TAF are shown in Figs. 10 and 11, 
respectively. The left figures show the crosstalk between center core 1 and outer core 4, the 
middle figures show the crosstalk between center core 1 and outer core 5, and the right figures 
show the crosstalk between outer cores 4 and 5. From these results, we can see that the 
reciprocity is satisfied. 

 

Fig. 10. Bending-diameter dependence of crosstalk calculated from coupled-mode theory. Left 
figures: from core 1 to core 4 (top) and from core 4 to core 1 (bottom), middle figures: from 
core 1 to core 5 (top) and from core 5 to core 1 (bottom), right figures: from core 4 to core 5 
(top) and from core 5 to core 4 (bottom). Dotted line: dc = 0.01 m, solid line: dc = 0.05 m, 
dashed line: dc = 0.1 m, dashed and dotted line: dc = 0.5 m, closed circles: measured data [4]. 
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Fig. 11. Bending-diameter dependence of crosstalk calculated from coupled-power theory with 
triangular autocorrelation function. Left figures: from core 1 to core 4 (top) and from core 4 to 
core 1 (bottom), middle figures: from core 1 to core 5 (top) and from core 5 to core 1 (bottom), 
right figures: from core 4 to core 5 (top) and from core 5 to core 4 (bottom). Dotted line: dc = 
0.01 m, solid line: dc = 0.05 m, dashed line: dc = 0.1 m, dashed and dotted line: dc = 0.5 m, 
closed circles: measured data [4]. 

4. Conclusion 

Coupled-mode and coupled-power theories were revised for multi-core fiber design and 
analysis. First, to satisfy the law of power conservation, the mode-coupling coefficients were 
redefined. Then, the closed-form power-coupling coefficients were derived based on 
exponential, Gaussian, and triangular autocorrelation functions. The coupled-power theory is 
effective for investigating the crosstalk behaviors in multi-core fibers and especially, the 
triangular autocorrelation function works well. It was shown that the statistical properties of 
bent multi-core fibers are different between the phase-matching region and the non-phase-
matching region. The correlation length for which we have no reliable information can be 
predicted by comparing the results of coupled-power theory with the measurement results. 
Furthermore, from the simulation results obtained by both theories, it was confirmed that the 
reciprocity is satisfied in multi-core fibers. 
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