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QTL Analysis Identifies a Modifier Locus of Aganglionosis
in the Rat Model of Hirschsprung Disease Carrying
Ednrbsl Mutations
Ruihua Dang, Daisuke Torigoe, Nobuya Sasaki, Takashi Agui*

Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan

Abstract

Hirschsprung disease (HSCR) exhibits complex genetics with incomplete penetrance and variable severity thought to result
as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the
developing gut. As reported previously, when the same null mutation of the Ednrb gene, Ednrbsl, was introgressed into the
F344 strain, almost 60% of F344-Ednrbsl/sl pups did not show any symptoms of aganglionosis, appearing healthy and
normally fertile. These findings strongly suggested that the severity of HSCR was affected by strain-specific genetic factor (s).
In this study, the genetic basis of such large strain differences in the severity of aganglionosis in the rat model was studied
by whole-genome scanning for quantitative trait loci (QTLs) using an intercross of (AGH-Ednrbsl6F344-Ednrbsl) F1 with the
varying severity of aganglionosis. Genome linkage analysis identified one significant QTL on chromosome 2 for the severity
of aganglionosis. Our QTL analyses using rat models of HSCR revealed that multiple genetic factors regulated the severity of
aganglionosis. Moreover, a known HSCR susceptibility gene, Gdnf, was found in QTL that suggested a novel non-coding
sequence mutation in GDNF that modifies the penetrance and severity of the aganglionosis phenotype in EDNRB-deficient
rats. A further identification and analysis of responsible genes located on the identified QTL could lead to the richer
understanding of the genetic basis of HSCR development.
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Introduction

Hirschsprung disease (HSCR) is a congenital malformation

characterized by the absence of intramural ganglion cells along

variable lengths of the distal gut. Due to the lack of ganglia, the

stool cannot be passed through the colon, and the bowel wall is

dilated [1–4]. The disorder is classified into short-segment (S-

HSCR, 80%), long-segment (L-HSCR, 15%), or total colonic

aganglionosis (TCA, 5%) [5]. HSCR is observed in about 1/5000

live birth and is more frequent in males than in females (4:1), a

difference most prominent in S-HSCR [6]. Several genes have

been implicated in the development of HSCR, including the RET

proto-oncogene [7–9], endothelin receptor B gene (EDNRB) [10–

17], endothelin-3 gene (EDN3) [18,19], glial-cell-line-derived

neurotrophic factor (GDNF) [20–22], SOX10 [23,24], NRTN

[25], ECE1 [26], ZFHX1B [27], PHOX2B [28], KIAA1279 [29],

TCF4 [26]. However, mutations in these genes explain only a

minority of cases and the vast majority (80%) of HSCR heritability

remains unknown [30]. HSCR displays a highly variation in

penetrance and phenotypes by gender, familial incidence, segment

length of aganglionosis and associated phenotypes. The variable

penetrance and expressivity of this disease are attributed to the

complex genetic interactions between the known susceptibility loci

and undiscovered susceptibility or modifier loci in the genetic

background that modulates the ability of enteric neural crest cells

to populate the developing gut [31].

Many researchers have used inbred models to search the un-

known susceptibility or modifier genes of aganglionosis [31,32].

Moreover, mouse models, in which genetic background and input

alleles can be controlled in genome-wide and candidate gene

approaches, are a strong tool to identify the novel genetic factors or

modifiers that influence the variable penetrance and inheritance

patterns of complex diseases like HSCR. Spotting lethal (sl) is a

spontaneous null mutation that has a 301 bp deletion in the rat

Ednrb gene that results in the absence of a functional receptor

protein [33]. In the previous study, we established an AGH-Ednrbsl

[34] inbred strain carrying the sl mutation, further, introgressed this

mutation into LEH and F344 strains to produce two congenic

strains: LEH-Ednrbsl and F344-Ednrbsl [34]. In AGH-Ednrbsl/sl rats,

only 20% of pups survived until weaning; whereas in F344-Ednrbsl/sl

rats, 100% of pups survived to weaning. Interestingly, almost 60%

of F344-Ednrbsl/sl pups did not show any symptoms of aganglio-

nosis, appearing healthy and normally fertile and showing normal

body weight gain. Thus, we concluded that variation in the

penetrance and survival was attributable to distinct differences in

the severity of aganglionosis, and resistant genes in the genetic

background of F344 significantly modulated the severity of the

aganglionosis phenotype.

This study focuses on the variation in aganglionosis between

individual Ednrbsl-mutated rats and uses this variation to identify

modifiers that are influencing the aganglionosis aspect of the

phenotype. These studies have been facilitated by the ability to
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control genetic background in inbred lines of Ednrbsl rats that are

not possible in patient studies.

Results

Evaluation of aganglionosis as a quantitative trait in F2

Ednrbsl/sl rats
Homozygous Ednrbsl/sl rats showed aganglionosis phenotypes. In

our previous study, we found that when the sl mutation was

introgressed into the F344 strain, the phenotype of aganglionosis was

strongly modified [34]. As shown in Fig. 1, AGH-Ednrbsl/sl rats at

postnatal 14 day exhibited abnormal dilation of the intestines

resulting from the absence of ganglion cells in a long segment

beyond caecum. In contrast, in F344-Ednrbsl/sl pups at postnatal 14

day, an enlarged small intestinal phenotype (mega small intestine)

was not found. We have confirmed that the variation in the

expressivity of this disease between these two strains was caused from

the extent of aganglionosis by whole-mount acetylcholinesterase

(AChE) staining [34]. We used the same method to establish the

range of phenotypes among the F2 (AGH6F344) Ednrbsl/sl

progenies. The F2 animals (n = 410) were produced by heterozygotes

mating between AGH and F344 strains and then 96 Ednrbsl/sl pups

were selected to phenotype based on the difference in skin

pigmentation pattern between homologous mutants and other

genotype rats or genotyping for the Ednrbsl mutation (for albino

pups). The number of Ednrbsl/sl pups was consistent with the

anticipated 25% transmission ratio. Microscopic examination of

Ednrbsl/sl intestines stained by AChE was used to appraise the length

of aganglionosis gut, then the extent of aganglionosis was calculated

as a ratio of length of the aganglionosis intestine to the length of the

entire large intestine used as a quantitative trait in individual

animals. We also recorded the gross intestine weight and body

weight of pups at postnatal 14 day, and to fully capture the difference

between sick and healthy ones, the ratio of gross intestine weight

(gross intestine weight/body weight) was calculated, which demon-

strates the expressivity of megacolon directly. We found that there

was a high correlation between the aganglionosis extent and the

ratio of gross intestine weight in F2 populations (Fig. 2). This showed

that the ratio of aganglionosis extent is appropriate as a quantitative

trait for the severity of aganglionosis. The specificity and sensitivity

of the extent of aganglionosis as a quantitative trait were confirmed

by following experiments using MapManager QTXb.

The range of the aganglionosis extent for each progeny is

presented as black characters in Fig. 3A, which was fairly scattered

for F2 intercross progenies, while that of the AGH and F344

progenies tended to fall on one of the two extremes. The mean

ratio of the F2 progenies (0.95 in ratio of aganglionosis extent)

composed of each homozygote of AGH and F344, and the

heterozygotes were nearly the same as that of the F1 progenies

(1.08 in ratio of aganglionosis extent).

In Fig. 3B and 3C, individual traits of the male and female F2

progenies are arranged by size of the ratio of aganglionosis extent.

The trait-value graphs in both males and females showed similar

gentle curves, which suggests that the mild aganglionosis extent in

F344- Ednrbsl/sl rats are under the control of polygenic inheritance.

QTL analysis identifies modifiers of aganglionosis severity
in Ednrbsl/sl rats

Final results of interval mapping were considered suggestive,

significant, or highly significant linkages when the threshold likelihood

ratio statistics (LRS) were 9.9, 20.2, and 30.4, respectively. As shown in

Fig. 4, the highest linkage over the significant level (LRS.20.2)

appeared on Chr 2. The maximum LRS score was 23.9 on Chr 2.

Linkage details were shown in Fig. 5. The locus at the D2Mit5 marker

Figure 1. Comparison of the expressivity of aganglionosis. 14-
day-old AGH-Ednrbsl/sl rats (left) show severe symptoms of aganglio-
nosis, but not in F344-Ednrbsl/sl rats (right).
doi:10.1371/journal.pone.0027902.g001

Figure 2. Correlation analysis between the severity of agan-
glionosis and the ratio of gross intestine weight. Correlation
analysis between the severity of aganglionosis (aganglionosis length/
large intestine length) and the ratio of gross intestine weight (gross
intestine weight/body weight) shows a high correlation between the
two traits.
doi:10.1371/journal.pone.0027902.g002

QTL Analysis for Modifier Loci of Aganglionosis
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position, showing the highest linkage to the severity of aganglionosis

(LRS = 23.9), was designated ‘Lrag1 (Locus of resistance to aganglionosis 1)’.

The epistatic interaction between markers also was searched by

MapManager QTXb, but no significant interaction was found.

Allele effects of Ednrbsl/sl modifier loci
Modifier loci either can increase susceptibility and severity of

phenotype or can act protectively to confer resistance to disease in

the face of a predisposing mutation [35]. To assess the effects of

individual Ednrbsl/sl modifiers on the severity of aganglionosis, we

evaluated complete genotype information in the total F2 dis-

tribution. F344 alleles at modifier locus on chromosome 2

decreased the extent of gut length affected by aganglionosis

(Fig. 6). The allele effect observed was approximately dominant,

with heterozygotes exhibiting phenotypes equal to the phenotypes

of the homozygous animals of F344 alleles.

Figure 3. The range of the aganglionosis extent. (A) The range of the aganglionosis extent in 14-day old pups from AGH-Ednrbsl/sl, F344-Ednrbsl/sl,
F1, and F2. Mean values are indicated by horizontal lines. Distribution of the severity of aganglionosis in male (B) and female (C) F2 progenies.
doi:10.1371/journal.pone.0027902.g003

Figure 4. Result of interval mapping scans by MapManager QTXb in F2 rats. Analyses of linkage of aganglionosis severity in F2 populations
to chromosomal loci were performed using the MapManager QTXb20 software. Recombination frequencies (%) were converted into genetic distance
(centiMorgan; cM) using the Kosambi map function, in which linkage data are provided as likelihood ratio statistic (LRS) scores. Genome-wide
significance thresholds were calculated in terms of LRS by carrying out permutation tests for 500 permutations. The thresholds for suggestive (Su),
significant (Si) linkages are indicated in dotted and thin lines, respectively. LRS, likelihood ratio statistic.
doi:10.1371/journal.pone.0027902.g004

QTL Analysis for Modifier Loci of Aganglionosis

PLoS ONE | www.plosone.org 3 November 2011 | Volume 6 | Issue 11 | e27902



Identification of candidate genes in chromosome 2
By bioinformatics methods combining genome annotation with

literature searches, some biologically relevant genes within

modifier intervals have been identified successfully [36]. We used

the positions of the closest markers flanking the peak on Chr 2 to

define the boundaries of this interval on the rat genome assembly

and searched for genes that might be involved in development of

enteric neural system based on their expression profiles in the

literature and public databases. More than 30 genes within this

interval were identified by NCBI. This listing of candidates was

narrowed to include only those genes associated with cell

migration, the development of enteric nervous system based on

information in the PosMed and in the Gene Expression Database

(Table 1). Within these genes, two highly relevant candidates were

identified based on their documented expression in the developing

gut. These included Gdnf and Rai14 genes. Rai14 is expressed early

in the neural tube of 9.5-day mouse embryo and maintained in

intestines. Gdnf encodes a highly conserved neurotrophic factor,

which promotes the survival of many types of neurons. Gdnf-null

mice showed a complete absence of the enteric nervous system,

ureters, and kidneys [37]. GDNF is established to be important in

the development of the enteric nervous system and Hirschsprung

disease. So it is a logical and possible candidate modifier. We

sequenced the coding region of Gdnf, but failed to find a difference

between the two rat strains. Subsequently, we also compared the

expression level of Gdnf mRNA of the whole intestine tissue from

wildtype and heterozygous AGH and F344 rats in embryonic day

15.5 by RT-PCR. However, no difference was found (data not

shown).

Discussion

The enteric nervous system (ENS) mostly derives from mig-

ratory vagal neural crest cells. A minority of the foregut ENS also

arise from migratory anterior trunk neural crest cells of the

posterior vagal region [4]. Neural crest cells enter the foregut at

embryonic day 9–9.5 in mice, in this time they are termed enteric

neural crest-derived cells (ENCCs) [4]. These progenitor cells of

enteric nervous system migrate in a rostral to caudal direction to

sequentially colonize the foregut, midgut, and last the hindgut,

which is complete by embryonic day 15 [2,4]. Neural crest cells

from sacral levels of the neural tube also colonize the gut, where

they contribute to only a small fraction of enteric neurons and glia

in the distal midgut and hindgut [2,4]. ENCCs proliferate actively

to expand the relatively small pool of progenitors and then

differentiate into phenotypically distinct neuronal subtypes and

glia. The multi-step, complex nature of ENS ontogeny suggests

that it is vulnerable to alterations in the function or expression of

many genes as well as changes in the environment. When this

progress is disturbed, a congenital gut motility disorder, HSCR

occurs, which is characterized by an absence of enteric neurons in

terminal regions of the gut. HSCR is a complex disease mani-

festing with low, sex-dependent penetrance and variability in the

length of the aganglionic segment [32].

In human with HSCR, the genetic interaction between

mutations in RET and EDNRB was found in an association study

conducted on Mennonite family with the W276C mutations in the

EDNRB [38]. The combination of these two genotypes increased

Figure 5. Details of suggestive and significant linkages in QTL
analysis of the severity of aganglionosis. The QTL on chromo-
somes 2 (Lrag1) showed a significant linkage to aganglionosis severity,
respectively. The dotted and thin lines represent suggestive (Su) and
significant (Si) thresholds, respectively. The microsatellite markers used
for determining genotypes of F2 rats are presented along the X-axis.
LRS, likelihood ratio statistic.
doi:10.1371/journal.pone.0027902.g005

Figure 6. Effect of alleles at Ednrbsl/sl modifier loci on the
severity of aganglionosis. Genotypes from the total F2 population
obtained from the marker closest to the modifier were used to assess
the effects of individual loci on the severity of phenotype. The mean of
aganglionosis severity (aganglionosis length/large intestine length) is
plotted for each genotype class to show the relation of the number of
AGH or F344 alleles and the extent of aganglionosis for this locus.
Markers used to generate genotype information are listed beneath the
plot. Genotype groups are defined as AGH/AGH (AA), AGH/F344 (AF)
and F344/F344 (FF).
doi:10.1371/journal.pone.0027902.g006

Table 1. List of candidate genes for Lrag1.

Lrag1 candidates on Chr 2

Gene symbol Gene description Mbp

D2Arb7 Flanking marker 57.2

Gdnf Glial cell line-derived neurotrophic factor 57.4

Rai14 Retinoic acid induced 14 59.9

Zfr Zinc finger RNA-binding protein 61.6

Mtmr12 Myotubularin-related protein 12 61.6

Mtmr1 Myotubularin related protein 1 61.7

Golph3 Golgi phosphoprotein 3 61.8

Pdzd2 PDZ domain containing 2 61.8

D2Mit5 Flanking marker 66.7

doi:10.1371/journal.pone.0027902.t001

QTL Analysis for Modifier Loci of Aganglionosis
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the penetrance of the W276C mutation and therefore the risk of

disease. Genetic interaction between RET and EDNRB pathways

has also been demonstrated in mice [38–40]. In mice, heterozy-

gosity for two known mutant HSCR genes, RET+/2 and Ednrbsl, or

RET+/2 and Ednrbs genes, had no intestinal aganglionosis, whereas

RET+/2 mice with the homozygous Ednrbs or heterozygous Ednrbs/

Ednrbsl mutations showed megacolon [38,40]. Thus, the synergistic

effects of multiple mutations in HSCR-associated genes can

influence disease penetrance and expressivity. The mechanisms

underlying these interaction may help to explain the complexity of

the HSCR phenotype and resolve puzzling genetic observations,

such as variations in penetrance and severity of aganglionosis

between family members carrying equivalent mutations in HSCR

genes [41]. However, many susceptibility genes or modifier genes

or interaction between them remain unknown. Animal models

have greatly helped us to understand HSCR genetics and em-

bryologic events that construct the ENS. Several susceptibility

genes of HSCR are initially identified in mice that are later found

to be altered in human HSCR patients [42,43].

In this study, we used quantitative trait locus (QTL) mapping to

detect the genetic loci that contribute to differences in phenotypic

variation of aganglionosis extent between F344 and AGH strains

with the same null mutations. Using this comprehensive approach,

we have successfully identified a modifier locus of Ednrbsl/sl on

rat chromosomes 2. This locus contains a known aganglionsis

susceptibility gene, GDNF. The GDNF ligand activates the RET

receptor through the assembly of a multiprotein complex, inclu-

ding the GDNF family receptor alpha1 (GFRalpha1) molecule, which

have important functions in the development and maintenance of

sensory, enteric, sympathetic and parasympathetic neurons and a

variety of non-neural tissues [44]. The genetic interaction between

mutations in RET and EDNRB has been well described in human

patients and confirmed in mice [38–40]. So it is possible that there

was an interaction between Gdnf ligand and Ednrb. Though we

failed to find the sequence difference of coding region in Gdnf gene

between both rat strains, we cannot completely exclude the

possibility that Gdnf is a responsible gene because the non-coding

regulatory region of Gdnf remains unknown which could affect the

Gdnf expression in a specific timing that is important for the ENS

development. Such case has been found in human with HSCR

that a non-coding RET variant within a conserved enhancer-like

sequence in intron 1 is significantly associated with HSCR sus-

ceptibility [45]. We only investigated the expression level of Gdnf in

embryonic day 15.5. It remains unknown whether there is

difference in the expression level at other developmental stage of

ENS. The spacial and temporal control of gene expression in the

complex process of ENCCs colonization of the gut is very

important. Ednrb is genetically required in the mouse for ENS

development in vivo from embryo day 10 to embryo day 12.5 [46].

The interaction of RET and EDNRB signaling pathways only

influenced the ENS, no impact on melanocyte, retinal choroid,

and kidney development, which showed a tissue-specific interac-

tion [40]. All these lines of evidence suggested a possibility that a

non-coding variant of Gdnf interacting with Ednrb mutation in

AGH strain resulted in the serious aganglionosis.

Using congenic techniques, we are currently attempting to

generate rat strains that harbor QTLs from one selection line on

the opposite line to investigate whether each allele has a different

effect on the phenotype. At the same time, several approaches are

currently being employed to identify candidate genes located on

Lrag1. Some of these approaches include comparisons of gene

expression levels of F344 and AGH rats in intestine tissues using

microarray and next-generation RNA sequencing technologies.

This analytical combination that includes QTL mapping and gene

expression profiles has proven useful in the selection of candidate

genes.

A lack of existing comprehensive information on the suscepti-

bility genes and interaction between susceptibility loci or modifier

loci contributing to HSCR disease in the genetic background

makes it difficult to understand the genetic base for many cases of

HSCR. However, our study localized chromosomal sites where

the allelic differences in genes presented in F344 and AGH rats

and strongly affected the occurrence and severity of HSCR using

QTL analysis. This study provided the new evidence that Hir-

schsprung disease is the consequence of multiple gene interactions

that modulate the ability of enteric neural crest cells to populate

the developing gut.

Materials and Methods

Animals
Heterozygous AGH/Hkv-Ednrbsl (AGH) [34] and F344-Ednrbsl

(F344) [34] rats were bred to generate F2 animals (n = 410), in

which 96 Ednrbsl/sl pups were selected to phenotype based on the

difference in skin pigmentation pattern. Namely, heterozygous

AGH-Ednrbsl rats had pigmented heads, backs, and tails. In

contrast, homozygous mutant rats had almost no pigmentation on

their heads previously described [34]. On the other hand, since

F344 is an albino (tyrosinase mutant) strain, albino F2 rats were

genotyped to distinguish homozygote from heterozygote and

wildtype by PCR. Animals were genotyped for Ednrbsl mutation

using primers (F-CCTCCTGGACTAGAGGTTCC and R-AC-

GACTTAGAAAGCTACACT) that flank the site of the 301-base

deletion. PCR products were electrophoresed in 2% agarose gels

to distinguish the wild (511 bp) and mutant (210 bp) alleles. To

determine the aganglionosis extent by strain, AGH (n = 33), F344

(n = 35), F1 (n = 32) were raised. Animals were maintained in

specific pathogen-free conditions with feeding and drinking al-

lowed ad libitum. All research and experimental protocols were

conducted according to the Regulation for the Care and Use of

Laboratory Animals of Hokkaido University and were approved

by the Animal Care and Use Committee of Hokkaido University

(Approval ID: No. 110226).

Microsatellite genotyping
The genome-wide scan was performed using 96 intercross

progenies. Genomic DNA was extracted from tail clips of these

intercross progenies using a standard protocol and was subjected

to a genome-wide scan at 10–30 Mbp resolution using 94 poly-

morphic microsatellite markers (Table 2). PCR primers of the

markers were identified in the Rat Genomic Database of Ensembl

(http://uswest.ensembl.org). Amplified samples were electropho-

resed in 10% acrylamide gels, stained with ethidium bromide, and

photographed under an ultraviolet lamp.

Whole-mount staining
The guts from pups at postnatal day 14 were dissected as a

single piece from the proximal esophagus to the distal colon.

Mesenteric attachments and the pancreas were removed, and the

guts were then processed for acetylcholinesterase (AChE) whole-

mount staining using routine protocols to visualize enteric ganglia

[31]. The extent of the gut regions affected by aganglionosis was

determined by microscopic examination. The entire length of the

gut and the large intestine length, as well as any aganglionic

regions, were measured. The length of the aganglionic segment

was divided by the whole large intestine length to yield an

aganglionosis ratio.

QTL Analysis for Modifier Loci of Aganglionosis
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Linkage analysis
To identify the aganglionosis modifier loci, genotyping data and

the ratio of aganglionosis extent were analyzed by MapManager

QTXb [47], whereby permutation tests were done in 1-cM steps

for 500 permutations to determine the suggestive, significant, or

very significant levels of statistics.

Statistical analyses
For comparison of allele effect at Ednrbsl modifier loci, the t-test

was performed to compare the mean values for data sets.
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