| Title | Cold-adapted structural properties of trypsins from walleye pollock (Theragra chalcogramma) and Arctic cod (Boreogadus saida) | |------------------|---| | Author(s) | Kanno, Gaku; Kishimura, Hideki; Yamamoto, Jun; Ando, Seiichi; Shimizu, Takeshi; Benjakul, Soottawat; Klomklao, Sappasith; Nalinanon, Sitthipong; Chun, Byung-Soo; Saeki, Hiroki | | Citation | European Food Research and Technology, 233(6), 963-972
https://doi.org/10.1007/s00217-011-1592-8 | | Issue Date | 2011-12 | | Doc URL | http://hdl.handle.net/2115/50775 | | Rights | The original publication is available at www.springerlink.com | | Туре | article (author version) | | File Information | EFRT233-6_963-972.pdf | # Cold-adapted structural properties of trypsins from walleye pollock (Theragra chalcogramma) and Arctic cod (Boreogadus saida) Gaku Kanno [•] Hideki Kishimura [•] Jun Yamamoto [•] Seiichi Ando [•] Soottawat Benjakul [•] Sappasith Klomklao [•] Sitthipong Nalinanon [•] Byung-Soo Chun [•] Hiroki Saeki G. Kanno ' H. Kishimura (*) ' H. Saeki Laboratory of Marine Products and Food Science, Research Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan e-mail: kishi@fish.hokudai.ac.jp #### J. Yamamoto Field Science Center for Northern Biosphere, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan #### S. Ando Department of Natural Sciences, Faculty of Health and Welfare Science, Nayoro City University, Nayoro, Hokkaido 096-8641, Japan #### S. Benjakul Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand #### S. Klomklao Department of Food Science and Technology, Faculty of Technology and Community Development, Thaksin University, Phattalung Campus, Phattalung 93110, Thailand ## S. Nalinanon Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Choakhunthaharn Building, Choakhunthaharn Rd., Ladkrabang, Bangkok 10520, Thailand ### B.-S. Chun Faculty of Food Science and Biotechnology, Pukyong National University, Busan 608-737, Republic of Korea Complementary DNA clones encoding trypsins were isolated from pyloric Abstract ceca of cold-adapted fish, walleye pollock (Theragra chalcogramma) (WP-T) and Arctic cod (Boreogadus saida) (AC-T). The isolated full-length cDNA clones of WP-T and AC-T were 852 bp and 860 bp, respectively, and both cDNAs were contained an open reading frame of 726 bp. WP-T and AC-T seemed to be synthesized as preproenzyme that contains a signal peptide, an activation peptide and a mature trypsin. Although the amino acid sequence identities of WP-T and AC-T to that of bovine trypsin were 64% and 63%, respectively, they completely conserved the structural features for catalytic function of trypsin. On the other hand, WP-T and AC-T possessed the four Met residues (Met135, Met145, Met175 and Met242) in their molecules and the deletion of Tyr151 and substitution of Pro152 for Gly in their autolysis loops when aligned with the sequences of tropical-zone fish and bovine trypsins. In addition, the contents of charged amino acid residues at the N-terminal regions (positions 20-50) of WP-T and AC-T were extremely higher than those of other fish and bovine trypsins. Moreover, one amino acid (Asn72) and two amino acids (Asn72 and Val75) coordinating with Ca²⁺ in bovine trypsin were exchanged for another amino acids in WP-T (His) and AC-T (His and Glu), respectively, and the contents of negative charged amino acids at their Ca²⁺-binding regions were lower than those of tropical-zone fish and bovine trypsins. Therefore, it was considered that these structural characteristics of WP-T and AC-T are closely related to their lower thermo stability. **Keywords** Trypsin, Walleye pollock, *Theragra chalcogramma*, Arctic cod, *Boreogadus saida*, cDNA cloning, Primary structure, Thermo stability, Cold-adaptation #### Introduction Trypsin (EC 3.4.21.4) is a member of serine protease and specifically cleaves peptide bond on the carboxyl side of Lys and Arg residues. Since bovine trypsin was isolated and analyzed as the first proteolytic enzyme, it has been studied in a broad range of species from bacteria to human [1]. So, trypsin is an excellent model to study structure-function relationships and considerable researches have been done to elucidate the structural properties of mammalian pancreatic trypsin [2-7]. On the other hand, at 1980s, it was found that fish trypsin has unique properties, which are substantially higher catalytic efficiency (kcat/Km) at low temperatures and lower thermo stability than its mammalian counterparts. In 1982, Hjelmeland and Raa obtained the results that two trypsin-like enzymes from Arctic fish capelin (Mallotus villosus) have lower temperature optimums for hydrolysis of Bz-Arg-NH-Np and lower thermo stability than bovine trypsin [8]. Simpson and Haard also showed that the optimum temperature of Greenland cod (Gadus ogac) trypsin is lower than that of bovine trypsin [9]. Asgeirsson et al. found that the *kcat/Km* value of trypsin from Atlantic cod (*Gadus morhua*) for hydrolysis of Bz-Arg-NH-Np at 25 °C is about 17 times higher than that of bovine trypsin [10]. Later on, Kristjansson [11] and Outzen et al. [12] also reported the same results using trypsins from rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar), respectively. In addition, fish trypsin is more sensitive to inactivation by heat, low pH and autolysis than that of mesophilic analogues [8-13]. These enzymatic properties of fish trypsin are interesting for several industrial applications, such as in certain food processing operations that require low processing temperatures. Indeed, Atlantic cod trypsin has already been used in industrial applications [14, 15]. But, the extension of its application, it is significant to know more detail information for the structure-function relationship of fish trypsin. Recently, we measured thermo stability of trypsins from various species of marine fish [16-27] and found an interest phenomenon of the strong positive correlations between habitat temperature of marine fish and thermo stability of these fish trypsins [26]. We also found the percentage of hydrophobic amino acid in the *N*-terminal 20 amino acids sequences of cold-zone fish trypsins is lower (28%) than those of temperate-zone fish trypsins (34%), tropical-zone fish trypsins (37%) and mammalian trypsins (34%) [27]. So, in the previous study, we investigated a primary structure of trypsin from cold-adapted fish, arabesque greenling (*Pleurogrammus azonus*) [28]. As a result, trypsin of arabesque greenling possessed the deletion of Tyr151 and substitution of Pro152 for Gly in the autolysis loop. In addition, the ratio between positive and negative charged amino acid residues at the calcium-binding region and the ratio between charged and hydrophobic amino acid residues at the *N*-terminal region of the trypsin were higher than those of temperate-zone fish trypsins, tropical-zone fish trypsins and bovine trypsin. Walleye pollock (*Theragra chalcogramma*) and Arctic cod (*Boreogadus saida*) belong to cod species and are the representatives of cold-adapted fish. In this study, we inspected primary structures of trypsins from walleye pollock (WP-T) and Arctic cod (AC-T) to confirm the relationships between structural characteristics of fish trypsin and its thermal stability. ### Materials and methods Materials Walleye pollock (*Theragra chalcogramma*) were collected by rod angling in the mouth of Funka Bay, southwest of Hokkaido, Japan, on January 2009. Arctic cod (*Boreogadus saida*) were collected from the bottom trawl surveys which were conducted in the south of St. Lawrence Island, northern Bering Sea, on July 2009, by T/S Oshoro-Maru of Hokkaido University. Pyloric ceca dissected from live specimens steeped into RNAlater solution (Applied Biosystems, CA, USA) and stored at -80 °C. cDNA cloning by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) The cDNA cloning for WP-T and AC-T was carried out as previously described except for some primers (Table 1) [28]. In brief, total RNA was extracted from pyloric ceca with TRIzol reagent (Invitrogen, CA, USA), and mRNA was isolated using OligotexTM-dt30 <Super> mRNA Purification Kit (From Total RNA) (TaKaRa, Kyoto, Japan). The mRNA was reverse-transcribed by using a RT-RACE primer and a SuperScript IITM (Invitrogen, CA, USA). PCR was carried out using the first strand cDNA, Amplitaq Gold (Applied Biosystems, CA, USA), and a set of primer (forward primer: RT-RACE F1, reverse primer: RT-RACE R1) under the following conditions: 1 cycle of 95 °C for 9 min, 45 cycles of 94 °C for 15 s, 54 °C for 30 s and 72 °C for 60 s, followed by 1 cycle of 72 °C for 7 min. The PCR products were subcloned in a pDrive Cloning Vector (QUIAGEN, Duesseldorf, Germany) and transformed into JM109 Competent Cells (Promega, WI, USA). Plasmid DNA was purified from the positive clone using a Wizard SV Gel and PCR Clean-Up System (Promega, WI, USA). To recover the full-length cDNA sequence, 3'- and 5'-RACE were performed. The 3'-terminal cDNA fragments were amplified using the above first strand cDNA, an Amplitaq Gold (Applied Biosystems, CA, USA), and a set of primer (forward primer: 3'-RACE F1, reverse primer: 3'-RACE R1) under the conditions: 1 cycle of 95 °C for 9 min, 45 cycles of 94 °C for 15 s, 54 °C for 30 s, 72 °C for 60 s, and 1 cycle of 72 °C for 7 min. 5'-RACE was performed using 5' Full RACE Core Set (TaKaRa, Kyoto, Japan). The mRNA was reverse-transcribed by using a RT primer and AMV Reverse Transcriptase XL, and then the first strand cDNA was ringed with T4 RNA Ligase. The first PCR was carried out using the ringed cDNA, Premix Taq*TM*, and a set of primer (forward primer: 5'-RACE F1, reverse primer: 5'-RACE R1) under the conditions: 1 cycle of 94 °C for 3 min, 25 cycles of 94 °C for 30 s, 65 °C for 30 s, 68 °C for 30 s. The second PCR was carried out using the first PCR products, Premix Taq, and a set of primer (forward primer: 5'-RACE F2, reverse primer: 5'-RACE R2) under the conditions: 27 cycles of 94 °C for 30 s, 65 °C for 30 s, 68 °C for 30 s. ### Nucleotide sequencing Nucleotide sequence was determined using ABI PRISM 310 Genetic Analyzer (Applied Biosystems, CA, USA) after labeling the DNA with BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, CA, USA). ### Results and discussion cDNA clones of WP-T and AC-T The isolated cDNA clones encoding WP-T (Accession No.: AB506710 in DDBJ) and AC-T (Accession No.: AB530319 in DDBJ) were composed of 852 bp (Fig. 1) and 860 bp (Fig. 2), respectively, with an open reading frame of 726 bp from the ATG start codon through to the TAA stop codon. The 5'-noncoding region of WP-T was 23 bp long and that of AC-T was 22 bp long. These lengths are almost the same as those of arabesque greenling (24 bp) [28], anchovy (23 bp) [29], but different from Atlantic cod (9 bp) [30], Antarctic fish (11 bp) [31], topmouth culter (25 bp) [32] and grass carp (28 bp) [32]. The polyadenylation signals (AATAAA) of both cDNAs occurred at 22 bp upstream from the first adenine of poly (A) track. The 3'-noncoding region of WP-T was 103 bp long and that of AC-T was 112 bp nucleotides. The open reading frames of WP-T and AC-T encoded 241 amino acids starting from the first Met, and both trypsins seemed to be synthesized as preproenzyme that contains hydrophobic signal peptide of 15 amino acids, acidic activation peptide of 4 amino acids and mature trypsin of 222 amino acids. ### Signal and activation peptides of WP-T and AC-T As shown in Fig. 3, the signal peptides of WP-T and AC-T were composed by fifteen amino acids and their sequences were identical with each other as well as that of Atlantic cod trypsin I [30]. These signal peptides had a hydrophobic core containing seven contiguous hydrophobic residues, and the result indicates that the cleavage site between signal peptide and activation peptide of these trypsins is at the *C*-terminal of Ala residue (amino acid position 15). The amino acid sequences of WP-T and AC-T signal peptides were compared to those of frigid-zone fish (Atlantic cod, Arabesque greenling, Antarctic fish and Atlantic salmon), temperate-zone fish (anchovy and flounder), tropical-zone fish (zebrafish and tilapia) and bovine trypsins. The signal peptide of bovine trypsin contains a hydrophobic core terminated by a helix-breaking Gly residue, and the hydrophobic core falls into two clusters interrupted by a less hydrophobic Ala residue at position 8 [33]. The signal peptides of zebrafish and tilapia (tropical-zone fish) showed the same structural composition as that of bovine trypsin. However, the signal peptides of frigid-zone and temperate-zone fish trypsins had seven contiguous hydrophobic residues. The activation peptides of WP-T and AC-T were tetrapeptide composed by a poly-anionic cluster of two Glu and one Asp residues (positions 6-8) and a Lys residue (position 9) located at the *C*-terminal end (Fig. 4). Generally, the activation peptide of mammalian trypsin is consisted by octapeptide containing a hydrophobic cluster of three amino acid residues followed by a poly-anionic cluster of four contiguous Asp residues. Similarly to WP-T and AC-T, the sequences of activation peptides of frigid-zone and temperate-zone fish trypsins required the deletion of two amino acid residues (positions 1 and 2) in the hydrophobic cluster when aligned with those of tropical-zone fish and bovine trypsins. The number of amino acid in the poly-anionic cluster of fish trypsins except for zebrafish was one residue shorter than that of bovine. Louvard & Puigserver [34] revealed that enterokinase or trypsin itself of mammals recognize the poly-anionic cluster to cleave the activation peptide from the proenzyme. So, the cleavage sites between activation peptides and mature enzymes of WP-T and AC-T are predicted at the *C*-terminal of Lys residue. ### General structures of WP-T and AC-T Predicted amino acid sequences of mature WP-T and AC-T are shown in Fig. 5. WP-T and AC-T were both composed of 222 amino acid residues, and their molecular weights were calculated at 23,885 and 24,011, respectively. Gudmundsdottir et al. [30] also clarified that mature trypsins (trypsin I and trypsin X) from Atlantic cod are consisted of 222 amino acids and the calculated molecular sizes of the isozymes are 23,459 and 23,819, respectively. Theoretical isoelectric point (pI) of WP-T and AC-T were estimated to 5.6 and 5.5, respectively, in analogy with three anionic trypsin isozymes (trypsins I, II and III) from Atlantic cod with pI of 6.6, 6.2 and 5.5, respectively [10]. Amino acid sequence identities of WP-T and AC-T show in Table 2. Cod trypsins, WP-T, AC-T and Atlantic cod trypsin, showed high sequence identities (91-95%) one another, and the identities of WP-T and AC-T to frigid-zone fish and temperate-zone fish trypsins (79-85%) were higher than those to tropical-zone fish trypsins and bovine trypsin (63-70%). WP-T and AC-T could have six disulfide-bridges (Cys15-Cys145, Cys33-Cys49, Cys117-Cys218, Cys124-Cys191, Cys156-Cys170 and Cys181-Cys205), because they possessed twelve Cys residues at the appropriate positions in bovine trypsin [35]. WP-T and AC-T completely conserved the catalytic triad (His57, Asp102 and Ser195), the consensus sequence (GDSGG) around the Ser195, S1 substrate-binding pocket (positions 189-195, 214-220 and 225-228), loop 1 (positions 184-188), loop 2 (positions 221-225) and Tyr172 residue. The catalytic activity of trypsin is due to the ability of His57 to transfer a proton from Asp102 to Ser195 [35], and the consensus sequence is common to a serine protease [36]. On the other hand, the steric and electrostatic characteristics of the S1 substrate-binding pocket are need for substrate specificity [3]. The specificity of trypsin for Lys and Arg residues results from the presence of Asp189 residue at the bottom of S1 pocket, and the Tyr172 residue also interacts synergistically with the residues in the S1 pocket and two surface loops (loop 1 and loop 2) to determine substrate specificity [4]. ## Cold-adapted structures of WP-T and AC-T WP-T and AC-T had six and seven Met in their molecules, respectively (Fig. 5). Although, the structural role of Met residue is generally poorly understood, Gudmundsdottir et al. [30] found that Atlantic cod trypsins, as well as the other fish trypsins, have a higher Met content than mammalian enzymes. Later, Leiros et al. [37] described that four Met residues, Met135, Met145, Met175 and Met242, are observed in the psychrophilic fish trypsins, and the conservation of the four Mets seems to introduce flexibility in the cold-adapted trypsins. In this study, these four Met residues also existed in WP-T and AC-T. It was already investigated by Gable and Kasche [38] that the cleavage of single-chain bovine trypsin (β-trypsin) at Lys145 residue in the autolysis loop (positions 143-153) results α-trypsin which shows less thermal stability, and it is thought that the structure of autolysis loop is strongly related to thermo stability of trypsin. However, fish trypsin including WP-T and AC-T had not the Lys145 residue (Fig. 5). On the other hand, WP-T and AC-T had the deletion of Tyr151 residue and substitution of Gly for Pro152 residue in the autolysis loop when aligned with the sequences of bovine trypsin. These structural differences were also found in frigid-zone and temperate-zone fish trypsins, but not in tropical-zone fish and bovine trypsins. Thus, the deletion of Tyr151 residue and substitution of Gly for Pro152 could lead to a flexible structure of the autolysis loop in cold-adapted trypsins. Relating to the Tyr151 and Pro152 residues, Ahsan et al. [29] considered that Gln192 residue located at the entrance of the S1 substrate-binding pocket in anchovy trypsin is much more freedom with lack of the bulky ring of Tyr151 residue, and substitution of Gly for Pro152 residue in anchovy trypsin could result in a completely different orientation of the autolysis loop between anchovy trypsin and bovine trypsin. In addition, WP-T and AC-T also had Asp150 and Lys154 residues in their autolysis loops. Leiros et al. [37] demonstrated that the ion-pair of Asp150-Lys154 is in the crystal structure of Atlantic salmon trypsin and the Lys154 is closely associated with the ion-pair of Glu21-His71, and they proposed the ion-pair network is a possible cold-adaptation determinant for trypsin. Genicot et al. [31] proposed that the thermal stability and flexibility of fish trypsin are affected by its overall decrease in hydrophobicity and an increase in surface hydrophilicity as compared to mammalian counterparts. As shown in Table 3, WP-T and AC-T also showed the higher contents of charged amino acid residues (Lys, Arg, Aps, Glu and His) compared with those of tropical-zone fish trypsins and bovine trypsin, and more remarkable was the extremely high contents of charged amino acids at the *N*-terminal region (positions 20-50) of the cod trypsins (WP-T, AC-T and Atlantic cod trypsin). In contrast, at the *N*-terminal region, the ratios between the number of hydrophobic amino acid residues (Trp, Phe, Leu, Ile, Val, Tyr and Pro) to the number of charged amino acid residues of the cod trypsins (1.00-1.33) were lowest followed by other frigid-zone fish and temperate-zone fish trypsins (1.60-1.80), tropical-zone fish trypsins (3.67) and bovine trypsin (10.00) (Table 3). In the previous study, we aligned the *N*-terminal 20 amino acid sequences of various fish and mammalian trypsins and verified that the charged amino acid contents of frigid-zone fish trypsins (mean: 19.2%) were higher than those of temperate-zone fish trypsins (mean: 5.0%) [39]. Therefore, it was confirmed that the structure of *N*-terminal region is closely related to thermo stability of trypsin. It is well known that bovine trypsin requires Ca²⁺ to thermally stabilize and to resist to self-degradation, and the stabilizing effect is accompanied by a conformational change in the trypsin molecule resulting in a more compact structure [40, 41]. The calcium-binding site of bovine trypsin is located at the external loop of molecule, and five amino acid residues (Glu70, Asn72, Val75, Glu77 and Glu80) coordinate with calcium ion [41]. These residues were completely conserved in tropical-zone fish trypsins (Fig. 5). However, the Asn72s in WP-T and AC-T was exchanged for His, and the Val75 in AC-T was exchanged for Glu, as well as other frigid-zone and temperate-zone fish trypsins (Atlantic cod, Asn72-His; arabesque greenling, Val75-Ala; Antarctic fish, Asn72-His; anchovy, Asn72-His and Val75-Gln; flounder, Asn72-Lys). In addition, there was an interesting correlation between the thermo stability of fish trypsins and the negative charge at their calcium-binding regions. That is, at the calcium-binding region (positions 68-84), the proportions of the negative charged amino acids to the charged amino acids of WP-T and AC-T including frigid-zone fish and temperate-zone fish trypsins (43-67%) were lower than those of tropical-zone fish trypsins (75-80%) and bovine trypsin (100%). These results show that the combination of Ca²⁺ with the cold-adapted trypsins could be weaker than those of tropical-zone fish and bovine trypsins. #### 4. Conclusions To confirm the relationships between structural characteristics of fish trypsin and its thermal stability, we inspected primary structures of trypsins from walleye pollock (WP-T) and Arctic cod (AC-T), which are the representatives of cold-adapted fish, and compared the structures with those of other fish and mammalian trypsins. Consequently, it was confirmed that the Met residues at positions 135, 145, 175 and 242 and the structures of autolysis loop, *N*-terminal region and calcium-binding region are closely related to thermo stability of trypsin. It is considered that these structural characteristics of fish trypsin together with the enzymatic ones are the important information for its industrial application, such as in certain food processing operations that require low processing temperatures. # Acknowledgement We would like to thank crew and officers of the T/S *Oshoro Maru*, Hokkaido University, for in collecting Arctic cod. This research was partly supported by the grant from HOKUSUI Association. #### References - 1. Rypniewski, W.R., Perrakis, A., Vorgias, C.E., & Wilson, K.S. (1994). Evolutionary divergence and conservation of trypsin. *Protein Engineering*, 7, 57-64. - Stroud, R.M., Kay, L.M., & Dickerson, R.E. (1974). The structure of bovine trypsin: electron density maps of the inhibited enzyme at 5 Å and 2.7 Å resolution. *Journal of Molecular Biology*, 83, 185-208. - 3. Hedstrom, L., Szilagyi, L., & Rutter, W.J. (1992). Converting trypsin to chymotrypsin: the role of surface roops. *Science*, 255, 1249-1253. - 4. Hedstrom, L., Perona, J., & Rutter, W.J. (1994). Converting trypsin to chymotrypsin: residue 172 is a substrate specificity determinant. *Biochemistry*, 33, 8757-8763. - 5. Hedstrom, L., Lin, T., & Fast, W. (1996). Hydrophobic interactions control zymogen activation in the trypsin family of serine proteases. *Biochemistry*, 35, 4515-4523. - 6. Pasternak, A., Liu, X., Lin, T., & Hedstrom, L. (1998). Activating a zymogen with out proteolytic processing: mutation of Lys15 and Asn194 activates trypsinogen. *Biochemistry*, 37, 16201-16210. - 7. Szabo, E., Bocskei, Z., Naray-Szabo, G., & Graf, L. (1999). The three-dimensional structure of Asp189Ser trypsin provides evidence for an inherent structural plasticity of the proteases. *European Journal of Biochemistry*, 263, 20-26. - 8. Hjelmeland, K., & Raa, J. (1982). Characteristics of two trypsin type isozymes isolated from the Arctic fish capelin (*Mallotus villosus*). *Comparative Biochemistry and Physiology*, 71B, 557-562. - Simpson, B.K., & Haard, N.F. (1984). Trypsin from Greenland cod, *Gadus ogac*. Isolation and comparative properties. *Comparative Biochemistry and Physiology*, 79B, 613-622. - Asgeirsson, B., Fox, J.W., & Bjarnason, J.B. (1989). Purification and characterization of trypsin from the poikilotherm *Gadus morhua*. European Journal of Biochemistry, 180, 85-94. - 11. Kristjansson, M.M. (1991). Purification and characterization of trypsin from the pyloric caeca of rainbow trout (*Oncorhynchus mykiss*). *Journal of Agricultural and Food Chemistry*, 39, 1738-1742. - 12. Outzen, H., Berglund, G.I., Smalas A.O., & Willassen N.P. (1996). Temperature and pH sensitivity of trypsins from Atlantic salmon (*Salmo salar*) in comparison with bovine and porcine trypsin. *Comparative Biochemistry and Physiology*, 115B, 33-45. - 13. Simpson, B.K., & Haard, N.F. (1987). Cold-adapted enzymes from fish. In D. Knorr (Ed.), *Food Biotechnology*, (pp. 495-528). New York: Marcel Dekker. - Bjarnason, J.B. (2000). Fish serine proteases and their pharmaceutical and cosmetic use. Patent PCT, WO 00/78332 A2, December 28, 2000. - 15. Bjarnason, J.B., & Benediktsson, B. (2001). Protein hydrolysates produced with the use of marine proteases. Patent PCT, WO 01/28353 A2, April 26, 2001. - 16. Kishimura, H., Hayashi, K., Miyashita, Y., & Nonami, Y. (2005). Characteristics of two trypsin isozymes from the viscera of Japanese anchovy (*Engraulis japonica*). Journal of Food Biochemistry, 29, 459-469. - 17. Kishimura, H., Hayashi, K., Miyashita, Y., & Nonami, Y. (2006a). Characteristics of trypsins from the viscera of true sardine (*Sardinops melanostictus*) and the pyloric ceca of arabesque greenling (*Pleuroprammus azonus*). *Food Chemistry*, 97, 65-70. - 18. Kishimura, H., Tokuda, Y., Klomklao, S., Benjakul, S., & Ando, S. (2006b). Enzymatic characteristics of trypsin from the pyloric ceca of spotted mackerel (*Scomber australasicus*). *Journal of Food Biochemistry*, 30, 466-477. - 19. Kishimura, H., Tokuda, Y., Klomklao, S., Benjakul, S., & Ando, S. (2006c). Comparative - study on enzymatic characteristics of trypsins from the pyloric ceca of yellow tail (*Seriola quinqueradiata*) and brown hakeling (*Physiculus japonicus*). *Journal of Food Biochemistry*, 30, 521-534. - 20. Kishimura, H., Tokuda, Y., Yabe, M., Klomklao, S., Benjakul, S., & Ando, S. (2007). Trypsins from the pyloric ceca of jacopever (*Sebastes schlegeli*) and elkhorn sculpin (*Alcichthys alcicornis*): Isolation and characterization. *Food Chemistry*, 100, 1490-1495. - 21. Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., Simpson, B.K., & Saeki, H. (2006a). Trypsins from yellowfin tuna (*Thunnus albacores*) spleen: Purification and characterization. *Comparative Biochemistry and Physiology*, 144B, 47-56. - 22. Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., & Simpson, B.K. (2006b). Purification and characterization of trypsin from spleen of tongol tuna (*Thunnus tonggol*). *Journal of Agricultural Food and Chemistry*, 54, 5617-5622. - 23. Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., & Simpson, B.K. (2007a). Purification and characterization of trypsins from skipjack tuna (*Katsuwonus pelamis*) spleen. *Food Chemistry*, 100, 1580-1589. - 24. Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., & Simpson, B.K. (2007b). Trypsin from the pyloric ceca of bluefish (*Pomatomus saltatrix*). *Comparative Biochemistry and Physiology*, 148B, 382-389. - 25. Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., & Simpson, B.K. (2007c). A 29 kDa protease from the digestive glands of Atlantic bonito (*Sarda sarda*): recovery and characterization. *Journal of Agricultural and Food Chemistry*, 55, 4548-4553. - 26. Kishimura, H., Klomklao, S., Benjakul, S., & Chun, B.-S. (2008). Characteristics of trypsin from the pyloric ceca of walleye pollock (*Theragra chalcogramma*). *Food* - Chemistry, 106, 194-199. - 27. Fuchise, T., Kishimura, H., Sekizaki, H., Nonami, Y., Kanno, G., Klomklao, S., Benjakul, S., & Chun, B.-S. (2009). Purification and characteristics of cold-zone fish trypsin, Pacific cod (*Gadus macrocephalus*) and saffron cod (*Eleginus gracilis*). *Food Chemistry*, 116, 611-616. - 28. Kanno, G., Kishimura, H., Ando, S., Nalinanon, S., Klomklao, S., Benjakul, S., Chun, B.-S., & Saeki, H. (2011). Structural properties of trypsin from cold-adapted fish, arabesque greenling (*Pleurogrammus azonus*). *European Food Recearch and Technology*, 232, 381-388. - 29. Ahsan, M.N., Funabara, D., & Watabe, S. (2001). Molecular cloning and characterization of two isoforms of trypsinogen from anchovy pyloric ceca. *Marine Biotechnology*, 3, 80-90. - 30. Gudmundsdottir, A., Gudmundsdottir, E., Oskarsson, S., Bjarnason, J.B., Eakin, A.K., & Craik, C.S. (1993). Isolation and characterization of cDNAs from Atlantic cod encoding two different forms of trypsinogen. *European Journal of Biochemistry*, 217, 1091-1097. - 31. Genicot, S., Rentier-Delrue, F., Edwards, D., Vanbeeumen, J., & Gerday, C. (1996). Trypsin and trypsinogen from Antarctic fish: molecular basis of cold adaptation. Biochimica et Biophysica Acta, 1298, 45-57. - 32. Ruan, G.-L., Li, Y., Gao, Z.-X., Wang, H.-L., & Wang W.-M. (2010). Molecular characterization of trypsinogens and development of trypsinogen gene expression and tryptic activities in grass carp (*Ctenopharyngodon idellus*) and topmouth culter (*Culter alburnus*). *Comparative Biochemistry and Physiology*, Part B, 155, 77-85. - 33. Watson, M.E.E. (1984). Compilation of published signal sequences. *Nucleic acids* research, 12, 5145-5164. - 34. Louvard, M.N., & Puigserver, A. (1974). On bovine and porcine anionic trypsinogens. *Biochimica et Biophysica Acta*, 371, 177-185. - 35. Huerou, I.L., Wicker, C., Guilloteau, P., Toullec, R. & Puigserver, A. (1990). Isolation and nucleotide sequence of cDNA clone for bovine pancreatic anionic trypsinogen: structural identity within the trypsin family. *European Journal of Biochemistry*, 193, 767-773. - 36. Krem, M.M., Rose, T., & Cera, E.D. (1999). The C-terminal sequence encodes function in serine proteases. *Journal of Biological Chemistry*, 274, 28063-28066. - 37. Leiros, H.-K.S., Willassen, N.P., & Smalas, A.O. (2000). Structural comparison of psychrophilic and mesophilic trypsins: elucidating the molecular basis of cold-adaptation. *European Journal of Biochemistry*, 267, 1039-1049. - 38. Gable, D., & Kasche, V. (1973). Autolysis of β-trypsin: influences of calcium ions and heat. *Acta Chemistry of Scandinavia*, 27, 1971-1981. - 49. Kanno, G., Yamaguchi, T., Kishimura, H., Yamaha, E., & Saeki, H. (2010). Purification and characteristics of trypsin from masu salmon (*Oncorhynchus masou*) cultured in fresh-water. *Fish Physiology and Biochemistry*, 36, 637-645. - 40. Walsh, K.A. (1970). Trypsinogens and trypsins of various species. *Methods in Enzymology*, 19, 41-63. - 41. Bode, W., & Schwager, P. (1975). The single calcium-binding site of crystalline β -trypsin. *FEBS LETTERS*, 56, 139-143. - 42. Male, R., Lorens, L.B., Smalas, A.O., & Torrissen, K.R. (1995). Molecular cloning and characterization of anionic and cationic variants of trypsin from Atlantic salmon. *European Journal of Biochemistry*, 232, 677-685. - 43. Hartley, B.S., & Kauffman, D.L. (1966). Corrections to the amino acid sequence of bovine chymotrypsinogen A. *Biochemical Journal*, 101, 229-231. ### (Captions to figures) Fig. 1. Nucleotide and deduced amino acid sequences of WP-T. The deduced amino acid sequence and the residue numbers are shown above the codons. The ATG initiation codon and the TAA termination codon are asterisked. Putative polyadenylation signal is written in bold-italic. Fig. 2. Nucleotide and deduced amino acid sequences of AC-T. The deduced amino acid sequence and the residue numbers are shown above the codons. The ATG initiation codon and the TAA termination codon are asterisked. Putative polyadenylation signal is written in bold-italic. Fig. 3. Comparison of the signal peptides of WP-T and AC-T with those of other fish and bovine trypsins. Walleye pollock, walleye pollock (*Theragra chalcogramma*) trypsin; Arctic cod, Arctic cod (*Boreogadus saida*) trypsin; Atlantic cod I, Atlantic cod (*Gadus morhua*) trypsin I [30]; Arabesque greenling, arabesque greenling (*Pleurogrammus azonus*) trypsin [28]; Antarctic fish, Antarctic fish (*Paranotothenia magellanica*) trypsin [31]; Atlantic salmon I, Atlantic salmon (*Salmo salar*) trypsin I [42]; Anchovy I, anchovy (*Engraulis japonicus*) trypsin I [29]; Flounder I, flounder (*Paralichthys plivaceus*) trypsin I (Accession No.: AB029750 in GenBank); Zebrafish, zebrafish (*Danio rerio*) trypsin (Accession No.: AF541952 in DDBJ); Tilapia, tilapia (*Oreochromis niloticus*) trypsin (Accession No.: AY510093 in DDBJ); Bovine cat, bovine cationic trypsin (Accession No.: BC134797 in DDBJ). Fig. 4. Comparison of the activation peptides of WP-T and AC-T with those of other fish and bovine trypsins. The names of trypsins are the same in Fig. 3. Dashes indicate deletions introduced for maximizing the sequence similarity. Fig. 5. Alignment of the deduced amino acid sequences of WP-T and AC-T with the sequences of other fish and bovine trypsins. The amino acids are numbered by the standard chymotrypsin numbering system [43]. The names of trypsins are the same in Fig. 3. Dashes indicate deletions introduced for maximizing the sequence similarity. The residues of catalytic triad (His57, Asp102 and Ser195) and obligatory Asp189 are marked with asterisks. Fig. 1 | 5 ' - | ATG | AGCC | TGAT | CACA | AAGC | AACC | | | | | | | | | | | | | | 23 | |--------------|-------|------------|------|-----------|-----------|-------|-----|------|-------|-------|-------|-----|------------|-------|------|-------|------------|----------------------|------|-----| | 1 | | | | | | | | | 10 | | | | | | | | | | 20 | | | | | | | | | | | | | | | | | | | | Asp | | | | | ATG | AAG | TCT | CTT | ATC | TTC | GTT | CTG | CTC | CTC | GGA | GCT | GTC | TTC | GCT | GAG | GAG | GAC | AAG | ATC | 83 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 30 | | | | | | | | | | 40 | | | | - | _ | - | | - | | _ | | | | | | | | | | Asn | | _ | | | GTC | GGA | GGG | TAT | GAG | TGT | ACG | AGG | CAC | TCC | CAG | GCC | CAC | CAG | GTG | TCT | CTG | AAC | TCT | GGA | 143 | | | | | | | | | | | | | | | | | | | | | | | | т | 112 - | DI | C | C1 | C1 | C | 1 | V-1 | 50 | 1 | A | т | V-1 | V-1 | C | 47 - | 47 - | 112 - | 60 | | | - | | | - | - | - | | | | | - | - | | | | | | Ala
GCT | | - | 202 | | TAC | CAC | 110 | 101 | GGA | ddc | icc | CIG | dic | AGC | AAU | JAC | 100 | did | uiu | ICI | dCi | uC1 | CAC | ruc | 203 | | | | | | | | | | | 70 | | | | | | | | | | 80 | | | Tyr | Lvs | Ser | Δra | Tle | 61 | Val | Δra | Геп | | G] II | Hic | Hic | Tle | Δra | Val | Δsn | Glu | GI v | GAG | | | 263 | | | | | - | 90 | | | | | | | | | | 100 | | | Glu | Gln | Phe | Ile | Ser | Ser | Ser | Ser | Val | Ile | Arg | His | Pro | Ser | Tyr | Ser | Ser | Tyr | Asn | Ile | | | | | | | | | | | | | _ | | | | - | | | TAC | | | 323 | 110 | | | | | | | | | | 120 | | | Asn | Asn | Asp | Ile | Met | Leu | Ile | Lys | Leu | Ser | Lys | Pro | Ala | Thr | Leu | Asn | Gln | Tyr | Val | Gln | | | AAC | AAC | GAC | ATC | ATG | CTG | ATC | AAG | CTG | AGC | AAG | CCC | GCC | ACC | CTG | AAC | CAG | TAT | GTG | CAG | 383 | 130 | | | | | | | | | | 140 | | | | | | | | | | - | | | | _ | | | - | | | Ser | _ | | | | ССТ | GTG | GCC | CTT | CCC | ACC | GAA | TGT | GCT | GCT | GAT | GGC | ACC | ATG | TGC | ACA | GTG | TCT | GGC | TGG | 443 | 67 | | T I | | _ | _ | | | | 150 | | | | C 1 | _ | | | | _ | 160 | | | - | | | | | | | - | | - | - | - | | | - | | | Leu | | | EWS | | GGA | AAC | ACC | AIG | AGC | ICC | GII | GAI | GAC | uuu | GAC | AAG | CII | CAG | IGC | CIG | AAC | CTG | ccc | AIC | 303 | | | | | | | | | | | 170 | | | | | | | | | | 180 | | | Leu | Ser | His | Δ1 a | Δsn | Cvs | Δsn | Δsn | Ser | | Pro | GLV | Met | Tle | Thr | G1 n | Ser | Met | Phe | | | | | | | | | - | | | | - | | _ | | | | | | ATG | | - | 563 | | | | | | | | | | | | ••• | | | • | | | | | | | | | | | | | | | | | | 190 | | | | | | | | | | 200 | | | Ala | Gly | Tyr | Leu | Glu | Gly | Gly | Lys | Asp | Ser | Cys | Gln | Gly | Asp | Ser | Gly | Gly | Pro | Val | Val | | | GCT | GGC | TAC | CTG | GAG | GGA | GGC | AAG | GAC | TCT | TGC | CAG | GGT | GAC | TCC | GGT | GGT | CCC | GTG | GTG | 623 | 210 | | | | | | | | | | 220 | | | Cys | Asn | Gly | Val | Leu | Gln | Gly | Val | Val | Ser | Trp | Gly | Tyr | Gly | Cys | Ala | Glu | Arg | Asp | His | | | TGC | AAC | GGT | GTG | CTG | CAG | GGT | GTT | GTG | TCC | TGG | GGA | TAC | GGA | TGT | GCC | GAG | AGG | GAC | CAC | 683 | 230 | | | | | | | | | | 240 | | | | _ | | - | | - | | - | | | | - | | | | | | Met | | | | | CCC | GGT | GTC | TAC | GCC | AAG | GTC | TGC | GTT | CTC | TCG | GGC | TGG | GTT | CTC | GAT | ACC | ATG | GCA | AGT | 743 | | | 2 | _ | 242 | Tyr | 749 | | TAT | IAA | | | | | | | | | | | | | | | | | | | 749 | | ΔTG | ATCC | ГСТТ | ΓΔGΔ | TTCC | TGTA | GCAGO | TTC | ΔΟΔΤ | CAGGG | тст | ΓΔΔΤα | CAG | ΔΔΔΔ | ΓGΔΔΤ | ΓΔΤΩ | ATCA/ | ATAA/ | GTT | ΓΔΔΔ | 828 | | | | | AAAA | | | | / | | | | | | . a art | J. IT | | | | | | 852 | | 5 ' - | TGA | ACCT | GATO | CACAA | AGCA | ACC | | | | | | | | | | | | | | 22 | |--------------|-----|------|---------------|----------|----------|-----|-------------|--------|------------|------|------|------|------------|-------------------|----------|----------|------|-------|------------|------------| | | | | Leu | | | | | | | | | | | | | | | | | | | ATG | AAG | TCT | CTT | ATC | TTC | GTT | CTG | CTC | СТС | GGA | GCT | GTC | TTC | GCT | GAG | GAG | GAC | AAG | ATC | 82 | | Val | Gly | Gly | Tyr | Glu | Cys | Thr | Lys | His | 30
Ser | Gln | Ser | Tyr | Gln | Val | Ser | Leu | Asn | Ala | 40
Gly | | | GTC | GGA | GGG | TAT | GAG | TGT | ACA | AAG | CAC | TCC | CAG | TCC | TAC | CAG | GTG | TCT | CTG | AAC | GCT | GGA | 142 | | Tvr | His | Phe | Cys | Glv | Glv | Ser | Leu | Val | 50
Ser | Lvs | Asp | Trp | Val | Val | Ser | Ala | Ala | His | 60
Cvs | | | - | | | - | - | - | | | | | - | | | | | | | | | TGC | 202 | | Tyn | Lve | San | Arg | Tla | 61 | Val | ۸ra | ا ام ا | 70
G1 v | 61 | Hic | Hic | Tla | ۸na | G] II | ۸cn | 61 | G1 v | 80
Thr | | | - | - | | _ | | | | _ | | - | | | | | _ | | | | - | ACC | 262 | | 61 | 61 | DI | T 1 - | C | C | C | | V-1 | 90 | | | D | T l | т | C | 6 | т | • | 100 | | | | | | Ile
ATC | | | | | | | _ | | | | - | | | - | | ATC | 322 | | | | | | | | | | | 110 | | | | | | | | | | 120 | | | | | | Ile
ATC | | | | - | | | - | | | | | | | - | | Gln
CAG | 382 | | | | | | | | | | | 130 | | | | | | | | | | 140 | | | | | | Leu
CTT | | | | - | | | - | - | | | - | | | | - | Trp
TGG | 442 | | | | | | | | | | | 150 | | | | | | | | | | 160 | | | _ | | | Met
ATG | | | | | | - | | - | | | - | | | | | Ile
ATC | 502 | | | | | | | | | | | 170 | | | | | | | | | | 180 | | | | | | Ala
GCC | | - | | | | - | | - | | | | | | | | Cys
TGC | 562 | | | | | | | | | | | 190 | | | | | | | | | | 200 | | | | - | - | Leu
CTG | | - | - | - | - | | - | | - | - | | - | - | | | Val
GTG | 622 | | | | | | | | | | | 210 | | | | | | | | | | 220 | | | - | | - | Val
GTG | | | - | | | Ser | | - | - | - | - | | | | | | 682 | | 100 | AAC | 441 | 010 | CIG | CAG | 441 | J 11 | 010 | | 100 | dun | TAC | dun | 101 | ucc | UAU | Add | JAC | | 002 | | | _ | | Tyr | | - | | - | | | | _ | | | _ | | | | | | 742 | | ccc | | GIC | TAC | GCC | AAG | GIC | IGC | GII | CIC | ICG | GGC | 166 | GII | CGC | GAT | ACC | AIG | GCA | ACT | 742 | | Tyr | TAT | TAA | | | | | | | | | | | | | | | | | | | 748 | | | | | CAGAT
AAAA | | | | | | | CTGT | ΓΑΑΤ | GCAG | AAAA | rgaa ⁻ | TATG/ | ATCA | ATAA | AGTTT | ГСАА | 827
860 | Fig. 3 Walleye Pollock Met Lys Ser Leu Ile Phe Val Leu Leu Gly Ala Val Phe Ala Arctic cod Met Lys Ser Leu Ile Phe Val Leu Leu Gly Ala Val Phe Ala Atlantic cod I Met Lys Ser Leu Ile Phe Val Leu Leu Gly Ala Val Phe Ala Arabesque greenling Met Met Ser Leu Val Phe Val Leu Leu Ile Gly Ala Ala Phe Ala Antarctic fish Met Arg Ser Leu Val Phe Val Leu Leu Ile Gly Ala Ala Phe Ala Atlantic salmon I Met Ile Ser Leu Val Phe Val Leu Leu Ile Gly Ala Ala Phe Ala Anchovy I Met Arg Pro Leu Val Phe Leu Val Leu Leu Gly Ala Ala Phe Ala Flounder II Met Arg Ser Leu Val Phe Val Leu Leu Ile Gly Ala Ala Phe Ala Zebrafish Met Lys Ala Phe Ile Leu Leu Ala Leu Phe Ala Val Ala Tyr Ala Tilapia Met Lys Tyr Phe Ile Leu Leu Ala Leu Phe Ala Ala Ala Tyr Ala Bovine cationic Met Lys Thr Phe Ilu Phe Leu Ala Leu Leu Gly Ala Ala Val Ala Fig. 4 | | 1 | | | | 5 | | | | 9 | |---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Walleye pollock | | | | | | Glu | Glu | Asp | Lys | | Arctic cod | | | | | | Glu | Glu | Asp | Lys | | Atlantic cod I | | | | | | Glu | Glu | Asp | Lys | | Arabesque greenling | | | Leu | | | Glu | Glu | Asp | Lys | | Antarctic fish | | | Thr | | | Glu | Glu | Asp | Lys | | Atlantic salmon I | | | Thr | | | Glu | Asp | Asp | Lys | | Anchovy I | | | | | | Glu | Asp | Asp | Lys | | Flounder II | | | Leu | | | Glu | Asp | Asp | Lys | | Zebrafish | Ala | Pro | Leu | Gly | Asp | Asp | Asp | Asp | Lys | | Tilapia | Ala | Pro | Ile | | | Glu | Asp | Asp | Lys | | Bovine cat | Phe | Pro | Val | | Asp | Asp | Asp | Asp | Lys | Fig. 5 16 30 37 50 69 Walleye Pollock IVGGYECTRHSQAHQVSLNSGYHFCGGSLVSKDWVVSAAHCYKSRIEVRLGEHHIR Arctic cod IVGGYECTKHSQSYQVSLNAGYHFCGGSLVSKDWVVSAAHCYKSRIEVRLGEHHIR Atlantic cod I IVGGYECTKHSQAHQVSLNSGYHFCGGSLVSKDWVVSAAHCYKSVLRVRLGEHHIR IVGGYECTPHTQAHQVSLNSGYHFCGGSLVSADWVVSAAHCYKSRVEVRLGEHNIR Arabesaue areenlina Antarctic fish IVGGKECSPYSQPHQVSLNSGYHFCGGSLVNENWVVSAAHCYKSRVEVRMGEHHIR Atlantic salmon I IVGGYECKAYSQTHQVSLNSGYHFCGGSLVNENWVVSAAHCYKSRVEVRLGEHNIK IVGGYECQAHSQPHTVSLNSGYHFCGGSLVNENWVVSAAHCYKSRVEVRLGEHHIG Anchovy I IVGGYECTPHSQAHQVSLNSGYHFCGGSLVNENWVVSAAHCYKSRVEVRMGEHKIR Flounder II 7ehrafish IVGGYECTKNGVPYQVSLNSGYHFCGGSLISNLWVVSAAHCYKSRVQVRLGEHNID IIGGYECAKNSVPYMVSLNIGYHFCGGSLISSTWAVSAAHCYQSSIQLRLGEHNIA Tilapia IVGGYTCGANTVPYQVSLNSGYHFCGGSLINSQWVVSAAHCYKSGIQVRLGEDNIN Bovine cationic 90 110 127 VNEGTEQFISSSSVIRHPSYSSYNINNDIMLIKLSKPATLNQYVQPVALPTECAAD Walleye pollock Arctic cod ENEGTEQFISSSMVIRHPTYSSYNINNDIMLIKLSKPATLNQYVQPVALPTECAAD VNEGTEQYISSSSVIRHPNYSSYNINNDIMLIKLTKPATLNQYVHAVALPTECAAD Atlantic cod T ATEGNEQFIRSSRVIRHPEYSSYNINNDIMLIKLSKPATLNRYVQTVALPTSCAPA Arabesque greenling Antarctic fish VTEGKEQFISSSRVIRHPNYSSYNIDNDIMLIKLSKPATLNQYVQAVALPSSCAPA Atlantic salmon I VTEGSEQFISSSRVIRHPNYSSYNIDNDIMLIKLSKPATLNTYVQPVALPTSCAPA Anchovy I QNENTEQFIDSSRVIRHPQYSSYNIDNDVMLIKLSTPATLNQYVQPVALPSRCASA Flounder II VNEGTEQFVSSSRVIRHPNYDSWNIDNDIMLIKLSKPATLNQYVKTVALPSSCAPA Zebrafish VTEGTEQFINSEKVIRHPSYNSNTLDNDVMLIKLSSSAQINSYVKTVSLPSSCASS VNEGTEQFISSSRVIRHQSYNSYTLDNDIMLIKLSQPATLNSYVKTVSLPSGCAGA Tilania Bovine cationic VVEGNEQFISASKSIVHPSYNSNTLNNDIMLIKLKSAASLNSRVASISLPTSCASA 133 150 170 184+ Walleye pollock GTMCTVSGWGNTMSSVDD-GDKLQCLNLPILSHADCDNSYPGMITQSMFCAGYLEG Arctic cod ${\tt GTMCTVSGWGNTMSSVDD-GDKLQCLNLPILSHADCENSYPGMITPSMFCAGYLEG}$ Atlantic cod I ATMCTVSGWGNTMSSVAD-GDKLQCLSLPILSHADCANSYPGMITQSMFCAGYLEG GTMCKVTGWGNTMSSTAD-GDKLQCLNIPILSEADCENSYPGMITKAMFCAGYLEG Arabesque greenling Antarctic fish GTMCTVSGWGSTQSSSAD-GNKLQCLNIPILSDRDCDNSYPGMITDAMFCAGYLQG Atlantic salmon I GTMCTVSGWGNTMSSTAD-SNKLQCLNIPILSYSDCNNSYPGMITNAMFCAGYLEG Anchovy I GTMCLVAGWGNTMSNVS--GDKLQCLQIPILSDRDCDNSYPGMITDAMFCAGYLEG Flounder II GTMCKVSGWGNTMSSADN-GDLLQCLDIPILSFSDCNNAYPGMITDSMFCAGYLEG Zebrafish ${\tt GTSCLISGWGNMSAGSSNYPSRLMCLNAPILSDSTCRNAYPGQISSNMFCAGFMEG}$ ${\tt GTSCLISGWGNTSTSGSNYPDRLMCLNAPILSDTDCRNSYPGEITNNMFCAGFLEG}$ Tilapia Bovine cationic GTQCLISGWGNTKSSGTSYPDVLKCLKAPILSDSSCKSAYPGQITSNMFCAGYLEG 188+ 200 209 219221+ 230 Walleye pollock ${\sf GKDSCQGDSGPVVCNGVLQGVVSWGYGCAERDHPGVYAKVCVLSGWVLDTMASY}$ Arctic cod GKDSCQGDSGGPVVCNGVLQGVVSWGYGCAERDHPGVYAKVCVLSGWVRDTMATY Atlantic cod I ${\sf GKDSCQGDSGGPVVCNGVLQGVVSWGYGCAERDHPGVYAKVCVLSGWVRDTMANY}$ GKDSCQGDSGGPVVCNGELQGVVSWGYGCAQRDNPGVYAKVCLFNEWLETTMASY Arabesque greenling Antarctic fish GKDSCQGDSGGPVVCNGELQGVVSWGYGCAERDHPGVYAKVCLFNDWLETSMANY Atlantic salmon I GKDSCQGDSGGPVVCNGELQGVVSWGYGCAEPGNPGVYAKVCIFNDWLTSTMASY GKDSCQGDSGGPVVCNGELQGVVSWGYGCAERDHPGVYAKVCIFTDWLQSTMASN Anchovy I Flounder II EKDSCQGDSGGPVICNGELQGVVSWGYGCAERGNPGVYAKVCLFNDWLESTMASY Zebrafish ${\sf GKDSCQGDSGPVVCNNQLQGIVSWGYGCAQRNKPGVYAKVCTSPPGSETP}$ Tilapia Bovine cationic ${\sf GKDSCQGDSGGPVVCNGQLQGIVSWGYGCAQRDRPGVYTKVCNYNSWISNTMANN}$ GKDSCQGDSGGPVVCSGKLQGIVSWGSGCAQKNKPGVYTKVCNYVSWIKQTIASN # Table 1 Table 1 Primers for cDNA cloning of WP-T and AC-T | RT-RACE | 5'-GGCCACGCGTCGACTAGTACTTTTTTTTTTTTT-3' | |------------|---| | RT-RACE F1 | 5'-ATCGTCGGAGGGTATGAGTG-3' | | RT-RACE R1 | 5'-AGTCACCCTGGCAAGAGTCC-3' | | 3'-RACE F1 | 5'-TCTGCGCTGGATACCTGGAG-3' | | 3'-RACE R1 | 5'-GGCCACGCGTCGACTAGTAC-3' | | RT | 5'-(p)CACACCGTTGCA-3' | | 5'-RACE F1 | 5'-ATGTTCTGCGCTGGCTACCT-3' | | 5'-RACE R1 | 5'-AGACGCACCTCAATACGGGA-3' | | 5'-RACE F2 | 5'-AAGGACTCTTGCCAGGGTGA-3' | | 5'-RACE R2 | 5'-TGTAGCAGTGAGCAGCAGAC-3' | | | | Table 2 Table 2 Amino acid sequence identities of WP-T and AC-T to other trypsins | | Walleye pollock | Arctic cod | |---------------------|-----------------|------------| | Walleye pollock | _ | 95 | | Arctic cod | 95 | _ | | Atlantic cod I | 93 | 91 | | Arabesque greenling | 85 | 83 | | Antarctic fish | 82 | 81 | | Atlantic salmon I | 82 | 80 | | Anchovy | 82 | 80 | | Flounder II | 81 | 79 | | Zebrafish | 65 | 63 | | Tilapia | 69 | 70 | | Bovine cat | 64 | 63 | The names of trypsins are the same in Fig. 3. Table 3 Table 3 Contents of charged amino acids in WP-T and AC-T | | Whole (%)*1 | <i>N</i> -terminal region (%)*2 | Hyd/Cha*3 | |---------------------|-------------|---------------------------------|-----------| | Walleye pollock | 19 | 24 | 1.00 | | Arctic cod | 19 | 21 | 1.33 | | Atlantic cod I | 19 | 24 | 1.00 | | Arabesque greenling | 19 | 17 | 1.60 | | Antarctic fish | 19 | 17 | 1.80 | | Atlantic salmon I | 15 | 17 | 1.60 | | Anchovy | 19 | 17 | 1.60 | | Flounder II | 19 | 17 | 1.60 | | Zebrafish | 14 | 10 | 3.67 | | Tilapia | 14 | 10 | 3.67 | | Bovine cat | 13 | 3 | 10.00 | ^{*1} The contents of charged amino acid residues in the whole trypsin molecule. The names of trypsins are the same in Fig. 3. $^{^{*2}}$ The contents of charged amino acid residues at the N-terminal region (positions 20-50) of trypsin. $^{^{*3}}$ The ratio between the number of hydrophobic amino acids to the number of charged amino acids at the N-terminal region. Table 4 Table 4 Contents of negative charged amino acids at the Ca²⁺-binding regions of trypsins | | Nega/(Nega+Posi) (%)* | |---------------------|-----------------------| | Walleye pollock | 50 | | Arctic cod | 57 | | Atlantic cod I | 50 | | Arabesque greenling | 50 | | Antarctic fish | 43 | | Atlantic salmon I | 60 | | Anchovy | 67 | | Flounder II | 50 | | Zebrafish | 80 | | Tilapia | 75 | | Bovine cat | 100 | $^{^*}$ The proportion of negative charged amino acids to charged amino acids at the ${\rm Ca^{2+}-binding}$ region of trypsin. The names of trypsins are the same in Fig. 3.