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We study the resonance spectroscopy of the proton-rich nucleus 7B in the 4He + p + p + p cluster model.
Many-body resonances are treated under the correct boundary condition as Gamow states using the complex
scaling method. We predict five resonances of 7B and evaluate the spectroscopic factors of the 6Be-p components.
The importance of the 6Be(2+)-p component is shown in several states of 7B; this is a common feature of 7He,
a mirror nucleus of 7B. For only the ground state of 7B, the mixing of the 6Be(2+) state is larger than that of
6He(2+) in 7He, which indicates a breaking of mirror symmetry. This is caused by the small energy difference
between 7B and the excited 6Be(2+) state, the origin of which is Coulomb repulsion.
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I. INTRODUCTION

Radioactive beam experiments have provided us with much
information on unstable nuclei far from stability. In particular,
light nuclei near the drip line exhibit new phenomena of
nuclear structures, such as the neutron halo structure found
in 6He, 11Li, and 11Be [1]. Unstable nuclei can often be in
unbound states beyond particle thresholds due to their weak
binding nature. Resonance spectroscopy of unbound states
beyond the drip line has also been developed experimentally.
In addition to energies and decay widths, configuration
properties are important for understanding the structures of
the resonances. Spectroscopic factors (S factors) give useful
information regarding the configurations of extra nucleons
in resonances as well as in weakly bound states. It is also
interesting to compare the structures of resonances and weakly
bound states between proton-rich and neutron-rich cases. This
comparison is related to mirror symmetry in unstable nuclei.

Recently, an experiment on 7B was reported [2], adding to
prior observations [3]. The 7B nucleus is known as an unbound
system beyond the proton drip line, and its ground state is
naively considered to be the 3/2− resonance. The ground state
of 7B is observed at 2 MeV above the 6Be + p threshold
energy, and excited states have not yet been observed. 7B
states can decay not only to two-body 6Be + p channels, but
also to many-body channels of 5Li + 2p and 4He + 3p. This
multiparticle decay condition makes it difficult to identify the
states of 7B experimentally. The mirror nucleus of 7B is 7He,
which is also an unbound system with respect to one-neutron
emission. Recent experiments on 7He [4–11] confirm that its
ground state shows a 3/2− resonance. The S factor of the 6He-n
component was reported for the ground state of 7He [10]. The
excited states of 7He can decay into the 4He + 3n channel,
which is also difficult to observe experimentally. There still
remain contradictions in the observed energy levels of 7He.
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From the viewpoint of the “4He plus three protons and/or
neutrons” system, information on 7B and 7He is important
to understand structures outside the drip lines as four-body
pictures. It is also interesting to examine the effect of Coulomb
interaction and mirror symmetry in the resonances of two
nuclei. Structures of resonances generally depend on the
existence of open channels as the thresholds of particle
emissions. In this sense, the mirror symmetry of resonances
can be related to the behavior of coupling to open channels.
It is interesting to compare the effects of couplings to open
channels for the resonances of 7B and 7He.

On the theoretical side, to treat unbound states explicitly
several methods have been developed, such as the microscopic
cluster model [12,13], the continuum shell model [14] and the
Gamow shell model [15,16]. It is, however, difficult to satisfy
multiparticle decay conditions correctly for all open channels.
For 7B, it is necessary to describe 4He + 3p four-body
resonances in theory. So far, no theory describes the 7B nucleus
as four-body resonances. It is also important to reproduce
the threshold energies of subsystems for particle decays;
specifically, the positions of open channels. Emphasizing these
theoretical conditions, in this study we employ the cluster
orbital shell model (COSM) [17–20] of the 4He + 3p four-
body system. In COSM, the effects of all open channels are
taken into account explicitly [19] so that we can treat the many-
body decay phenomena. In our previous work on neutron-rich
systems [19–21], we successfully described He isotopes with
the 4He + 4n model up to the five-body resonances of 8He,
including full couplings with 5,6,7He. We described many-body
resonances using the complex scaling method (CSM) [22–24]
under correct boundary conditions for all decay channels.
In CSM, the resonant wave functions are directly obtained
by diagonalization of the complex-scaled Hamiltonian using
L2 basis functions. Results for light nuclei using CSM have
been obtained successfully for energies, decay widths, and
spectroscopic factors, and also for breakup strengths induced
by Coulomb excitations [25,26], monopole transition [21] and
one-neutron removal [20]. Recently, CSM has been developed
to include nuclear reaction methods such as scattering am-
plitude calculation [27], the Lippmann-Schwinger equation
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[28], and the continuum-discretized coupled-channel (CDCC)
method [29].

In this study, we proceed with our study of resonance spec-
troscopy of the proton-rich nucleus 7B. We examine how our
model describes 7B as four-body resonances. We predict the
resonances of 7B and investigate their configuration properties.
We extract the S factors of the 6Be-p components for every
7B resonance. The S factors are useful for understanding the
coupling behavior between 6Be and the last proton. For the
mirror nucleus 7He we have performed the same analysis of
the S factors of the 6He-n components [20], in which a large
mixing of the 6He(2+) state is confirmed. From the viewpoint
of mirror symmetry, we compare the structures of 7B with
those of 7He and discuss the effect of the Coulomb interaction
on mirror symmetry. Since the two nuclei are both unbound,
the coupling effect of the open channels is discussed.

In Sec. II, we explain the complex-scaled COSM wave
function and the method of obtaining the S factors using CSM.
In Sec. III, we discuss the 7B structures and the S factors of
the 6Be-p components. A summary is given in Sec. IV.

II. COMPLEX-SCALED COSM

A. COSM for 4He + Nv p systems

We use COSM for 4He + Nvp systems, where Nv is the
valence proton number around 4He, namely Nv = 3 for 7B.
The Hamiltonian form is the same as that used in Refs. [19,20]:

H =
Nv+1∑
i=1

ti − TG +
Nv∑
i=1

V
αp

i +
Nv∑
i<j

V
pp

ij (1)

=
Nv∑
i=1

( �p2
i

2μ
+ V

αp

i

)
+

Nv∑
i<j

( �pi · �pj

4m
+ V

pp

ij

)
, (2)

where ti and TG are the kinetic energies of each particle (p and
4He) and of the center of mass of the total system, respectively.
The vector �pi is the relative momentum between p and 4He.
The reduced mass μ is 4m/5 using a nucleon mass m. The 4He-
p interaction V αp is given by the microscopic KKNN potential
[24,30] for the nuclear part, in which the tensor correlation
of 4He is renormalized on the basis of the resonating group
method in 4He + N scattering. For the Coulomb part, we use
the folded Coulomb potential using the density of 4He with
a (0s)4 configuration. We use the Minnesota potential [31] as

α1

r1
r1 r2 r1 r3

r2

4He 4He 4He

p
α2α1

α1

α2
α3

4He+p 4He+2p 4He+3p

ψ ψ ψ
ψ

ψ
ψ

FIG. 1. Sets of the spatial coordinates in COSM for the 4He +
Nvp system.

the nuclear part of V pp in addition to the Coulomb interaction.
These interactions reproduce the low-energy scattering of the
4He-N and N -N systems, respectively.

For the wave function, 4He is treated as a (0s)4 configuration
of a harmonic-oscillator wave function, whose length param-
eter is 1.4 fm to fit the charge radius of 4He of 1.68 fm. The
motion of valence protons around 4He is solved variationally
using the few-body technique. We expand the relative wave
functions of the 4He + Nvp system using the COSM basis
states [17–20]. In COSM, the total wave function �J with
spin J is represented by the superposition of the configuration
�J

c as

�J =
∑

c

CJ
c �J

c , (3)

�J
c =

Nv∏
i=1

a†
αi

|0〉, (4)

where the vacuum |0〉 is given by the 4He ground state.
The creation operator a†

α is for the single-particle state of a
valence proton above 4He with quantum number α = {n, �, j}
in a jj coupling scheme. Here, the index n represents the
different radial components. The coefficient CJ

c represents
the amplitude of the configuration and its index c represents
the set of αi as c = {α1, . . . , αNv

}. We take a summation
over the available configurations in Eq. (3), which gives a
total spin J .

The coordinate representation of the single-particle state
corresponding to a†

α is given by ψα(r) as a function of the
relative coordinate r between the center of mass of 4He and
a valence proton [17], as shown in Fig. 1. Considering the
angular momentum coupling, the explicit wave functions of
the COSM configuration �J

c in Eq. (4) are expressed as

�J
c = A′{[�(4He), χJ

c (Nvp)
]J }

, (5)

χJ
c (p) = ψJ

α1
, (6)

χJ
c (2p) = A

{[
ψα1 , ψα2

]
J

}
, (7)

χJ
c (3p) = A

{[[
ψα1 , ψα2

]
j12

, ψα3

]
J

}
. (8)

Here, �(4He) is the 4He wave function with spin 0+. The
function χJ

c (Nvp) expresses the COSM wave functions for
the valence protons. The spin j12 is the coupled angular
momentum of the first and second valence protons. The
antisymmetrizers between valence protons and between a
valence proton and nucleons in 4He are expressed as the
symbols A and A′, respectively. The effect of A′ is treated
in the orthogonality condition model [20,24], in which ψα is
imposed to be orthogonal to the 0s state occupied by 4He. We
employ a sufficient number of radial bases of ψα to describe the
spatial extension of valence protons in resonances where ψα

is normalized. In this model, the radial part of ψα is expanded
with Gaussian basis functions for each orbit as

ψα =
N�j∑
k=1

dk
α φk

�j

(
r, bk

�j

)
, (9)

φk
�j

(
r, bk

�j

) = N r�e−(r/bk
�j )2/2[Y�(r̂), χσ

1/2

]
j
. (10)
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The index k is for the Gaussian basis with length parameter
bk

�j . A normalization factor of the basis and a basis number are
given by N and N�j , respectively.

In COSM, using Gaussian expansion, the total wave
function �J contains two kinds of expansion coefficients:
{CJ

c } in Eq. (3) for configuration and {dk
α} in Eq. (9) for

each valence proton. We determine them using the following
procedure. First, we solve the eigenvalue problem of the
norm matrix of the Gaussian basis set in Eq. (10), which is
nonorthogonal with dimension N�j . The coefficients {dk

α} are
determined to construct the orthonormalized single-particle
basis set {ψα} having different radial components with number
N�j . Second, Hamiltonian matrix elements are constructed
using {ψα} and are diagonalized to determine {CJ

c } from
the variational principle. The relation

∑
c(CJ

c )2 = 1 is sat-
isfied due to the normalization of the total wave function.
The same method of determining the expansion coefficients
using Gaussian bases is used in the tensor-optimized shell
model [32].

The numbers of radial bases N�j of ψα are determined to
converge the physical solutions �J . The length parameters bk

�j

are chosen in geometric progression [20,24]. We use at most 17
Gaussian basis functions by setting bk

�j from 0.2 fm to around
40 fm with the geometric ratio of 1.4 as a typical one. Due to
the expansion of the radial wave function using a finite number
of basis states, all the energy eigenvalues are discretized for
bound, resonant, and continuum states. For reference, in the
Gamow shell-model calculation [15,16], the single particle
states ψα consist of resonant and discretized continuum
states obtained with the single-particle potential V αp in
Eq. (2).

For 7B, all the channels of 6Be + p, 5Li + 2p, and
4He + 3p are automatically included in the total COSM wave
function �J . These components are coupled to each other via
interactions and antisymmetrization. The couplings depend on
the relative distances between 4He and a valence proton and
between valence protons. We explain the coupling behavior
between 4He and valence protons in COSM. This is related to
the boundary condition of the proton emission in 7B, which is
important when the resonant and continuum states are treated
[19,26,33]. As an example, we consider the coupling between
7B and the 6Be + p configurations. Asymptotically, when the
last proton is located far away from 6Be, namely, r3 → ∞
as in Fig. 1, any coupling between 6Be and a last proton
disappears, and 6Be is described by an isolated eigenstate of
the Hamiltonian in Eq. (2) with Nv = 2:

�J (7B) =
∑

c

CJ
c A′{[�(4He), χJ

c (3p)
]J }

(11)

−−−→
r 3→∞

[
�J ′

ν (6Be), ψα3

]J
, (12)

�J ′
ν (6Be) =

∑
c

CJ ′
c,νA′{[�(4He), χJ ′

c,ν(2p)
]J ′}

, (13)

where the spins J and J ′ are for 7B and 6Be, respectively,
and the index ν indicates the eigenstate of 6He. The mixing
coefficients {CJ ′

c,ν} and the wave function χJ ′
c,ν(2p) in Eq. (13)

are those of the 6Be eigenstates. Hence, the wave function

χJ
c (3p) in Eq. (11) satisfies the following asymptotic form:

∑
c

CJ
c χJ

c (3p)
−−−→
r 3→∞

(∑
c

CJ ′
c,νχ

J ′
c,ν(2p)

)
ψα3 . (14)

This relation implies that the wave function of the three valence
protons of 7B is asymptotically decomposed into 6Be and
a last proton. Equations (11)–(14) determine the boundary
condition of COSM. In contrast, when a last proton comes
close to 6Be, the last proton dynamically couples to the
6Be eigenstates �J ′

ν . This coupling depends on the relative
distance between 6Be and a last proton, and changes the 6Be
configurations from isolated eigenstates of 6Be. In COSM, the
structure change of 6Be inside 7B is determined variationally
to optimize the 7B eigenstates. The same method is applied
to the asymptotic conditions for the 5Li + 2p and 4He + 3p

configuations. Hence proton emissions can be handled with
correct boundary conditions in COSM.

We now explain the parameters of the model space
of COSM and the Hamiltonian, which are determined in
the previous analyses of He isotopes [19,20]. For single-
particle states, we use angular momentum � � 2 to keep
the accuracy of the converged energy within 0.3 MeV for
6He with the 4He + n + n model, in comparison with the
full-space calculation [24]. In this model, we adjust the
two-neutron separation energy of 6He(0+) to the experimental
result of 0.975 MeV by using the 173.7-MeV value of the
repulsive strength from the Minnesota potential instead of
the original value of 200 MeV. The adjustment of the NN

interaction originates from the pairing correlation between
valence protons with higher angular momentum � > 2 [24].
Hence, the present model reproduces the observed energies
of 6He and is applied to the proton-rich nuclei in this
analysis.

B. Complex scaling method (CSM)

Here we explain CSM, which describes resonances and
nonresonant continuum states [22–24]. Hereafter, we refer to
the nonresonant continuum states as simply the continuum
states. In CSM, we transform the relative coordinates of
the 4He + Nvp system as r i → r i e

iθ for i = 1, . . . , Nv ,
where θ is a scaling angle. The Hamiltonian in Eq. (2) is
transformed into the complex-scaled Hamiltonian Hθ , and
the corresponding complex-scaled Schrödinger equation is
given as

Hθ�
J
θ = E�J

θ . (15)

The eigenstates �J
θ are obtained by solving the eigenvalue

problem of Hθ in Eq. (15). In CSM, we obtain all the
energy eigenvalues E of bound and unbound states on the
complex energy plane, governed by the ABC theorem [34].
In this theorem, it is proved that the boundary condition of
resonances is transformed to one of damping behavior in the
asymptotic region. This condition makes it possible to use the
same method to obtain bound states and resonances. For a
finite value of θ , every Riemann branch cut starting from the
different thresholds is commonly rotated down by 2θ . Hence,
continuum states such as the 6Be + p and 5Li + 2p channels
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in 7B are obtained on the branch cuts rotated by −2θ from the
corresponding thresholds [19,20]. In contrast, bound states and
resonances are obtainable independent of θ . We can identify
resonance poles with complex eigenvalues: E = Er − i�/2,
where Er and � are the resonance energies and the decay
widths, respectively. In the wave function, the θ dependence
is included in the expansion coefficients in Eqs. (3) and (9) as
{CJ

c (θ )} and {dk
α(θ )}, respectively. The value of the angle θ is

determined to search for the stationary point of each resonance
in the complex energy plane [22–24].

The resonant state generally has a divergent behavior
at asymptotic distance, and then its norm is defined by a
singular integral using, for example, the convergent-factor
method [24,35,36]. In CSM on the other hand, resonances
are precisely described as eigenstates expanded in terms of L2

basis functions. The amplitudes of the resonances are finite and
are normalized as

∑
c(CJ

c (θ ))2 = 1. The Hermitian product
is not applied due to the bi-orthogonal relation [22,23,37].
The matrix elements of resonances are calculated using the
amplitudes obtained in CSM.

In this study, we discretize the continuum states in terms
of the basis expansion, as shown in the figures of energy
eigenvalue distributions in Refs. [20,24,25]. The reliability
of the continuum discretization in CSM has already been
shown using continuum level density [38] and phase-shift
analysis [27].

C. Spectroscopic factor of 7B

We now explain the S factors of the 6Be-p components
for 7B. As was explained in the previous study [20], since the
resonant states generally give complex matrix elements, the S

factors of resonant states are not necessarily positive definite.
The S factors are defined by the squared matrix elements using
the bi-orthogonal property [37] as

S
J,ν
J ′,ν ′ =

∑
α

S
J,ν
J ′,ν ′,α , (16)

S
J,ν
J ′,ν ′,α = 1

2J + 1

〈
�̃J ′

ν ′
∣∣∣∣aα

∣∣∣∣�J
ν

〉2
, (17)

where the annihilation operator aα is for a single valence
proton with state α. The spins J and J ′ are for 7B and 6Be,
respectively. The index ν (ν ′) indicates the eigenstate of 7B
(6Be). The wave function �J ′

ν ′ is for 6Be. In this expression,
the values of S

J,ν
J ′,ν ′ are allowed to be complex. In general, the

imaginary parts of the S factors often become large relative
to the real parts for a resonance having a large decay width.
Recently, the Gamow shell-model calculation was also used
to discuss the S factors of resonances [39].

The sum-rule value of the S factors, which includes reso-
nance contributions of the final states, can now be considered
[19]. When we count all the S factors, not only of resonances
but also of the continuum states in the final states, the summed
value of the S factors is equal to the associated particle number,
which is a real value and does not contain any imaginary
part, similarly to the transition-strength calculation [25,40].
For the 7B into 6Be-p decomposition, the summed value of
the S factors S

J,ν
J ′,ν ′ in Eq. (17), taking all the 6Be states, is

 0

 2

 4
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5Li 6Be 7B

E(4He)

1/2-
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FIG. 2. Energy levels of 5Li, 6Be, and 7B measured from the
4He energy. Units are in MeV. Black and gray lines are theory and
experiments, respectively. Small numbers are decay widths.

given as ∑
J ′,ν ′

S
J,ν
J ′,ν ′ =

∑
α,m

〈
�̃JM

ν

∣∣a†
α,maα,m

∣∣�JM
ν

〉
= 3, (18)

where we use the completeness relation of 6Be as

1 =
∑
J ′,M ′

∑
ν ′

∫ ∣∣�J ′M ′
ν ′

〉〈
�̃J ′M ′

ν ′
∣∣. (19)

Here M (M ′) and m are the z components of the angular
momenta of the wave functions of 7B (6Be) and of the creation
and annihilation operators of the valence protons, respectively.
It is found that the summed value of the S factors for the 6Be
states becomes the valence proton number Nv of 7B. This
discussion of the S factors is valid when complex scaling is
used. It is also shown that th S factors of the resonances are
invariant with respect to the scaling angle θ [20,36].

The present S factors can be used to obtain the strength of
the proton removal reaction from 7B into 6Be as a function of
the energy of 6Be. In this calculation, the S factors not only
of the resonances but also of the many-body continuum states
for 7B and 6Be are necessary. The complex-scaled Green’s
function is also used to calculate the strength distribution [20,
25,41]. In fact, for the neutron-rich case, we have shown the
one-neutron removal strength distributions from 7He into 6He
states using CSM [20]. The strength of three-body scattering
states of 6He into 4He + n + n was successfully obtained by

TABLE I. Energy eigenvalues of the 6Be resonances measured
from the 4He + p + p threshold. The values in parentheses are the
experimental ones [42]. Dominant configurations are listed.

Energy (MeV) Width (MeV) Configuration

0+
1 1.383 (1.370) 0.041(0.092) (p3/2)2

0+
2 5.95 11.21 (p1/2)2

2+
1 2.90 (3.04) 1.05 (1.16) (p3/2)2

2+
2 4.63 5.67 (p3/2)(p1/2)

1+ 4.76 7.75 (p3/2)(p1/2)
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TABLE II. Components of the ground states of 6Be and 6He.

Configuration 6Be(0+
1 ) 6He(0+

1 )

(p3/2)2 0.918 − i0.006 0.917
(p1/2)2 0.041 + i0.000 0.043
(1s1/2)2 0.010 + i0.006 0.009
(d5/2)2 0.024 + i0.000 0.024
(d3/2)2 0.007 + i0.000 0.007

using the complex-scaled wave function of 6He. It was shown
that the 6He(2+) resonance generates a sharp peak at around
the resonance energy in the distribution.

In the numerical calculation, we express the radial part
of the operator aα in Eq. (17) using a complete set of a
valence proton expanded by 40 Gaussian basis functions with
a maximum range of 100 fm for each orbit. This treatment is
sufficient to converge the S-factor results.

III. RESULTS

A. Energy spectra of 5Li, 6Be, and 7B

We show the systematic behavior of level structures of 5Li,
6Be and 7B in Fig. 2. It is found that the present calculations
agree with observed energy levels. We furthermore predict
many resonances for 6Be and 7B. We first discuss the structures
of 6Be, which are useful for understanding of 7B structures.
The 6Be states together with a last proton compose the
thresholds of the decay of 7B. It is also interesting to compare
6Be structures with those of 6He, a mirror and a neutron-halo
nucleus.

The resonance energies and the decay widths of 6Be are
listed in Table I with dominant configurations. The components
of each configuration for the 6Be and 6He ground states
are listed in Table II, which are the squared values of the
amplitudes {CJ

c } defined in Eq. (3). We show the summation
of the components belonging to the same configurations with
different radial components of the valence proton. It is noted
that the amplitude of the resonant wave function becomes a
complex number and its real part can have a physical meaning
when the imaginary part has a relatively small value. It is
confirmed that the two ground states show a similar trend
of configuration, which is dominated by the p shell. The
configurations of the 2+

1 states of 6Be and 6He are also shown
in Table III, where the energy and decay width of 6He(2+

1 ) are
obtained as (Er, �) = (0.879, 0.132) in MeV, measured from
the 4He + n + n threshold. A good correspondence is seen
for the two dominant configurations of the 2+

1 states. These
results indicate that mirror symmetry of configurations is well

TABLE III. Dominant components of the 2+
1 states of 6Be and 6He.

Configuration 6Be(2+
1 ) 6He(2+

1 )

(p3/2)2 0.891 + i0.030 0.898 + i0.013
(p3/2)(p1/2) 0.097 − i0.024 0.089 − i0.013

TABLE IV. Radial properties of the ground states of 6Be and 6He
in units of fm, in comparison with the experiments of 6He; labels a–d
denote Refs. [43–46], respectively.

6Be 6He 6He (expt.)

Rm 2.80 + i0.17 2.37 2.33(4)a, 2.30(7)b, 2.37(5)c

Rp 3.13 + i0.20 1.82
Rn 1.96 + i0.08 2.60
Rch 3.25 + i0.21 2.01 2.068(11)d

rNN 6.06 + i0.35 4.82
rc-2N 3.85 + i0.37 3.15
θNN 75.3 74.6

kept between 6Be and 6He. Recently, Gamow shell-model
calculations were used to discuss p-shell contributions in the
A = 6 system [39].

The radial properties of 6Be are of interest when discussing
the effect of Coulomb repulsion in comparison with 6He,
which has a halo structure, although the radius of 6Be can
be a complex number because of the resonance. The results
of the 6Be ground state are shown in Table IV for matter
(Rm), proton (Rp), neutron (Rn), and charge (Rch) parts, for
the relative distances between valence nucleons (rNN ) and
between the 4He core and the center of mass of two valence
nucleons (rc-2N ), and for the opening angle between two
nucleons (θNN ) at the center of mass of the 4He core. It
is found that the values for 6Be are almost real, so that the
real parts can be considered to represent the radius properties
of 6Be. The distances between valence protons and between
the core and 2p in 6Be are wider than those of 6He by
26% and 22%, respectively. This result comes from Coulomb
repulsion between the three constituents of 4He + p + p in
6Be. Coulomb repulsion makes the energy of 6Be shift up
to become a resonance in comparison with 6He, and it also
increases the relative distances between each constituent from
the halo state of 6He.

We now discuss the structures of 7B. The energy eigen-
values are listed in Table V, measured from the 4He + 3p

threshold. We obtained five resonances, which are all located
above the 6Be(0+

1 ) + p threshold as shown in Fig. 2, as well
as four-body resonances. In Fig. 3 we display the energy
eigenvalues of the 7B resonances together with the many-body
continuum cuts in the complex energy plane, which is useful
for understanding at a glance the positions of poles and the
various relative thresholds. The 6Be resonances together with

TABLE V. Energy eigenvalues of the 7B resonances measured
from the 4He + 3p threshold. The values in square brackets are the
experimental ones [2]. Dominant configurations are listed.

Energy (MeV) Width (MeV) Configuration

3/2−
1 3.35 [3.38(3)] 0.49[0.80(2)] (p3/2)3

3/2−
2 6.92 5.422 (p3/2)2(p1/2)

3/2−
3 8.39 9.86 (p3/2)(p1/2)2

1/2− 5.93 4.73 (p3/2)2(p1/2)
5/2− 4.63 3.91 (p3/2)2(p1/2)
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a last proton compose the thresholds of 7B, whose positions
are located at the starting points of the −2θ -rotated cuts
in CSM. The energy of the 7B ground state is obtained as
Er = 3.35 MeV, which agrees with the recent experiment
result of Er = 3.38(3) MeV [2]. The decay width is 0.49 MeV,
which is good but slightly smaller than the experimental
value of 0.80(2) MeV. In the experiment, the decay width
was determined from R-matrix theory with the assumption of
decay into the 6Be(0+

1 ) + p channel. On the other hand, our
analysis shows that the 6Be(2+

1 )-p component is important in
the 7B ground state, which is found from the S factors of this
channel and is suggested from the conventional shell-model
calculation [2]. There is no experimental evidence for the
excited states of 7B so far, and further experimental data are
anticipated.

We now discuss the configuration properties of each
resonance of 7B in detail. In Table VI, we list the main
configurations with their squared amplitudes (CJ

c )2 from
Eq. (3) for each 7B resonance. In general, the squared
amplitude of a resonant state can be a complex number, while
the total of the squared amplitudes is normalized to unity. The
interpretation of the imaginary part in the physical quantity
of resonances is still an open problem [36]. In the results for
7B, the amplitudes of the dominant components are almost
real values. It is, hence, reasonable to discuss the physical
meaning of the dominant components of the resonances in the
same way that we discuss the bound state. It is furthermore
found that the imaginary parts of the configurations cancel
each other for every resonance, and their summations have

much smaller imaginary parts. When we consider all the
available configurations, the summations conserve unity due
to the normalization of the states.

For the 3/2− ground state, the result indicates that the
(p3/2)3 configuration is dominant with a small mixing of
the p1/2 component. For the excited 3/2−

2 state, one proton
occupies the p1/2 orbit and the residual two protons in
p3/2 form a spin of 2+, which corresponds to the 6Be(2+

1 )
configuration as shown in Table III. The 6Be(2+

1 )-p component
in the 3/2−

2 state of 7B is important from the viewpoint of the
S factors. It is also found that two-particle excitation into the
(p1/2)2 configuration is mixed by about 20%. The 3/2−

3 state
is dominated by the (p3/2)(p1/2)2 configuration, in which the
(p1/2)2 part has the same configuration as 6Be(0+

2 ).
The 1/2− state of 7B corresponds to one-particle excitation

from the ground state. Its decay width of 4.73 MeV is large,
and is comparable to the resonance energy of 5.93 MeV among
the five resonances of 7Be. This is confirmed in Fig. 3 by the
large ratio of the imaginary part to the real one in the complex
energy plane. The large decay width is similar to that of the
5Li(1/2−) state in the 4He + p system. In comparison with 5Li,
whose resonance energy is 2.93 MeV with a decay width of
6.49 MeV, the 7B(1/2−) state has a smaller decay width. This
difference comes from the residual two protons occupying the
p3/2 orbit in 7B. The attractive contribution between the p1/2

proton and other two protons makes the decay width of the
1/2− state smaller. In the 5/2− state, the 2+ component of
(p3/2)2 plus p1/2 is dominant. This coupling scheme is similar
to the 3/2−

2 case. In relation to the configuration properties of
7B, it is interesting to examine the 6Be-p components in each
7B state, which is done using S factors.

It is interesting to discuss the mirror symmetry between
7B and 7He consisting of 4He and three valence protons or
neutrons. To do this, we show the energy spectra of He isotopes
with COSM in Fig. 4, using the Hamiltonian in Eq. (2) without
the Coulomb term. The experimental data of 7He(1/2−) are
not fixed [6–11], so we do not include the data in the figure.
From Figs. 2 and 4, it is found that the order of energy levels
is the same for proton-rich and neutron-rich cases. In the
proton-rich case, whole spectra are shifted up, due to Coulomb
repulsion, in comparison with those of the neutron-rich case.
The displacement energies are about 2.5 MeV for 6Be from
6He and about 4 MeV for 7B from 7He. In Fig. 5, we compare
the excitation energy spectra of proton-rich and neutron-rich
cases. It is found that good symmetry is confirmed between the
corresponding nuclei. The differences of excitation energies
for individual levels are less than 1 MeV. The properties of the

TABLE VI. Dominant configurations of three valence protons in 7B resonances with their squared amplitudes (CJ
c )2.

3/2−
1 3/2−

2 3/2−
3

(p3/2)3 0.923 + i0.002 (p3/2)2(p1/2) 0.795 + i0.032 (p3/2)(p1/2)2 0.770 + i0.053
(p3/2)(p1/2)2 0.020 + i0.004 (p3/2)(p1/2)2 0.195 − i0.035 (p3/2)2(p1/2) 0.182 − i0.050
(p3/2)2(p1/2) 0.021 − i0.007 (d3/2)2(p3/2) 0.006 + i0.001 (p3/2)3 0.003 − i0.002

1/2− 5/2−

(p3/2)2(p1/2) 0.969 − i0.000 (p3/2)2(p1/2) 0.957 + i0.006
(d5/2)2(p1/2) 0.018 − i0.002 (d3/2)(d5/2)(p3/2) 0.015 − i0.003
(1s1/2)2(p1/2) 0.005 + i0.002 (d3/2)2(p3/2) 0.008 − i0.001
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configurations of 7B and 7He are discussed next in terms of
S factors.

B. Spectroscopic factors of 7B

We obtain information on the structures of 7B via S

factors. In this study, we extract the S factors of the 6Be-p
components in 7B. These quantities is important for examining
the coupling behavior between 6Be and a last proton, including
the excitations of 6Be. We choose the 0+

1 and 2+
1 states of 6Be,

which are observed experimentally. In this analysis, both the
initial (7B) and final (6Be) states are resonances, so that the
S factors become complex numbers. The present S factors
correspond to the components of 6Be in the 7B resonances and
contain imaginary parts. It is still difficult to derive a definite
conclusion regarding the interpretation of the imaginary part
in the S factors, as was mentioned in previous studies [20].
Further theoretical and mathematical developments are desired
to solve this problem.

In Table VII, we list the results of S factors for 7B. For
comparison, the results for 7He are shown in Table VIII. It is
found that most of the components show almost real values
in 7B and 7He. Hence, a comparison of the real parts of the S

factors for 7B and 7He is shown in Figs. 6 and 7.
In Table VII, for the 3/2−

1 state, the 6Be(2+
1 )-p component

is large: more than four times that of the 6Be(0+
1 )-p component

for the real part. This means that the 6Be(2+
1 ) state is dominant
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FIG. 5. Excitation energy spectra of mirror nuclei with A = 5, 6,
and 7 in units of MeV.

TABLE VII. S factors of the 6Be-p components in 7B. Details are
described in the text.

6Be(0+
1 )-p 6Be(2+

1 )-p

3/2−
1 0.51 + i0.02 2.35 − i0.15

3/2−
2 0.02 − i0.01 0.96 − i0.01

3/2−
3 0.00 + i0.01 −0.01 − i0.06

1/2− 0.93 − i0.02 0.10 − i0.01
5/2− 0.00 + i0.00 1.04 − i0.01

in this state. A similar trend can be seen in 7He in Table VIII,
where the real part of the 6He(0+

1 )-n component agrees with the
observation of 0.64(9) [10], as shown in Fig. 6. For the 3/2−

2
state, the 6Be(2+

1 )-p component is selectively mixed from the
dominant amplitude of (p3/2)2

2+ ⊗ (p1/2). For the 3/2−
3 state,

the 0+
1 and 2+

1 states of 6Be are hardly included because of
the (p3/2) ⊗ (p1/2)2 configuration. Instead of the above two
6Be states—the 6Be(0+

2 ) state with (p1/2)2 configuration and
the 6Be(2+

2 ) state with (p3/2)(p1/2) configuration—one may
give large contributions for the 3/2−

3 state. For the 1/2− state,
the S factor of the 6Be(0+

1 )-p1/2 proton is close to unity,
with a small imaginary part, and the 6Be(2+

1 )-p component
is small. Hence, the 6Be(0+

1 )-p component is dominant in
the 1/2− state. The large mixing of the 0+ state for A = 6
nuclei is also confirmed in the 7He(1/2−) state, as shown in
Table VIII. In 7He(1/2−), we have suggested a weak coupling
nature of the p1/2 orbital neutron around 6He, which retains a
two-neutron halo structure [20]. For the 5/2− state of 7B,
the 6Be(2+

1 )-p component is included, similar to 3/2−
2 as

was explained. These two states have a similar structure of
configurations of valence protons. From the S-factor analysis,
most of the 7B states are not considered to be purely single-
particle states coupled with the 6Be ground state, except
for the 1/2− state. The component of 6Be(2+

1 ) is important
in several states. This conclusion is the same as that for
7He.

We now consider the structure differences between 7B and
7He from the S factors and discuss mirror symmetry. From
Fig. 7, a sizable difference between the components including
the A = 6 (2+) states is seen in the ground states of 7B and 7He.
The 6Be(2+

1 )-p component in 7B (obtained as 2.35) is larger
than the 6He(2+

1 )-n component in 7He (obtained as 1.60) by
47% for the real part. The other four excited states show similar
values between the two nuclei in Figs. 6 and 7. In those excited
states, either of the components 0+ or 2+ of A = 6 nuclei is
selectively mixed. These results indicate that the breaking of

TABLE VIII. S factors of the 6He-n components in 7He. Details
are described in the text.

6He(0+
1 )-n 6He(2+

1 )-n

3/2−
1 0.63 + i0.08 1.60 − i0.49

3/2−
2 0.00 − i0.01 0.97 + i0.01

3/2−
3 0.01 + i0.00 0.04 − i0.01

1/2− 0.95 + i0.03 0.07 − i0.02
5/2− 0.00 + i0.00 1.00 + i0.01
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mirror symmetry occurs only in their ground states. The reason
for the difference in the 2+ coupling is that the 7B ground state
is located close to the 6Be(2+

1 ) state—within 0.45 MeV for the
resonance energy—as shown in Fig. 2 where the decay widths
of the two states are rather small in comparison with other
resonances. This situation does not occur in 7He, as shown
in Fig. 4 where the energy difference between 7He(3/2−

1 ) and
6He(2+

1 ) is 1.46 MeV. The small energy difference between 7B
and 6Be(2+

1 ) enhances the 6Be(2+
1 )-p component in 7B due to

the coupling to the open channel of the 6Be(2+
1 ) + p threshold.

On the other hand, the 6Be(0+
1 )−p component in 7B becomes

smaller than that of 7He by 24%, as shown in Fig. 6, because
the energy difference between the ground states of 7B and 6Be
is 1.97 MeV, larger than 0.40 Mev in the case of 7He. The origin
of the difference of the S factors in 7B and 7He is Coulomb
repulsion, which acts to shift upward the energies of the 7B
states. The well-known effect of the Coulomb interaction to
break mirror symmetry is the Thomas-Erhman shift, in which
the s-wave dominant states suffer a different effect of Coulomb
repulsion from states having mainly other partial waves. On
the other hand, the present result found for the 7B ground
state is caused by the existence of the several open channels,
including the excitations of subsystems, and is different from
the Thomas-Erhman shift.

In conclusion, mirror symmetry is broken only in the ground
states of 7B and 7He, while the excited states of the two
nuclei retain symmetry. This result is associated with the
energies of the A = 6 subsystem for the open channels of
one-nucleon emission. We wish to observe experimentally
the 2+ components of A = 6 nuclei in 7B and 7He and
examine their mirror symmetry. In the present analysis, the
S factors represent the contributions of only the resonances of
7B and 6Be. By considering the additional contributions of the
remaining continuum states of the two nuclei, it is possible to
obtain the strength functions of one-proton removal from 7B
into 6Be and also into 4He + p + p final states, which are
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FIG. 7. Real part of the S factors of 7B and 7He, in which the
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observable. It is interesting to obtain these strengths and
compare them with the one-neutron removal strength from
7He into 6He [20].

IV. SUMMARY

We have investigated the resonance structures of 7B with the
4He + 3p four-body cluster model. The boundary condition
for many-body resonances is accurately treated using the
complex scaling method. The decay thresholds concerned with
subsystems are described consistently. We have found five
resonances of 7B, which are dominantly described by p-shell
configurations. The energy and the decay width of the ground
state agree with a recent experiment. We also predict four
excited resonances of 7B, which we hope to see confirmed
experimentally.

We further investigated the spectroscopic factors of the
6Be-p components in 7B to examine the coupling behavior
between 6Be and a last proton. It is found that the 6Be(2+

1 )
state contributes significantly in the ground state and in several
excited states of 7B. In comparison with 7He, the mirror
nucleus of 7B, the 6Be(2+

1 )-p component in the 7B ground
state is larger than the 6He(2+

1 )-n component in the 7He
ground state. This difference comes from the fact that the
7B ground state is close to the 6Be(2+

1 ) state in energy, due
to Coulomb repulsion. This situation enhances the 6Be(2+

1 )-p
component in 7B as channel coupling. The different couplings
of A = 6 nuclei in 7B and 7He occurred only in their ground
states, indicating a breaking of mirror symmetry. We wish
to observe the difference of the couplings in 7B and 7He
experimentally.
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[18] H. Masui, K. Katō, and K. Ikeda, Phys. Rev. C 73, 034318

(2006).
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