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Phase unwrapping still plays an important role in many data-processing chains based on phase informa-
tion. Here, we introduce a new phase unwrapping approach for noisy wrapped phase maps of continuous
objects to improve the accuracy and computational time requirements of phase unwrapping using a rota-
tional compensator (RC) method. The proposed algorithm is based on compensating the singularity of
discontinuity sources. It uses direct compensation for adjoining singular point (SP) pairs and uses RC for
other SP pairs. The performance of the proposed method is tested through both simulated and real
wrapped phase data. The proposed algorithm is faster than the original algorithm with the RC and
has proved efficiency compared to other phase unwrapping methods. © 2011 Optical Society of America

OCIS codes:

1. Introduction

Two-dimensional (2D) phase unwrapping is key to
data-processing chains in many fields of research,
such as optics [1], magnetic resonance imaging [2,3],
and synthetic aperture radar interferometry [4,5]. In
all these research fields, the measured parameters
are modulated in the form of 2D fringe pattern. To
retrieve the phase information from the fringe pat-
tern, Fourier domain filtering [6-8] or phase shift
technique [7,9,10] can be used. The retrieved phase
values, which are wrapped phase, are the distribu-
tion of principal values ranging from -z to z. Thus,
phase unwrapping procedure is needed to get back
the unknown multiple of 2z to each pixel. However,
the defects in the fringe patterns, such as phase
discontinuity, shadow, and/or noise, are the main dif-
ficulties in the phase unwrapping methods. To ex-
clude these invalid areas from the unwrapping
process and obtain precise unwrapped phase results
can be a time-consuming process.

0003-6935/11/336225-09$15.00/0
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Most phase unwrapping algorithms are divided
into two basic classes. The first class is algorithms
based on following the paths [4,11-16]. In these
methods, the unwrapping operation is carried out
along paths of successive pixels, where the paths
are taken to avoid inconsistent pixels. These incon-
sistencies arise from the existence of discontinuity
sources. The path-following methods are fast,
however, they may contain unintended gaps of un-
wrapped phase in the case where phase data con-
tains high ratio of error sources, such as noise and
phase discontinuities of more than z. This is a ser-
ious problem for quantitative evaluation of 2D opti-
cal information. The second class of algorithms is
based on a least-squares approach [1,17-22]. These
methods use a principle that minimizes the differ-
ences between the partial derivatives of wrapped
phase differences and the partial derivatives of the
solution (unwrapped phase differences). Phase un-
wrapping using the rotational compensator (RC)
algorithm [23] and singularity-spreading phase un-
wrapping (SSPU) method [24] are also classified into
the same class of least-squares methods, since they

20 November 2011 / Vol. 50, No. 33 / APPLIED OPTICS 6225



spread the singularity similar to the least-squares
methods. For noisy data, these methods provide
accurate unwrapped results. For example, the RC al-
gorithm [23] is the most accurate method among
Goldstein’s path following [4], the least-squares
method with discrete cosine transform (LS-DCT)
[22], and SSPU [24] methods. It can compensate
the singularities of singular points (SPs). Although
the effect of compensation decreases with the in-
creasing distance from the SP, it does not perfectly
vanish in a distant area from SP, even if the area
has no SPs. This is considered an error in phase un-
wrapping by RC. Furthermore, it requires large
amount of computational cost.

The phase unwrapping methods mentioned earlier
deal with the noise problem in several different ways.
The path-following methods suppress the noise by
laying branch cuts to avoid residues. On the other
hand, the least-squares methods fit the phase
surface to provide the solution. However, there is an-
other type of method that performs phase map de-
noising before phase unwrapping. For this method,
efforts have been made over the last decades to re-
move noise (denoising) before phase unwrapping.
A wrapped phase maps can be easily unwrapped
by filtering the noise properly. However, it is difficult
to filter the wrapped phase. To reduce the phase map
noise, several methods have been proposed, such as
the multilook filter method [25], the local statistic fil-
ter, and Fourier transform-based methods [26,27].
Although these techniques can reduce the noise with-
in the original spatial resolution, they are highly
dependent on the window size. The phase data is con-
sidered as a nonstationary signal [28], and the Four-
ier transform cannot process nonstationary signals.
For those reasons, Goldstein and Werner proposed
a filter dividing the phase data into small blocks
in which the spectrum of each block is filtered sepa-
rately [26]. The windowed Fourier transform (WFT)
and wavelet transform are regarded as two spatial
frequency analyses having the ability of processing
signals locally. Recently, in order to reduce the phase
noise based on WFT, a novel algorithm has been
proposed [29-31]. This algorithm uses a constant
threshold in different cases. This could be considered
a deficiency for this algorithm. Moreover, a proper
window size is critical for yielding good filtering
results. Choosing a small window size will reduce
the linear phase approximation errors. On the other
hand, choosing a large window size will reduce the
influence of the noise. Hence, the window size should
be selected to take the balance between the linear
phase approximation error and the noise level.
Inadequate choice of window size will affect phase
retrieval.

Based on the above discussion, the existing phase
unwrapping methods suffer from various problems
that can affect time, cost, and accuracy of unwrapped
results. Therefore, it is needed to investigate and im-
prove the existing unwrapping methods. In this pa-
per, we attempt to reduce the computational time
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requirements of the RC method to a minimum,
and to improve the level of efficiency and reliability
as well. It was found that the distribution of dipole
distance shows that there are a lot of dipole pairs
that have short distances. According to this finding,
the proposed algorithm is computing compensators
for adjoining pairs of SPs directly; the new method
is a coupling of the RC and the direct compensator
(DC). The remainder of this paper is organized as
follows: the explanation and analysis of phase un-
wrapping is shown in Section 2, while Section 3 pre-
sents the basic idea and procedures of the proposed
method. Section 4 demonstrates the applicability
and validity of the proposed algorithm by comparing
its unwrapped results with the past methods using
simulation and experimental data. Finally, the con-
clusion is given in Section 5.

2. Analysis of Phase Unwrapping

A. Phase Unwrapping Problem

Commonly, most phase unwrapping algorithms
are based on one assumption: that the true un-
wrapped phase data, ®@;, varies gradually enough
to make the neighboring phase difference values
be within one half cycle (zrad) of each other, |A®?| =
|D; 1 - D;| < x. If this assumption is true every-
where, the unwrapping process can be applied
simply by integrating wrapped phase differences,
or gradients, along any path from a pixel to another
pixel throughout the phase data to obtain an un-
wrapped phase. The wrapped gradient phase dif-

ference, v‘I’i, between two successive pixels in the
unwrapping path can be defined as

V¥i = AW — Int {Mn] 2z,
2r

AY =V, -, (1)

where ¥, is the wrapped phase at pixel i in the phase
map, and Int[] means a function that returns the
nearest integer. The absolute wrapped gradient,

| V¥, is always smaller than 7. In the absence of
discontinuity sources, the unwrapped result is inde-
pendent of the unwrapping path; therefore, the un-
wrapped phase map is consistent. Considering that
a path consists of M points, the points are numbered
from 0 to M - 1. If the difference of the true un-
wrapped phases satisfies this relation |A®| < 7,
since the wrapped gradient is identical to the differ-

ence of the true phases, V¥ = A®’, we can retrieve
the true unwrapped phase as follows:

M-1
Dy =Dy + Y _ VY. (2)

i=0

In 2D phase unwrapping, there are paths with a
loop, which means that the last point can be con-
sidered the first point. In the case where point M



is identical to point 0, if the relation |A®| < r is sa-
tisfied, the summation of VW for all points (from 0 to
M -1) in the path must equal zero. However, in the
presence of discontinuities, the path of integration
becomes dependent and choosing a path randomly
is not possible anymore. If Eq. (2) is used by itself
to retrieve the unwrapped phase map, it may result
in the addition or the subtraction of incorrect multi-
ples of 27, which will then propagate throughout the
rest of the phase map. Restrictions must be applied
to the unwrapping path in the corrupted areas,
which result in the path being dependent. To avoid
this situation, corrupted areas, or SPs, must be iden-
tified, balanced, and isolated from the rest of the non-
singular pixels using barriers (branch cuts) in the
phase map. Once SPs are isolated, phase unwrap-
ping will take an independent path avoiding these
branch cuts, therefore, it retrieves the true phase.

B. SPs and Branch Cuts

A path in the 2D phase map consists of a sequence
of horizontal and vertical segments joined at their
adjacent points. To calculate SPs, it was applied that
a closed path with four segments (i =0, ..., 3) start-
ing in every point defined by the corners of a 2 x 2
square. The SPs are identified by summing VW
along the closed path in clockwise direction, as
follows:

3
> V=278, (3)
=0

where S is the residue of SP. When the value of S in
Eq. (3)is +1 or -1, SP can be found. The SP is called a
positive residue when S is +1; otherwise, it is called a
negative residue when S is —1.

When closed path includes the same number of
SPs with positive residues and those with negative
residues, the integral along the chosen path is equal
to zero. In this way, the unwrapping process is
carried out successfully outside the closed path. In
the area inside the closed path, lines between SPs
with different signed residues are placed, which
are called branch cuts. These branch cuts act as bar-
riers to prevent the unwrapping path to cross them
[11-16]. Basically, SPs appear as pairs of poles with
the opposite sign. However, some isolated SPs or SPs
of dipoles with long distances, which are called mono-
poles, may appear near the boundaries of the phase
map because the measurement domain is finite. This
can result in the number of positive SPs and negative
ones in the measurement area being different. More-
over, monopoles spread errors throughout the entire
measurement area [23]. Therefore, it is necessary to
balance the number of positive and negative SPs.
One solution is to append virtual SPs (VSPs) outside
the measurement area, so that the error of mono-
poles will be reduced. There are several positive
and negative SPs in the phase map, hence, there will
be numerous possible ways to link them. For any

possible set of links, the unwrapped phase map is
not the same, despite this, only one unwrapped phase
map is correct. To find the correct set of linkages, a
criterion has to be set as an evaluation for the quality
of the unwrapped result. One way for coupling SPs
and forming dipole pairs is the unconstrained SP
(USP) positioning technique [23]. Generally, the SP
is positioned at the center point of an elementary
path that consists of four adjacent pixels with square
shape. When the SPs are located at the center of the
loop, it may be difficult to determine which SPs are
the closest couple to each other, since the distances
between the SPs are distributed in discrete values
and some SPs may be located at the same distance.
However, if USP technique is used, we can obtain the
accurate positioning of the SPs, which means that
their positions are obtained in a continuous manner.
Hence, the distances are different in most cases, and
we can determine which SPs are the closest to each
other to form a pair.

3. Phase Unwrapping by RC and DC Algorithms

In a manner similar to the phase unwrapping
algorithm developed by Tomioka et al. [23], the main
issues determine the behavior of the proposed algo-
rithm: the RC, USP positioning, and VSP approach
to compensate the inconsistencies and to confine
the effect of each one in a local region. The proposed
algorithm is based on their method, however, the way
of computing the compensators for adjoining SP
pairs is different from RC. The following subsection
explain and discuss the RC and DC principles and
the description of the proposed algorithm.

A. RC

Since phase unwrapping is an essential process of
removing discontinuities by local neighborhood tests
and corrections, the idea of compensator is proposed
to compensate and cancel the singularity effect by
the SSPU [24] or RC methods [23]. The SSPU meth-
od requires iteration process to compute the com-
pensators, while the RC method can compute the
compensator by superposing the effect of each SP.
RC can cancel singularity of each SP by adding an
integral of isotropic singular function along any
loops. When a closed loop includes SP, the integral
along the loop will have a value of —2zS, where S
is the residue of the SP shown in Eq. (3). Represent-
ing an integral of a segment i, which is a member of
the loop comprising N segments, as C?, we can reduce
Eq. (3) to

N-1

> (V¥ +C) =0. (4)

i=0

This suggests that the singularity of ¥ is regular-
ized by compensator C’, and phase unwrapping be-
comes an independent path. The RC for the ith
segment, which is a path from r; to r;,; to cancel
the singularity of the jth SP, #C', is represented as
follows:
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BC: = -S(0,.1,; - 0,)), (5)

where S; denotes the residue of the jth SP, and 6,
and 6;; are azimuthal angles of both ends of the ith
segment, where the origin is located at the jth SP.

When the measured data contains several SPs, the
total compensator of the ith segment is estimated as
the summation of the RCJ". with respect to j:

Ns
kel =) "ECL (6)
Jj=1

Consequently, we can retrieve the true unwrapped
phase data by summing the phase differences be-
tween the adjoining pixels and the total compensa-
tors as follows:

M-1

Dy =Dy + Y (VWi +C), (7)
i=0

where C' = fC! and the path is composed from 0 to
M -1 segment.

It is noteworthy that Eq. (7) is the modification
of Eq. (2) after removing the effect of SPs by compen-
sating each SP with the compensator, which has the
opposite sign of SP. However, if the measured phase
data contains several SPs, the computations of each
compensator becomes a time-consuming process.
This is one of the drawbacks of the RC method.

Despite the RC, which can remove the inconsisten-
cies in the phase map by eliminating the effect of
singularity, it introduces an undesirable distortion
of phase in a wide area. The effect of RC of the jth
SP, ECi, decreases by the increases the distance from
that SP. It becomes small for the distant segment,
however, it is not exactly zero. This means that RC
affects the regular region, and its effect is considered
as an error of phase unwrapping. In the literature
[23], the effect of single SP, monopole SP, is propor-
tional to the reciprocal of the distance R from the
residue:

L1

oies ®)
In contrast, the phase unwrapping method based
on avoiding branch cuts does not affect the distant
segment at all. In other words, the branch cut ap-
proach can precisely confine the singularity of SP
pairs within local region, but the RC method spreads
the effect of singularity to the whole region. This is

another drawback of RC method.

B. DC

To overcome the drawbacks of RC method, which are
high cost of computational time and undesired phase
errors due to its effect on regular region, we propose a
new algorithm. The proposed algorithm offers simple
computations to compensate for the inconsistencies
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caused by the pairs of the adjoining SPs by adding
a DC, so, the effect of each SP is confined within a
closer local region. As a result, the drawbacks of
the RC method can be improved. RC along a segment
is defined by computing the summation of the differ-
ences between the azimuthal angles for the end
points of the segment for all SPs, in which each SP
is located at the origin, as illustrated in Egs. (5)
and (6). Hence, the summation value of RC along
all segments of 2 x 2 square loop should be equal
to the summation of VW along the path with the op-
posite sign, as shown in Eq. (4). In the DC case, the
compensator value along the segment that crosses
the branch cut of the adjoining pair equals the value
of the phase jump, which is one cycle (2zrad).

An adjoining pair is a dipole, which consists of two
SPs with the opposite sign separated by one pixel
horizontally or vertically. Figure 1 shows the config-
uration of the branch cuts placed between adjoining
SPs in the phase map and the concept of the direct
compensation; for simplicity, the SPs positions are
defined at the center of the closed loops. In Fig. 1,
the thick arrows across the branch cuts, which are
shown as thick dashed lines, represent the positions
of DCs. Figure 1(a) shows a case in which the branch
cut is placed between a pair of adjoining SPs horizon-
tally, so that the DC will be added to the vertical seg-
ment that crosses the branch cut. The compensator
value of the segment is divided into two compensator
values and distributed through the two adjacent
loops that contain the adjoining SPs, as illustrated
in Fig. 1(b). The following equation explains the
DC of a segment that’s related to the adjoining pair:

Fig. 1. Existence of the branch cuts between the adjoining
SPs and the concept of direct compensation. Open and filled
squares represent positive and negative SPs, respectively. The
thick dashed line denotes the branch cut that connects two SPs
of opposite signs. Compensator position is denoted by thick arrows.
The thin arrows show the direction and distribution of compensa-
tors for the segments of each SP, where S and S’ denote the
residues of the SPs.



when the segment number i

is a member of the loop of
thej-th SP, which belongs (9)
to the adjoining pair;

0 otherwise;

oci = ) TjmS;

where T" denotes the sign direction of ’C, and S; de-
notes the residue of the jth SP. When the DC of the
segment is added, the sign direction of DC for this
segment, TJ?, is dependent on the position of this seg-
ment with respect to the location of the tested SPs.
For example, when a vertical segment is on the right-
hand of the tested SP, the sign of T} is negative (-),
and vice versa, as shown in Fig. 1(b). On the other
hand, Fig. 1(c) shows the case in which the branch
cut is placed vertically between the adjoining SPs
and the DC is added horizontally. Thus, when the
segment is above the tested SP, the sign of TJ‘: is po-
sitive (4+), and vice versa, as shown in Fig. 1(d). Also,
it is important to discuss the complex distribution of
SPs positioning patterns and how we compensate the
singularities of these SPs. Figure 2 represents an ex-
ample of the distribution with four SPs in the phase
map. If we consider the distribution of these SPs in a
discrete values, the distance between each other will
be the same, as shown in Fig. 2(a). Therefore, it is
difficult to determine which SPs are the closest cou-
ple to each other to form a pair. However, if we use
USP method [23] to obtain an accurate positioning of
each SP, as shown in Fig. 2(b), we can pick a SP and
another one nearby to form a pair. Therefore, the
distance between the two SPs of each pair will be de-
fined precisely and the type of pair will be distin-
guished without difficulty. Thus, DC is added to
the adjoining pairs, as illustrated in Fig. 2(b).
Since the DC affects just the brunch cut, the effect
does not propagate to the regular region. Moreover,
the DC of a segment i for all SPs, PC?, needs only two
computations in contrast to the RC for another seg-
ment i, #C!, which needs multiple computations to
evaluate effects of all SPs, according to Eq. (6). There-
fore, the computational time requirements of the pro-
posed algorithm for computing total compensators

Fig. 2. Complex cases for the position patterns of SP pairs and
the DCs for the adjoining SPs pairs. Open and filled squares re-
present positive and negative SPs, respectively. (a) SPs are distrib-
uted in discrete values. (b) SPs are distributed by using the USP
technique. In (b), the thick dashed line denotes the branch cut
that connects two SPs of opposite signs, and the DC positions
are denoted by thick arrows.

will be reduced and the accuracy of the unwrapped
phase will be improved, as discussed in Section 4.

The proposed method is based on coupling the RC
and the DC to compute the compensators depending
on the converging distance of SPs. In other words, it
uses DC for computing the compensators of the pairs
of adjoining SPs, and uses RC to compute the com-
pensators for the other pairs. To explain that, it is
assumed that new parameters adj* (i) and adj (i),
called adjoining parameters of the segment, which
is a member of the closed path of the adjoining
SPs pair. The adj* (i) and adj~ (i) denote the positive
SP number and the negative SP number, which be-
longs to the adjoining pair, respectively, where i re-
presents the segment number. It means when the
segment i is a joint between the loop of the positive
SP and that of the negative SP of the adjoining pair,
these parameters have values; otherwise, they are
undefined. Considering another parameter m’, which
is defined, m! = 1 when adj* (i) or adj~(i) has'a value
of j; otherwise m; = 0. It is like Kroneckor’s delta
function as follows:

adj+(i) | sadj-()

m—5 +5

; (10)

Therefore, the total compensators can be esti-
mated as follows:

N
Z . +Zmz DCL

Jj=1

(11)

where n‘z} =1- mll When n‘zJL =1, i.e., the SPj does
not belong the adjoining pair, it represents the case
of using RC to compute the compensator for the seg-
ment number i of the jth SP. It should be noted that
the times number of m* # 0 in the second summation
is once for all i for each j related to the adjoining
SPs pairs. By adding the compensator, C’, to the
wrapped phase differences according to Eq. (7),
phase jumps were found because the existence of
SPs are canceled, therefore, the unwrapped phase
can be retrieved successively.

C. Description of the Algorithm

The steps of the proposed algorithm can be summar-
ized as follows.

1. Calculate SPs in the wrapped phase map by
the summation of the phase gradients of a 2 x 2
closed loop path. The positions of SPs are determined
by the USP technique.

2. Appending VSPs to the monopole SPs outside
the measurement area, analyze the SP pairs, which
consist of two real SPs laid inside the measurement
area or one real SP and one VSP appended outside
the measurement area. After that, define the adjoin-
ing SPs pairs. _

3. For each segment i, the parameter m for every
SP j is evaluated. If m; = 1, i.e., a pair of SPs is an
adjoining pair, a DC ‘will be added, according to
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Eq. (9). Otherwise, RC will be computed using
Eq. (5).

4. Compute the total compensator for each seg-
ment through the whole phase map according to
Eq. (11).

5. Finally, the unwrapped phase data can be re-
trieved by adding the compensators to the wrapped
phase differences by using Eq. (7).

This description of direct compensation for the
pairs of adjoining SPs makes the proposed algorithm
simple and easy to implement. It provides a fast and
efficient way to unwrap the phase map. In Section 4,
the performance and applicability of the proposed
algorithm is examined.

4. Results

To evaluate the performance of the proposed phase
unwrapping algorithm, both simulated and real
wrapped phase maps have been used. These phase
data are the same data that were used in the study
of RC [23].

A. Computer Simulation Results

In order to demonstrate the applicability of the pro-
posed approach, a simulated noisy phase map with
constant gradient is generated. This phase data
has the image size 100 pixels x 100 pixels, the gradi-
ent is (0.1,-0.1) cycle/pixel, and the noise has a nor-
mal distribution with 0.15 cycle standard deviation.
The original and wrapped phase data are shown in
Figs. 3(a) and 3(b), respectively. In addition, Fig. 3
presents the distribution patterns of SP pairs for real
and virtual SPs to show the position of SP pairs in
the phase map. In Fig. 3(c), all SP pair positions
are presented, while in Figs. 3(d) and 3(e), the posi-
tions of the pairs of nonadjoining and adjoining SPs
are shown, respectively. This indicates that most of
SP pairs in the phase map are adjoining pairs, there-
fore, the use of DC will have an obvious effect on the
unwrapping process. Hence, the accuracy of the
unwrapped phase will be improved and the computa-
tion time will be reduced, as shown later. The un-
wrapped phase results obtained by the LS-DCT
method [22], the RC method [23], and the proposed
algorithm are shown in Figs. 3(f) and 3(h) with con-
tour lines. To evaluate the characteristics of the
phase unwrapping methods, we can count the num-
ber of contour lines in the unwrapped results and
compare them with the number of stripes in the
wrapped data, shown in Fig. 3(b). From the compar-
ison, we can find that the number of lines in the un-
wrapped results is less than that in the wrapped
phase data. The wrapped phase data has 20 lines, the
unwrapped result of LS-DCT method has 14 lines,
the unwrapped result of RC algorithm has 17
lines, and the proposed algorithm’s result has 18
lines. The unwrapped result of the proposed algo-
rithm has the nearest number of lines to wrapped
data, which shows the highest accuracy. More-
over, the accuracy of the proposed algorithm can

6230 APPLIED OPTICS / Vol. 50, No. 33 / 20 November 2011

Fig. 3. Comparison of the unwrapped phase results for simulated
phase data: (a) original phase data, (b) wrapped data, (c) positions
of all SP pairs, (d) positions of the pairs of nonadjoining SPs, (e) po-
sitions of the pairs of adjoining SPs, (f) unwrapped result by
LS-DCT, (g) unwrapped result by RC, and (h) unwrapped result
by RC + DC (proposed). In (a), (b), and (f)—(h), the phase increases
with the increases of brightness. In (f)—(h), contour lines of the
phase with the interval of one cycle are also shown.

be emphasized, as shown in Table 1, which shows
a quantitative comparison of the original and un-
wrapped phase map gradients. The gradients are ob-
tained by fitting them to a planar function, ¢, and the
o denotes the mean residual that is defined as a
square root of a mean square residual from the fitted
function, ¢. The o of the original phase data is not
equal to zero, because the original data contains
noise with the given standard deviation. The errors
of gradient, A(V¢), is estimated as the normalized
difference between the unwrapped result and the
original one, where the normalizing factor is the re-
ciprocal of original one. From the table, it can be
observed that the proposed algorithm, RC + DC,
gives the smallest error in terms of A(V¢). This is
due to the consideration of adjoining pair definition
in computation of the compensators in the proposed
algorithm, as explained in Section 3. This result con-
firms that the proposed method (RC + DC) reduces

Table 1. Comparison of the Accuracy for the Simulation
Data Shown in Fig. 3

Gradient (V ¢)

Algorithm (cycle/pixel) A(Vg) (%) o (cycle/pixel)
Original  (0.1000,-0.1000) (——) 0.149

(a) LS-DCT  (0.0742,-0.0731) (-25.8,-27.0) 0.179

(b) RC (0.0912,-0.0896) (-8.7,-10.4) 0.168

(¢c) RC+DC (0.0956,-0.0951) (-4.4,-4.9) 0.168
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Fig. 4. Required computational time of each algorithm for var-
ious image sizes. The horizontal axis N denotes one-dimensional
area size in pixels. RC shows the required time cost for RC method,
RC +DC shows the required execution time for the proposed
method, and LS-DCT shows the required time cost for LS-DCT
method. The computational time is measured with a PC including
an Intel Core 2 DUO central processing unit (CPU) with a
2.13 GHz clock in the single CPU operation mode.

the phase errors that exist mainly in the original RC
method.

Figure 4 shows a comparison of required computa-
tional time of LS-DCT and RC methods and RC + DC
(the proposed method) for various image sizes; the
horizontal axis N denotes one-dimensional area size
in pixels. From the figure, the profile of the RC meth-
od and that of the proposed method show that the
computation time is proportional to N*. Further-
more, from Eq. (6), we can note that the time cost
to compute the RC for all segments is proportional
to the product of both the number of SPs and the
number of the segments of path to be compensated.
Since both are proportional to the area size (x N2),
the total evaluation time is proportional to N*. In
the proposed algorithm, if the cost to compute the
DC is adequately smaller than that of RC, the total
cost might be similar to the case of the RC algorithm,
and it can be understood from Eq. (11). Conversely,
when the number of the times using DC computation
is larger than that of RC in the proposed method, its
execution time will be reduced compared to the RC
algorithm case. As a result, by coupling RC and
DC computations, the execution time of the proposed
method is almost one third of the execution time of
the original RC method. In contrast, the computa-
tional time of LS-DCT method increases with N2.
In this computation, we use a matrix form of 2D dis-
crete Fourier transform [32]. Through the use of
matrix form, the computational time of 2D cosine
transform needs only N? multiplications.

B. Experimental Results

The proposed algorithm has also been tested experi-
mentally on a 2D wrapped phase map that resulted
from the analysis of a real fringe pattern taken from
the experiment carried out by using a Mach—Zehnder
interferometer. The purpose of this experiment is to
measure the phase shift in candle flames [23]. In this
experiment, the exposure time can not be set long

() (d)
Fig. 5. Unwrapped phase result of experimental data for candle
flame: (a) wrapped data, (b) SPs distribution map (positive and ne-
gative SPs are represented by white and black dots, respectively),
(c) unwrapped result of the RC algorithm, and (d) unwrapped
result of RC + DC (proposed algorithm).

enough because the flame is varying in time by con-
vection flow around the flame itself. Therefore, the
fringe pattern has low signal-to-noise ratio; hence,
it contains some defects. The phase data has image
size 256 pixels x 170 pixels and 2532 SPs (1267 posi-
tive SPs and 1265 negative SPs). The wrapped phase
data and its corresponding SPs distribution map are
shown in Figs. 5(a) and 5(b), respectively. Moreover,
the unwrapped results, which have contour lines, ob-
tained by RC method and the proposed algorithm are
given in Figs. 5(c) and 5(d), respectively. By compar-
ing the number of stripe lines in the wrapped phase
data and the number of contour lines in the un-
wrapped results from the midpoint on the base line
of each figure, it can be observed that the wrapped
data has 10 lines, the unwrapped result of the RC
algorithm has eight lines, and the proposed algo-
rithm’s result has nine lines. The unwrapped results
in both methods are underestimated, however, the
underestimation in the proposed algorithm is smal-
ler than that in the RC method. This implies that the
proposed algorithm succeeds to reduce the phase
errors produced by the original RC method.

The execution time of the proposed algorithm var-
ies depending on the number of SPs, data size, and
the ratio of the adjoining SPs. Table 2 presents the
execution time for simulated and real phase maps
discussed above for each algorithm. The table shows
the name, size, residue ratio, and adjoining SP ratio
of each phase data. For the noisy phase map, the re-
sidue ratio, which is related to the data size, is
around 9.1% and the adjoining SP ratio is 80.9%.
In this case, it was found that the overhead for each
algorithm is the same. However, it is large enough
compared to the execution time to compute the com-
pensators for the proposed algorithm, i.e., Ty, is
almost 0.7 times Ty, hence, the saving time cost
ratio of the proposed algorithm is reduced from
77.6% (saving time in compensators computation)
to 67.2% (total saving time computation). On the
other hand, flame data has residue ratio of approxi-
mately 5.8% and the adjoining SP ratio is around
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Table 2. Comparison of the Execution Time Cost between RC Algorithm and the Proposed Algorithm?

RC (RC +DC)
Ttotal (s) Ttotal ()
Data size: SPs ratio: Adjoining Ty () Ty (8) Saving time
Data name N N,/Ng (%) SPs ratio: N, /N, (%) T comp (8) T comp (8) ratio (%)
Noisy phase 100 x 100 9.1 80.9 1.781 0.585 67.2
0.240 0.240
1.541 0.345 77.6
Flame 256 x 170 5.8 60.4 19.564 8.706 55.5
1.051 1.049
18.513 7.657 58.6

“The T, presents the required execution time for overhead procedure to search and analyze the SP distribution. The Ty, presents
the required execution time to compute the compensators. The 7'y, is the summation, Toia1 = Toyrh + Tcomp- Vs and N, denote the total
number of SPs and the number of SPs that form adjoining pairs, respectively. Saving time ratio = 1 - T'gc pc)/Trc, Where Trc and
T (rc+pc) represent the total execution times for the RC method and the proposed method, respectively.

60.4%. In this case, the overhead for the proposed al-
gorithm is relatively small compared to the execution
time to compute the compensators, i.e., T, is al-
most 0.14 times Ty, so that the saving time cost
ratio of the proposed algorithm is reduced from
58.6% (saving time in compensators computation)
to 55.5% (total saving time computation). However,
the amount in reduction is not like the noisy phase
case. In other words, the saving time ratio to compute
compensators is almost the same to the adjoining
SPs ratio. Therefore, the time to compute the DC
is very small, so it is neglected and the saving time
ratio to compute compensators is governed only by
the RC computation.

From Table 2, it can be concluded that the execu-
tion time to search and analyze SPs is the same for
the two examined algorithms. However, the execu-
tion time to compute the compensators in the pro-
posed algorithm is reduced compared to that of the
original RC method. This reduction in the required
computation time of the proposed algorithm is due
to the direct calculation of the compensators for the
adjoining SPs pairs.

5. Conclusion

Several methods have been developed to solve phase
unwrapping problems; nevertheless, providing satis-
factory results leads to a time-consuming process.
Phase unwrapping for noisy data by RC had higher
accuracy than the other existing methods. However,
ithas a drawback of computational time requirement.
To overcome this drawback, we propose a new method
based on coupling the existing RC and the DC. The DC
compensates the singularity of the pair of adjoining
SPs connected by a branch cut with the length, which
is shorter than 1pixel. The compensator along the
segment that crosses the branch cut is just 2z. For
the SPs that are not members of adjoining pairs,
RC is applied as a compensator. The proposed algo-
rithm was tested on both computer-simulated and
experimental noisy phase data. The results show
that the proposed algorithm has a smaller computa-
tional time requirement compared to the original RC
method, however, the execution time of the LS-DCT
method is the least. Furthermore, the proposed
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method provides a more accurate unwrapped phase
map than the past methods did.
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