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Abstract: Small, dense low-density lipoprotein (sdLDL) in total LDL is 
strongly related with the cardiovascular risk level. An optical technique 
using dynamic light scattering (DLS) measurement is useful for point-of-
care testing of sdLDL. However, the sdLDL fraction estimated from the 
particle size distribution in DLS data is sensitive to noise and artifacts. 
Therefore, we derived analytical solutions in a closed form to estimate the 
fraction of scatterers using the autocorrelation function of scattered light 
from a polydisperse solution. The effect of the undesired large particles can 
be eliminated by the pre-processing of the autocorrelation function. The 
proposed technique was verified using latex standard particles and LDL 
solutions. Results suggest the feasibility of this technique to estimate the 
sdLDL fraction using optical scattering measurements. 

©2010 Optical Society of America 

OCIS codes: (290.5850) Scattering, particles; (170.1470) Blood or tissue constituent 
monitoring. 
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1. Introduction 

Measurements of cholesterol amounts have long been used in medical examinations. 
Recently, the importance of cholesterol’s qualitative aspects has been pointed out along with 
its quantitative features. Cholesterol in human blood plasma is categorized into some groups: 
chylomicron (CM), very low density lipoprotein (VLDL), intermediate density lipoprotein 
(IDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL). The amounts of 
LDL and HDL have been used as representative parameters to indicate the physiological 
conditions of subjects, such as a metabolic syndrome. The LDL can be categorized further 
into two groups: large, more buoyant LDL (lLDL) and small, dense LDL (sdLDL). They 
differ not only in their size and density but also in their physicochemical composition. The 
strong correlation between the amount of the sdLDL and coronary diseases is widely 
acknowledged. Therefore, the quantitative evaluation of the fraction of sdLDL in total LDL 
has become clinically important [1–4]. 

Different laboratory techniques to quantify lipoprotein amounts have been proposed, such 
as high performance gel-filtration chromatography [1], ultracentrifugation [2, 5], nuclear 
magnetic resonance (NMR) [5], electrophoresis [5–8], and precipitation methods [9]. 
However, these methods are complicated and time-consuming. 

To answer the above demand and to overcome problems of present techniques, we have 
applied a method of dynamic light scattering (DLS). Using this method, we can obtain the 
size information of scatterers by measuring the temporal autocorrelation of intensity 
fluctuation of scattered light. This technique requires no long measurement time in principle. 
It can be conducted using a compact device, which makes point-of-care testing (POCT) 
possible. 

Using the DLS technique, we can estimate the size distribution of the scattering particles 
in the size range of LDL or 20–30 nm. The estimated size distribution is accurate when the 
size distribution is monomodal: when it has a distinct single peak. Some attempts to evaluate 
the fraction of a scattering component have been made using the height (ordinate value) or the 
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area (integral of ordinate value) of the particle size distribution obtained in the DLS 
measurement [10–15]. However, the estimated size distribution’s shape is known to be neither 
stable nor repeatable when the true distribution is bimodal or multimodal [14–17]. Moreover, 
previous reports show that we can separate the size distribution of each component only when 
the size ratio of the two components is greater than two, and when the amount of smaller 
scatterers is greater than that of larger scatterers [16, 17]. The size ranges of sdLDL and lLDL 
are typically 20–25 nm and 23–30 nm, and the amount of sdLDL is not necessarily much 
larger than that of lLDL. Rasteiro et al. showed that the conventional inversion techniques 
present many difficulties in estimating the fraction [17]. Therefore, it is unsuitable to estimate 
the sdLDL fraction from the size distribution obtained using common techniques of DLS 
measurement. 

We have developed a new technique to estimate the sdLDL fraction directly from the 
measured autocorrelation function without estimation of the unstable size distribution. Here, 
we report the theoretical derivation of the solutions for fraction estimation of sdLDL using the 
autocorrelation function obtained from DLS measurements. The effect of undesired large 
particles on the autocorrelation function can be eliminated by pre-processing of the 
autocorrelation function. The applicability and effectiveness of the proposed techniques are 
examined using experiments with latex standard particles and LDL of human serum. 

2. Theoretical derivation of the weight fraction 

2.1 Dynamic light scattering 

Temporal autocorrelation function g
(1)

(τ) of scattered electric field E(t) is given as [18] 

 
( ) ( ) ( ) ( )1

exp( ),g E t E tτ τ τ= + = −Γ  (1) 

where τ is the correlation time. The decay constant Γ is given as Γ = q
2
D, where D is the 

translational diffusion coefficient and q is the magnitude of the scattering vector given as q = 
(4πn/λ)sin(θ/2), where n, λ, and θ respectively signify the refractive index of the medium, the 
wavelength of light, and the scattering angle. 

For a diluted solution of non-interacting spheres, with a single size, or a monodisperse 
case, the hydrodynamic diameter dh of the sphere is obtained from the Stokes–Einstein 
equation as 

 
2

,
3 3

h

kT kTq
d

Dπη πη
= =

Γ
 (2) 

where k, T, and η are, respectively, the Boltzmann’s constant, the absolute temperature and 
the viscosity of the medium. 

In DLS, we measure the correlation function g
(2)

(τ) of the scattered intensity I(t) instead of 
g

(1)
(τ), where 

 
( ) ( ) ( ) ( )2

.g I t I tτ τ= +  (3) 

Furthermore, g
(1)

(τ) is obtained from the measured g
(2)

(τ) using the Siegert relation as 

 
( ) ( ) ( ) ( )1 2

1.g gτ τ= −  (4) 

Therefore, in a monodisperse case, we can obtain the size of the scatterer using Eqs. (3), 
(4) and Eqs. (1), (2). 

In a polydisperse case, g
(1)

(τ) is given as the weighted mean of the size distribution 
function as [16,19], 

 
( ) ( )

( ) ( ) ( )

( )

( ) ( )

( )

1

1 0 0

0 0

, exp
,

i r g r dr i r r dr
g

i r dr i r dr

τ ατ
τ

∞ ∞

∞ ∞

−
= =
∫ ∫

∫ ∫
 (5) 
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where α=q
2
kT/6πη and r represents the size of the scatterer, i.e. a radius of a spherical 

particle. Furthermore, i(r) signifies the intensity size distribution or the amplitude distribution 
of scattered light intensity with respect to size r. In the measurement of DLS, the size 
distribution i(r) is obtainable using conventional data processing algorithms such as CONTIN 
and NNLS [20]. When an accurate i(r) is available, it is not difficult to obtain the fraction of 
specific scatterers in a known size range. However, the size distribution obtained with these 
techniques is often unstable and non-repeatable, particularly in the polydisperse case, as 
described above. Therefore, we have attempted to develop a different technique to obtain the 
fraction of one kind of scatterers in a bimodal size distribution. 

2.2 Fraction estimation methods 

We consider the case of a bimodal size distribution, i.e. the case in which the scatterers 
consist of those with two size ranges. 

2.2.1 Fraction for narrow size distributions 

When the size distributions shows two distinct modes of sizes, we assume it to be a linear sum 
of the Dirac’s delta functions, or 

 ( ) ( )( ) ,
s s l l

i r I r r I r rδ δ= − + −  (6) 

where rs and rl denote the typical sizes of small and large components of scatterers. Subscripts 
s and l hereinafter represent the small and the large components of scatterers. The intensity 

weights Is and Il are given as ( ) ( ) ( ) ( )
0 0

,
b d

s s l l
a c

I i r dr i r dr I i r dr i r dr
∞ ∞

= ≈ = ≈∫ ∫ ∫ ∫ , where 

[a, b] and [c, d] respectively stand for the size ranges of small and large scatterers. It is 

evident that a ≤ rs ≤ b and c ≤ rl ≤ d. Then, using Eq. (5) the autocorrelation function of the 
electric field scattered from the mixed scatterers is given as [13, 16] 

 
( ) ( )

( )

( )
1 0

0

.
s l

r r r

s l

sl

s l

i r e dr I e I e
g

I Ii r dr

α α ατ τ τ

τ

−∞ − −

∞

+
= =

+
∫
∫

 (7) 

If we define the intensity fraction of the small particles as XI = Is/(Is+Il), then Eq. (7) 
reduces to 

 
( ) ( ) ( )1

1 ,s lr r

sl I I
g X e X e

α α
τ τ

τ
− −

= + −  (8) 

and the fraction is obtainable as 

 

( ) ( )1

.
l

s l

r

sl

I

r r

g e
X

e e

α
τ

α α
τ τ

τ
−

− −

−
=

−

 (9) 

In this way, we can estimate the fraction using the measured autocorrelation function 
gsl

(1)
(τ) and the typical sizes of the two scatterer components: rs and rl. 

If the sizes rs and rl are sufficiently close ((rl − rs)/ (rl + rs) << 1) such as in the LDL case, 

the autocorrelation function can be approximated as 
( ) ( ) ( )1

exp
sl sl

g rτ ατ≈ − , where rsl is the 

typical size of the two-component scatterers, or rs ≤ rsl ≤ rl. In the case of LDL, 

1
s l

r rατ ατ− < and 1
sl l

r rατ ατ− <  for most of the correlation time τ. Then Eq. (9) can be 

approximated in a much simpler form as 
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1 1

.
1 1
sl l

I

s l

r r
X

r r

−

≈
−

 (10) 

In clinical applications, the weight fraction is more commonly used rather than the 
fraction of scattered intensity. We define the weight fraction of small particles as XW = 

Ws/(Ws+Wl), 
0 0

( ) , ( )
s s l l

W w r dr W w r dr
∞ ∞

= =∫ ∫ , where W and w(r) respectively represent the 

mass-weight and the size distribution of weight. The LDL particles are much smaller than the 
wavelength of light. Therefore, the scattered light shows the characteristics of the Rayleigh 
scattering. The scattered intensity of the Rayleigh scattering is proportional to the square of 
the particle’s volume [20]. Consequently, for a narrow size distribution, XW can be estimated 
from XI as 

 
3

3 3 3
.

( )

I l

W

I l s s

X r
X

X r r r
=

− +
 (11) 

In the DLS measurement, the typical size can be evaluated as the mean size of size 
distribution using common algorithms such as the cumulant method [21, 22]. Therefore, we 
first evaluate typical sizes rs and rl as the mean sizes ms and ml in the DLS measurement using 
pure samples of small and large scatterers. Then, the weight fraction can be estimated as 

 
3

3 3 3
,

( )

I l

W

I l s s

X m
X

X m m m
=

− +
 (12) 

where ( ) ( )1 1 1 1
I sl l s l

X m m m m= − −  and msl is the mean size evaluated in the DLS 

measurement with the sample solution of interest. 

2.2.2 Fraction for rectangular size distribution 

The assumption of a narrow distribution described above is applicable to special cases such as 
artificially manufactured particles. In the case of LDL, however, the size distribution is too 
wide to be approximated as the Dirac’s delta function. Instead of the typical sizes, size ranges 
are often available. Therefore, we derived the solution for the weight fraction of small 
scatterers in the case of rectangular size distributions. 

We assume the size distribution of weight as 

 ( ) ( ) ( ) ( ) ( ) ,s lw r W u r a u r b W u r c u r d= − − − + − − −        (13) 

where u(r) is a unit step function, and where [a, b] and [c, d] respectively denote the size 
ranges of small and large scatterers. In most cases, b is smaller than or equal to c, but the 
following formulae are also valid in the case of b > c. 

As described above, the scattered intensity is proportional to the square of the particle’s 
volume in the Rayleigh scattering. Therefore, the autocorrelation function can be written as 

 
( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

1 1 13 6

1 0 0 0

3 6

0 0 0

, , ,
,

i r g r dr w r r g r dr n r r g r dr
g

i r dr w r r dr n r r dr

τ τ τ
τ

∞ ∞ ∞

∞ ∞ ∞
= = =
∫ ∫ ∫

∫ ∫ ∫
(14) 

where i(r), w(r), and n(r) respectively signify size distributions of scattered intensity, 
scatterers’ weight and scatterers’ number. 

Substituting Eq. (13) to the middle part of Eq. (14), we obtain the autocorrelation function 
for bimodal size distribution of weight as 
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( ) ( )

3 3

1

3 3
.

b d
r r

s l
a c

sl b d

s l
a c

W r e dr W r e dr
g

W r dr W r dr

ατ ατ

τ

− −
+

=
+

∫ ∫
∫ ∫

 (15) 

We can calculate the definite integral as 

 ( ) ( )3 ,
b

r

a
r e dr f b f a

ατ
−

= −∫  (16) 

where 

 ( )
4 3 2 2 2 3 3 4 4

(0, ).
4 12 24 24 24

r
r r r r

f r e
r

ατ ατ α τ α τ α τ ατ−  
= − + − + Γ 

 
 (17) 

In that equation, Γ(0, z) is the incomplete gamma function for z > 0, or 

 ( )0, .
1

1
4

3
9

5
7

x
e e

dx
x

− −
∞

Γ = =
+ −

+ −
+ −

+ −

∫

…

z

z
z

z

z

z
z

 (18) 

Therefore Eq. (15) becomes 

 
( ) ( )

( ) ( ) ( ) ( )1

4 4 4 4
.

( ) ( )

4 4

s l

sl

s l

W f b f a W f d f c
g

W b a W d c
τ

− + −      =
− −

+

 (19) 

For the bimodal size distribution given in Eq. (13), the weight fraction of small scatterers 
is given as 

 
( )

( ) ( )
.

s

W

s l

W b a
X

W b a W d c

−
=

− + −
 (20) 

Using Eqs. (19) and (20), we can obtain the weight fraction as a function of the 
autocorrelation function as 

 
4 4 (1)

4 4 (1) 4 4 (1)

{4[ ( ) ( )] ( ) ( )}( )
,

{4[ ( ) ( )] ( ) ( )}( ) {4[ ( ) ( )] ( ) ( )}( )

sl

W

sl sl

f d f c d c g b a
X

f d f c d c g b a f b f a b a g d c

τ
τ τ
− − − −

=
− − − − − − − − −

 (21) 

where f(r) is given as Eq. (17). 

3. Method of experiment 

3.1 Polystyrene latex beads 

To test the effectiveness of the proposed techniques in practice, the controlled solutions of 
latex particles (polystyrene spheres) have been prepared. Standard latex particles of two kinds 
(21±5.7 nm and 28±6.1 nm dia.; Magspheres Inc.) were used. The 10% latex solutions of both 
sizes were diluted with pure water to 0.1%. Then 11 samples were prepared by mixing these 
two solutions in different weight fractions: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. 
Fractions 0 and 1 correspond respectively to the samples that contain only large particles and 
small particles. 

3.2 Lipoprotein 

Large LDL (relative density, d = 1.019–1.044 kg/L) and sdLDL (d = 1.044–1.063 kg/L) were 
separated from human serum by sequential ultracentrifugation (Optima

TM
 Max 
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ultracentrifuge; Beckman Coulter Inc.) with a near vertical tube rotor (MLN-80; Beckman 
Coulter Inc.). Serum (2 ml) was mixed with 6 ml KBr solution (d = 1.023 kg/L); the mixture 
was centrifuged at 40,000 rpm for 20 h at 15°C. The 2.5 ml supernatant containing 
lipoproteins (d < 1.019 kg/L) was removed and 2.5 ml KBr solution (d = 1.099 kg/L) was 
added to the infranatant. After centrifugation at 50,000 rpm for 18 h at 15°C, 2.5 ml 
supernatant (d < 1.044 kg/L) containing large LDL was obtained. Then, 2.5 ml of the KBr 
solution (d =1.105 kg/L) was added to the infranatant. It was centrifuged at 50,000 rpm for 18 
h at 15°C. Finally, 2.5 ml supernatant (d < 1.063 kg/L) containing sdLDL was obtained, and 
the infranatant was used as the sample solution that contains HDL and the smaller proteins 
with higher density. The accuracy of these processes was confirmed using polyacrylamide gel 
electrophoresis (LipoPhor; Quantimetrix Corp.) as the purity of each separated fraction. 
Furthermore, serum lipids were measured using automated enzymatic method with a 
commercial kit (Denka Seiken Co., Ltd., Tokyo, Japan): T-CHO(S) for total cholesterol (TC). 
After this separation process, both sdLDL and large LDL were diluted with sterile 0.9% saline 
solution to make their concentrations equal. Then, they were mixed to prepare the LDL 
samples in different weight fractions. 

3.3 Dynamic light scattering system 

The autocorrelation function of scattered intensity g
(2)

(τ) was measured using a DLS system 
(FDLS-3000; Otsuka Electronics Co., Ltd.). The laser power was 100 mW and the 
wavelength was 532 nm. The scattered light was detected at θ= 90°. The DLS system 
temperatures were respectively set to 25°C and at 37°C for the latex particles and the LDL 

experiments. The sample solution was contained in a 178 mm × 5 mmφ glass tube (Optima 
USA, Inc.). A water bath was used to keep the temperature of the samples constant. 
Measurement of the scattered intensity fluctuation was repeated 100 times with each sample. 

4. Elimination of large scatterer effect 

In practical measurements of DLS, the existence of undesired scatterers and aggregates often 
causes error in the size estimation of scatterers. From Eq. (5), we can express the effect of the 
undesired scatterers as 

 
( ) ( )

( ) ( ) ( ) ( )1 1

1
,

S S N N

m

S N

I g I g
g

I I

τ τ
τ

+
=

+
 (22) 

where gm
(1)

(τ) is the measured autocorrelation function, and S and N respectively denote the 
signal and the noise components. In practice, gm

(1)
(τ) is obtained from the measured intensity 

autocorrelation function gm
(2)

(τ) using Eq. (4). 
As described previously, the scattered intensity of the Rayleigh scattering is proportional 

to the sixth power of the particle size. Consequently, the major part of the noise component of 
Eq. (22) comes from larger particles than LDL. This size difference makes clear distinction 
between the autocorrelation functions of the signal and noise components. Figure 1 shows that 
a typical measured autocorrelation function g

(1)
(τ) is divisible into two parts. According to a 

report of an earlier study [17], the correlation function is divisible into different time periods; 
the latter is dominated by noise. Therefore, we can separate gS

(1)
(τ) from gN

(1)
(τ) using the 

curve fitting technique with two exponential components. In the following experiments, the 
gsl

(1)
(τ) in the previous chapter was extracted as the gS

(1)
(τ) in Eq. (22) from the measured 

autocorrelation function gm
(1)

(τ) using the curve fitting technique with Eq. (22). The curve was 
fitted using nonlinear least squares fitting [23]. 

Figure 1 presents an example of this process with 28 nm latex spheres. The solid line 
shows the measured autocorrelation function gm

(1)
(τ) of a monodisperse solution of 28 nm 

latex spheres in the DLS measurement. Deviation from the theoretical straight line is evident. 
This figure shows that the curve fitting with two exponential components yielded satisfactory 
agreement. By subtracting the component of large scatterers according to Eq. (22), we were 
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able to extract the major component (thick dotted line) for the desired autocorrelation function 
gsl

(1)
(τ). 

The effectiveness of this data-processing was examined using experiments with 
monodisperse solutions of different kinds. The mean sizes were estimated using the cumulant 
method in the DLS measurement. Table 1 presents the results. With the elimination process, 
for latex particles, the results agreed well with those provided by the manufacturer. Without 
the elimination process, the mean sizes were overestimated, which suggests that the larger 
size often estimated with DLS can be attributed to the existence of large particles such as 
aggregates. In the LDL particle cases, the mean sizes were 21.7 nm and 23.6 nm for sdLDL 
and lLDL, respectively, which agreed well with those reported in the literature [24, 25]. These 
results suggest the effectiveness of the data processing technique proposed here. 

 

Fig. 1. Elimination of large particles effect from measured normalized autocorrelation function 
gm

(1)(τ) by subtracting one exponential component in two-exponential fitting. 

Table 1. Mean sizes estimated in DLS with the elimination process of large scatterer 
effect 

Sample Without elimination With elimination 

latex 21 nm 24.7 nm 21.2 nm 

latex 28 nm 31.4 nm 28.8 nm 

sdLDL 36.9 nm 21.7 nm 

lLDL 28.1 nm 23.6 nm 

5. Experimental verification 

5.1 Fraction estimation with standard particles 

The feasibility of the proposed fraction estimation techniques was examined using standard 
latex particles with known size distributions. The measurements were repeated six times for 
each sample with different fractions. The autocorrelation function gm

(1)
(τ) was obtained from 

the measured intensity autocorrelation function gm
(2)

(τ) in DLS measurement according to the 
Siegert relation in Eq. (4). Then gsl

(1)
(τ) was obtained from the gm

(1)
(τ) by the elimination 

process using Eq. (22). 
In the first proposed technique, namely Method#1, the mean size msl of the testing solution 

was estimated from the gsl
(1)

(τ) using the common cumulant method. The weight fraction XW 
was estimated using Eq. (12) using this msl and the known mean sizes ms and ml. 
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In the second proposed technique, or Method#2, we estimate the weight fraction using Eq. 
(21). In this process, we respectively need the size ranges [a, b] and [c, d] for small and large 
scatterers. We assumed the size ranges using the standard deviation of the size distribution. 

That is a = ms−σs, b = ms + σs, c = ml−σl, d = ml + σl, where m and σ respectively represent the 
mean and the standard deviation of the particle size distribution. The values of m and σ were 
provided by the manufacturer. The weight fraction XW was estimated from the gsl

(1)
(τ) using 

Eq. (21). 
For comparison, the fraction was obtained using a conventional method. In the 

conventional method, the size distribution of the mixed solution is estimated first. Then the 
fraction is calculable from the estimated size distribution. To estimate the size distribution, the 
common CONTIN algorithm [21, 26] was applied to the same DLS data as used in the 
estimation above. Figure 2 presents the size distribution fest(r) estimated using the CONTIN 
algorithm. Using the curve fitting technique [23], this distribution fest(r) is resolved into the 
sum of the two Gaussian distributions, or 

 ( ) ( ) ( )2 2

2 22 2

1 1
exp exp ,

2 22 2

s l

est s l

s ls l

r m r m
f r I I

σ σπσ πσ

      − −
      = − + −
            

 (23) 

where ms, ml and σs, σl respectively signify means and standard deviations of the normal 
distribution. An example of curve fitting with two normal distributions of fixed means and 
standard deviations is presented in Fig. 2. 
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Fig. 2. Example of curve fitting with two normal distributions: fest(2r), size distribution 
estimated by DLS; fn(m, σ), normal distribution with mean m and standard deviation σ; Is, Il, 
respective intensity weights for small and large components. 

Figure 3 shows a comparison between the conventional and the proposed methods. The 
weight fraction of the proposed method was estimated using Eq. (21), or Method#2. The 
means of estimated fractions are shown in the closed circles in Fig. 3. The thick solid line is 
the linear regression line between the given and the estimated fractions. In the conventional 
method, the magnitude of each normal distribution Is and Il was estimated with the parameters 
2ms = 21 nm, 2ml = 28 nm, 2σs = 5.7 nm, and 2σl = 6.1 nm. The intensity fraction XI was 
estimated as XI = Is/(Is+Il), and the weight fraction XW was obtained with Eq. (12), which is 
shown in the open circles in Fig. 3. More estimation processes were involved in this indirect 
estimation. Therefore, the agreement between the given and the estimated fraction was poor. 

Figure 4 portrays a comparison between the proposed methods, or Method#1 and 
Method#2. They have different features. Method#1 is based on the theoretical model with 
very narrow size distribution for each component. It requires only the typical sizes of the two 
components beforehand. The fraction can be estimated from the mean size of the mixed 
sample. Method#2 is applicable to cases with a wider size distribution. It requires the size 
ranges of the two components beforehand, and the fraction can be estimated from the 
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autocorrelation function of the mixed sample measured in DLS. Results of the fraction 
estimation obtained using these methods are presented in Fig. 4. 

The estimated fraction sometimes becomes negative attributable to the noise and the 
artifacts in the measurement. Therefore, the following corrections were made. If msl < ms, then 
msl = ms and if msl > ml, then msl = ml in the Method#1. If Xw < 0, then Xw = 0, and if Xw > 1, 
then Xw = 1 in Method#2. Except for a few corrected points, both results show good 
agreement. As expected, the result by Method#2 was much closer than that by Method#1 to 
the correct value shown in the broken line in Fig. 4. This is the size distributions of 21 nm and 
28 nm particles were too wide to be approximated as the Dirac’s delta function, and the 
assumption for Method#2 holds well. 

 

Fig. 3. Estimated results of 21 nm particles fraction in 21 nm and 28 nm mixed solution using 
size distribution estimation (�) and using the proposed technique (�), n = 6. 

 

Fig. 4. Comparison between two proposed methods for 21 nm particles fraction in 21 nm and 
28 nm mixed solution: Method#1 (�) and Method#2 (�), n = 6. 

5.2 Fraction estimation of sdLDL 

Finally, the proposed techniques were applied to the LDL solution to examine their 
effectiveness. Means for Method#1 and size ranges for Method#2 are required. The DLS 
measurement was made with the separated solutions of sdLDL and lLDL before making the 
mixed solution. The means were estimated using the common cumulant method, which is 
known to give an accurate mean for monomodal solution [21]. The estimated values were 
similar to the reported values measured in both DLS and gel gradient electrophoresis [24]. 
Considering these values, we respectively set the means and the ranges for sdLDL and lLDL 
as 21.5±2.75 nm and 23.5±2.25 nm. 
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Figure 5 shows the estimated weight fraction of sdLDL in total LDL using both methods. 
The estimation was repeated eight times. The variation of the estimated fraction was larger 
than in the case of standard particles. However, the correlation between the given and the 
estimated fractions was satisfactory. The large variation might be attributable to the mean size 
difference between the two components, which was apparently smaller in the LDL case 

((rl−rs)/(rl+rs) ≈0.1) than in the standard particle case ((rl−rs)/(rl+rs) ≈0.35). This made the 
autocorrelation functions for each component more similar in the LDL case. The estimated 
result was more vulnerable to noise and artifacts in the measurement of the autocorrelation 
function than in the standard particle case. 

The estimated fractions were smaller than the given fractions in both cases of Methods #1 
and #2, apparently because of the greater number of particles larger than sdLDL. The 
fractions presented in Fig. 5 were obtained by application of the technique to suppress the 
effect of aggregate based on Eq. (22). Techniques that are more powerful might be needed to 
eliminate this effect. In practice, however, one can estimate a correct fraction using this 
regression line as a calibration curve as long as it is consistent throughout the measurement 
conditions. Comparison of results obtained using Methods #1 and #2 shows that the proposed 
method, based on a more realistic assumption, gives a better estimation for the fraction 
estimation of sdLDL. 

 

Fig. 5. Estimation of sdLDL fraction in total LDL using Method#1 (�) and using Method#2 
(�), n = 8. 

6. Conclusion 

We proposed an optical measurement technique to estimate the fraction of one component of 
scatterers with a bimodal size distribution. It was applied to estimation of sdLDL fraction in 
the total LDL to make point-of-care testing for sdLDL possible. This technique is based on 
the dynamic light scattering measurement. Two methods were newly proposed to obtain the 
fraction based on different assumptions. In one method, the fraction of one component in the 
scatterers with bimodal size distribution is estimated from the total mean size in the DLS 
measurement. For this method, the mean sizes for each of the two components of scatterers 
are required. In another method, the fraction is estimated from the autocorrelation function of 
the scattered intensity fluctuation. For this method, the size ranges for each of the two 
components are required. An appropriate mean size and autocorrelation function were 
obtained by eliminating the effect of large scatterers in the DLS measurement. The feasibility 
of the proposed techniques was verified using experiments with latex standard particles and 
LDL samples with known fractions. With these proposed methods, we can estimate the 
sdLDL fraction with a simpler and shorter procedure than those of conventional techniques. 
They will provide new possibilities to realize point-of-care testing of sdLDL. 
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