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Multifractality of complex networks
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We demonstrate analytically and numerically the possibility that the fractal property of a scale-free network
cannot be characterized by a unique fractal dimension and the network takes a multifractal structure. It is found
that the mass exponents τ (q) for several deterministic, stochastic, and real-world fractal scale-free networks are
nonlinear functions of q, which implies that structural measures of these networks obey the multifractal scaling.
In addition, we give a general expression of τ (q) for some class of fractal scale-free networks by a mean-field
approximation. The multifractal property of network structures is a consequence of large fluctuations of local
node density in scale-free networks.

DOI: 10.1103/PhysRevE.84.036118 PACS number(s): 89.75.Hc, 89.75.Fb, 64.60.al

I. INTRODUCTION

Inspired by the pioneering work by Song et al. [1], the
fractal property of complex networks has been extensively
studied recently [2–10]. The fractal property of a network is
measured by the box-covering method in which the minimum
number of subgraphs (boxes) of diameter l (in the sense of
network distance) required to cover the fractal network is
proportional to l−Df with the fractal dimension Df. Most of
real-world fractal networks are inhomogeneous in the sense
of the scale-free property defined by a power-law degree
distribution P (k) ∝ k−γ , where k is the number of connections
of a node (degree) [11]. Thus, the number of nodes in a
subgraph of size l depends strongly on whether the subgraph
includes hubs and their neighboring nodes or not, which
implies that the distribution of local node density is highly
inhomogeneous. An inhomogeneous distribution of a physical
quantity on a fractal object often exhibits the multifractal prop-
erty [12–15]. In many of fractal objects embedded in Euclidean
space, however, the underlying structure seldom shows the
multifractal nature because of an exponentially thin tail of the
mass distribution. On the contrary, we expect the multifractal
scaling in a scale-free network due to large fluctuations of
local node density. In this paper, we show analytically and
numerically that fractal scale-free networks (FSFNs) can have
the multifractal property in their structural features.

II. MULTIFRACTAL ANALYSIS OF NETWORKS

In order to explicate the possibility that a FSFN takes a
multifractal structure, let us consider, at first, why conventional
fractal structures do not possess the multifractal property. In the
multifractal analysis, the behavior of a coarse-grained physical
quantity on a fractal object is argued. Let xi and μi be a physical
quantity on the discretized position i and its normalized value
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(measure), that is,

μi = xi∑
j xj

. (1)

The coarse-grained measure (box measure) μb(l) is then given
by μb(l) = ∑

i∈b(l) μi , where b(l) is a box of size l in the system.
If the spatial distribution of the physical quantity x does not
bring a characteristic length scale, the qth moment of the box
measure 〈

μ
q

l

〉 =
∑
b(l)

μ
q

b(l) (2)

has a power-law l dependence, namely, 〈μq

l 〉 ∝ lτ (q), where the
summation in Eq. (2) is taken over boxes of size l required to
cover minimally the entire system. In the case that the exponent
τ (q) (called as the mass exponent) is a nonlinear (linear)
function of q, the distribution of the measure is regarded to be
multifractal (unifractal). Here, we consider a constant mass of
the site i as a physical quantity xi . The normalized measure
μi representing the mass density becomes constant and the
box measure 〈μb(l)〉 averaged over boxes is proportional to
lDf , where Df is the fractal dimension of the system. If the
fluctuation of μb(l) over boxes is sufficiently small, Eq. (2) is
approximated as〈

μ
q

l

〉 ∼
∑
b(l)

〈μb(l)〉q ∼ lDf(q−1). (3)

Therefore we have the linear relation τ (q) = Df(q − 1) repre-
senting the unifractal nature of the mass density distribution.
In fact, a narrow distribution of the box measure is widely ob-
served in many fractals embedded in Euclidean space [16–20].
Thus, most of fractal systems take unifractal structures, with
some exceptions such as mathematical multifractal sets as
the two-scale Cantor set [21] and geochemical distribution
of minerals [22–24]. The box measure μb(l) of node density
in a FSFN, however, has large fluctuations over boxes [10].
This is because μb(l) of a box including a hub node can be
much larger than that of a box without hubs. If the probability
distribution function of the box measure has a fat tail like a
power-law or log-normal form, μb(l) cannot be approximated
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by 〈μb(l)〉 and the failure of Eq. (3) gives a possibility of the
multifractal scaling in structures of complex networks.

When applying the multifractal analysis to complex net-
works, it is unavoidable that covering boxes (subgraphs) of
network diameter l overlap each other [5], if every box includes
the maximum number of nodes unless the subgraph diameter
does not exceed l as in the conventional multifractal analysis
[12]. Therefore, the measure μi defined by Eq. (1) cannot be
normalized as

∑
b(l) μb(l) = 1, and the mass exponent does not

satisfy the basic condition τ (1) = 0. In order to overcome this
difficulty, we modify the definition of the measure as

μi = xi∑
b(l)

∑
j∈b(l) xj

. (4)

In this definition, the normalization constant, and then μi ,
varies with the box size l. It is easy to confirm that the
mass exponent calculated from Eq. (4) satisfies the general
conditions τ (0) = −Df and τ (1) = 0 and for a unifractal
system τ (q) = Df(q − 1). We set hereafter xi = 1 to analyze
the multifractal nature of the node density in a complex
network.

III. MULTIFRACTALITY OF (u,v) FLOWERS

Using the above definition of μi , we first examine ana-
lytically the multifractal property of the (u,v)-flower model
[9]. This deterministic model provides a class of FSFNs.
In this model, we start with the cycle graph consisting of
w ≡ u + v (1 < u � v) nodes and edges (the first generation).
The network in the nth generation is obtained by replacing each
edge in the (n − 1)th generation network by two parallel paths
of u and v edges. The network with large n has the scale-free
property with the degree exponent γ = 1 + log w/ log 2 [9].
The number of nodes in the nth generation network is given
by

νn =
(

w − 2

w − 1

)
wn +

(
w

w − 1

)
, (5)

and the number of edges is wn. In addition, when w is even,
the diameter is written as

Ln =
(

u + v

2
+ v − u

u − 1

)
un−1 − v − u

u − 1
. (6)

From the network formation algorithm, the nth generation
network is constructed by wn−m of (u,v) flowers in the mth
generation, where m < n. This implies that if we cover the
nth generation network by the mth generation subgraphs as
shown in Fig. 1(a) the number of covering boxes Nb(Lm) is
wn−m. Using Eq. (6), we can rewrite this relation as Nb(Lm) =
wn[(Lm + b)/a]− log w/ log u, where a = (w/2 + b)/u and b =
(v − u)/(u − 1). If the length Lm is large enough, we have the
fractal dimension given by Df = log w/ log u [9]. The above
covering scheme (named as the covering scheme I), however,
does not lead the minimum value of Nb(Lm) for a fixed Lm.
Let us consider the following covering scheme (named as
the covering scheme II). At first, we cover the (u,v) flower
by subgraphs of size Lm centered at the largest hubs, then
the remaining network is covered by subgraphs centered at
the second largest hubs. Repeating this procedure until all
nodes are covered by subgraphs [as shown in Fig. 1(b)] the

(a) (b)

FIG. 1. (Color online) Two types of covering schemes for the
(u,v) flower with u = v = 2 in the third generation. (a) The network
is covered by 16 (u,v) flowers in the first generation (scheme I),
and (b) the network is first covered by four subgraphs of size
l = 2 centered at the largest hubs (white nodes) then covered by
eight subgraphs centered at the second largest hubs (gray nodes)
(scheme II).

number of covering boxes Nb(Lm) becomes less than wn−m.
Although two covering schemes yield different Nb(Lm), these
are in proportion as shown later, and then the fractal dimension
calculated by the covering scheme II is the same as that by
scheme I. Therefore, both covering schemes are valid for the
fractal analysis. In the multifractal analysis, however, we treat
not only Nb(Lm)(= 〈μq=0

Lm
〉) but also 〈μq

Lm
〉 for any q. Since

the moment 〈μq

Lm
〉 calculated by the covering scheme I is

generally not proportional to 〈μq

Lm
〉 by scheme II, we need

to choose scheme II with less (probably minimum) covering
boxes for the multifractal analysis of the (u,v) flower. It is, in
general, quite important to cover a network by less number of
boxes in the multifractal analysis comparing to the case of the
fractal analysis.

Let us cover the (u,v) flower in the nth generation by boxes
of size l = Lm (1 � m � n) in the covering scheme II. The
number of boxes Nb(s,Lm) centered at the sth largest hubs is
equal to the number of such hubs, thus we have

Nb(s,Lm) = νs − νs−1 (1 � s � n − m), (7)

where b(s,Lm) represents a box of size Lm centered at the sth
largest hub and ν0 = 0. Since the number of nodes ν̃s(Lm) in
b(s,Lm) is presented by

ν̃s(Lm) = 2n−m−s+1(νm/2 + 1) 	 2n−m−sνm, (8)

the total number of nodes in all boxes, namely, the denominator
of Eq. (4), is given by

∑n−m
s=1 Nb(s,Lm)ν̃s(Lm). Using Eqs. (5),

(7), and (8), the measure μi defined by Eq. (4) with xi = 1 is
thus expressed as

μi = w − 1

wn(w − 2)
. (9)

It should be noted that μi for the (u,v) flower is inde-
pendent of the box size though the box measure given
by Eq. (4) generally depends on l. Denoting μi inde-
pendent of i by μ, the qth moment of the box mea-
sure is calculated from 〈μq

Lm
〉 = ∑

b(s,Lm)(
∑

i∈b(s,Lm) μ)q =
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∑n−m
s=1 Nb(s,Lm)[μν̃s(Lm)]q . By means of Eqs. (5) and (7)–(9),

the quantity 〈μq

Lm
〉 is calculated as

〈
μ

q

Lm

〉 = wn(1−q)

Wq

[ (
2q

w

)n−1

(Wq − 1)

(
Lm + b

a

) q log(w/2)
log u

+
(

Lm + b

a

) (q−1) log w

log u
]
, (10)

where a and b are defined below Eq. (6), Wq = (w − 2q)/
(w − 2), and the approximation νm 	 wm(w − 2)/(w − 1) is
used. The dominant term in Eq. (10) for large Lm depends on
q, and the mass exponent is given by

τ (q) =
⎧⎨
⎩

q
log (w/2)

log u
if q � log w

log 2 ,

(q − 1) log w

log u
if q <

log w

log 2 .
(11)

The nonlinear form of τ (q) indicates that local node densities
of the (u,v) flower are distributed in a multifractal manner [25].
Although the above argument holds only for even values of
w, we found that Eq. (11) is a good approximation also for
odd w. It should be noted that 〈μq

Lm
〉 = wn(1−q)[(Lm + b)/

a](q−1) log w/ log u obtained by scheme I is proportional to
Eq. (10) for q < log w/ log 2, but not otherwise.

It is generally difficult to find the way to cover minimally
a given network because the minimization of the number of
covering boxes is known to be NP hard. We then need to cover
the network by a less number of boxes, as an approximation,
in actual multifractal analyses. A variety of such covering
methods have been proposed so far [1,3–8]. In order to
clarify whether such covering techniques proven to be efficient
for fractal analyses still work even in multifractal analyses
sensitive to the covering way, we compare the analytical
expression Eq. (11) with the numerically calculated τ (q) by
adopting the compact-box-burning algorithm [4] modified to
shorten the computing time [7]. The results shown in Fig. 2(a)
clearly demonstrate the validity of this covering method.

IV. MEAN-FIELD ARGUMENT

Let us generalize our argument to some extent. We treat
a FSFN of N nodes, whose degree distribution is given by
P (k) ∝ k−γ . Covering the network minimally by Nb(l) boxes of
diameter l, the mean number of nodes 〈νl〉 in a box is given by
N/Nb(l), where Nb(l) ∝ l−Df . Regarding mutually connected
boxes of size l as a renormalized network [1], the fractal
property of the original network assures the relation Pl(kl) ∝
k

−γ

l , where Pl(kl) is the degree distribution function of the
renormalized network. Here we assume that each renormalized
node is statistically equivalent and the number of nodes νl(kl)
in a covering box corresponding to the renormalized node of
degree kl has negligibly small fluctuations over boxes. In this
mean-field approach, the quantity νl(kl) is represented by its
mean value,

νl(kl) = kl

〈k〉 〈νl〉, (12)

where 〈k〉 = 〈kl〉 is the average degree of the original network.
The (u,v) flower satisfies Eq. (12) rigorously in the thermody-
namic limit (n → ∞). Since the box measure μb(l) is given

FIG. 2. (Color online) Mass exponent τ (q) for several fractal
complex networks. (a) Solid line (red line) and circles indicate τ (q)
for the (u,v) flower with u = v = 2 calculated by Eq. (11) and by
the numerical box covering for the network in the eighth generation
(N = 43 692), respectively. Squares represent numerical results of
τ (q) for the network formed by the minimal model with m = 2
in the seventh generation (N = 15 626). Dashed line (blue line)
indicates the theoretical curve for this minimal model predicted by
Eq. (13). Triangles and crosses show τ (q) for the giant components
of the fitness model (N = 100 000) and the Erdős-Rényi random
graph (N = 200 000) at their percolation transitions, respectively.
The degree exponent for the fitness model is set to be γ = 4.0.
We averaged 〈μq

l 〉 over 100 realizations both for the fitness and
the random graph models. Dashed-dotted line (green line) indicates
τ (q) given by Eq. (13) with γ = 4.0 and Df = 2 corresponding to
the fitness model. Results except for the (u,v) flower are shifted
vertically for clarity though all τ (q) actually pass through τ (1) = 0.
(b) The mass exponent τ (q) for the WWW is presented by circles.
Straight lines indicating the slopes of τ (q) for q � −1 and q � 1
are just guides to the eye.

by νl(kl) normalized by N , that is, μb(l) = kl/[〈k〉Nb(l)] ∝
(kl/〈k〉)lDf , the qth moment 〈μq

l 〉 can be calculated by Eq. (2).
Considering that the maximum degree kmax is proportional to
N1/(γ−1), we have 〈μq

l 〉 ∝ l(q−1)Df for q < γ − 1 and 〈μq

l 〉 ∝
lqDf(γ−2)/(γ−1) for q � γ − 1. Therefore, the mass exponent
τ (q) of this network is presented by

τ (q) =
{

(q − 1)Df if q < γ − 1

qDf
(

γ−2
γ−1

)
if q � γ − 1.

(13)

This result implies that FSFNs satisfying Eq. (12) generally
take multifractal (bifractal) structures. Our result Eq. (11) for
the (u,v) flower is a special case of Eq. (13).

In order to confirm the validity of the above mean-field
argument, we numerically calculate the mass exponent for
the minimal model proposed by [2], employing the compact-
box-burning algorithm [4]. A network formed by this model
possesses the scale-free property with the degree exponent
γ = 1 + log(2m + 1)/ log m and takes a fractal structure with
the fractal dimension Df = log(2m + 1)/ log 3. The minimal
model also satisfies Eq. (12) as in the case of the (u,v)-flower
model [2]. The nonlinear behavior of numerically calculated
τ (q) indicated by squares in Fig. 2(a) agrees quite well with
the theoretical prediction Eq. (13). As an example of networks
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not satisfying Eq. (12) due to large fluctuations of νl(kl), we
treat a stochastic model of FSFNs, namely the fitness model
proposed by [26]. A network formed by this algorithm also
has the scale-free property and the giant component exhibits
the fractal nature at the percolation transition [7]. Triangles
in Fig. 2(a)represent τ (q) for FSFNs formed by the fitness
model with γ = 4.0 and Df = 2 [7]. The exponent τ (q) is
also a nonlinear function of q, which suggests the multifractal
structure of the network, but cannot be described by Eq. (13).
Finally, we calculate the mass exponent τ (q) for the World
Wide Web (WWW) with 325 729 nodes [27], which is known
to be a representative real-world FSFN [1]. Although the
nonlinearity of τ (q) is weak as shown in Fig. 2(b) and the
result is not described by Eq. (13), two tangential lines in
the extreme regimes q � −1 and q � 1 have definitely
different slopes, which shows the multifractal structure of
the WWW. The multifractal property found in these networks
is obviously caused by the scale-free nature of networks. In
fact, τ (q) for the giant component of the Erdős-Rényi random
graph [28] at the percolation threshold is, as shown by crosses
in Fig. 2(a), a linear function of q, where the giant component
is fractal but not scale free.

V. SUMMARY

In conclusion, we demonstrated analytically and numeri-
cally that fractal scale-free networks (FSFNs) can take multi-
fractal structures in which the fractal dimension is not enough
to characterize fractality of systems. The multifractal nature is
caused by large fluctuations in local node density in scale-free
networks. Although all examples treated in this paper exhibit
the multifractal nature, further investigations are needed to
clarify whether any FSFNs take multifractal structures. It is
also crucial to study how the multifractal property affects
physical phenomena or dynamics on complex networks.
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