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[ PAPER Special Section on VLSI Design and CAD Algorithms 

BEM-II: An Arithmetic Boolean Expression 
Manipulator U~ing BODs 

SUMMARY Recently, there has been a lot of research on 
solving combinhtorial problems using Binary Decision Diagrams 
(BDDs), which are very efficient representations of Boolean 
functions. We have already developed a Boolean Expression 
Manipulator, which calculates and reduces Boolean expressions 
quickly based on BDD techniques. This greatly aids our works 
on developing VLSI CAD systems and solving combinatorial 
problems. Any combinatorial problem can be described in 
Boolean expressions; however, arithmetic operations, such as 
addition, subtraction, multiplication, equality and inequality, 
are also used for describing many practical problems. Arithmetic 
operations provide simple descriptions of problems in many 
cases. In this paper, we present an arithmetic Boolean expression 
manipulator (BEM- II), based on BDD techniques. BEM- II 
calculates Boolean expressions containing arithmetic operations 
and then displays the results in various formats. It can solve 
problems represented by a set of equalities and inequalities, 
which are dealt with using 0-1 linear programming. We show 
the efficient data structure based on BDD representation, algo­
rithms for manipulating Boolean expressions with arithmetic 
operations, and good formats for displaying the results. Finally 
we present the specification of BEM- II and an example of 
application to the 8-Queens problem. BEM- II is customizable to 
various applications. It has good computation performance in 
terms of the total time for programming and execution. We 
expect BEM- II to be a helpful tool in research and development 
on digital systems. 
key words: BDD (binary decision diagram), Boolean junction, 
arithmetic Boolean expression, B-to-J (Boolean-to-integer) junc­
tion, combinatorial problem 

1. Introduction 

Manipulating Boolean functions is an important tech­
nique for implementing VLSI CAD systems and for 
various problems in the theory of algorithms and 
complexity. Binary Decision Diagrams (BDDs) , 
which were proposed by Akers [I] and Bryant [2], are 
graph representations of Boolean functions; Recently, 
BDDs have attracted much attention because they 
enable us to manipulate Boolean functions efficiently 
in terms of time and space. There are many cases where 
the algorithm based on conventional Boolean function 
representations, such as truth tables or cube sets, can be 
improved and efficiently adapted for BDD operations 
[3], [4]. Besides VLSI CAD systems, BDDs can be 
used in the method of solving binate covering prob-
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lems [5], [6], which has various applications. 
In researching and developing digital systems, we 

sometimes describe and calculate Boolean expressions 
to consider problems or procedures. It is a cumber­
some job to calculate or reduce Boolean expressions by 
hand, even if the expressions have few variables. In 
cases having more than 5 or 6 variables, we might as 
well give up. 

We have already developed a Boolean Expression 
Manipulator (BEM) [7]. That program calculates and 
reduces Boolean expressions quickly based on BDD 
techniques. Expressions which can hardly be 
manipulated by hand can be processed in a second 
using BEM. It enables us to check the equivalence and 
implication of Boolean expressions easily. It greatly 
helped our work on developing VLSI CAD systems 
and solving combinatorial problems. 

Any combinatorial problem can be described in 
Boolean expressions; however, arithmetic operations, 
such as addition, subtraction, multiplication, equality 
and inequality, are also used for describing many 
practical problems, as seen in linear-integer program­
ming. Such expressions can be rewritten using logic 
operations only, but they would be complex and hard 
to read. Arithmetic operations provide simple descrip­
tions of pro blems in many cases. 

In this paper, we present a new Boolean expression 
manipulator BEM- II, which allows the use of arithme­
tic operations. BEM- II can directly solve problems 
represented by a set of equalities or inequalities, which 
are dealt with using 0-1 linear programming. Of 
course, BEM- II can also manipulate ordinary Boolean 
expressions as it incorporates the original BEM. 
Furthermore, the output formats have been improved. 
We show the data structure, algorithms for calculating 
Boolean expressions with arithmetic operations, and 
good formats for displaying results. 

The remainder of this paper is organized as fol­
lows. In Sect. 2, we explain the techniques for 
manipulating ordinary Boolean functions using BDDs. 
In Sect. 3, we show a method for manipulating 
Boolean expressions with arithmetic operations. In 
Sect. 4, we present the implementation of BEM- II and 
its applications. 
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2. Boolean Expression Manipulation Using BDDs 

2.1 BDD 

A Binary Decision Diagram (BDD) is a directed graph 
representation of a Boolean function, as shown in Fig. 
1. BDDs have two terminal nodes, which we call the 
O-terminal node and l-terminal node, and many deci­
sion nodes with two edges, called the O-edge and 
l-edge. A BDD is derived by reducing a binary tree 
graph, as shown in Fig. 2. The binary tree represents 
the recursive execution of Shannon's expansion. 

The following reduction rules give a Reduced 
Ordered BDD (ROBDD) , which represents a Boolean 
function efficiently (see [2] for details.) 
( 1) Eliminate all the redundant nodes whose two 
edges point to the same node. 
(2) Share all the equivalent sub-graphs. 
ROBDDs give canonical forms for Boolean functions 
when the variable order is fixed. Most works on BDDs 
are based on the above reduction rules. In the follow­
ing sections, for the sake of simplification, we refer to 
ROBDDs as BDDs (or original BDDs). 

Since there are 22n kinds of n-input Boolean func­
tions, the representation requires at least 2n bit of 
memory in the worst case. It is known that a BDD for 
an n-input function includes 0 (2n 

/ n) nodes in gen­
erar[8]. As each node consumes about 0 (n) bit (to 
distinguish the two child nodes from 0 (2n 

/ n) nodes), 
the total storage exceeds 2n bit. However, the size of 
BDDs varies with the kind of function, unlike truth 
tables which always require 2n bit of memory. There 
is a class of Boolean functions that can be represented 

(x3 /\x2)v XI (x3 /\x2)v XI 

t t 

Fig. 1 A BDD. Fig. 2 A binary decision tree. 

Fig.3 A shared BDD. 
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by a polynomial size of BDDs, and many practical 
functions fall into this class [9). This is an attractive 
feature of BDDs. 

A set of BDDs representing multiple functions can 
be united into a graph which consists of BDDs sharing 
their sub-graphs with each other. The efficiency of 
manipulation can be improved by managing all the 
BDDs as a single graph, as in Fig. 3. We call such 
graphs SBDDs (Shared BDDs) [10). We can further 
reduce the operation time and memory requirement by 
using attributed edges [10], which represent certain 
logic operations such as inversion. 

BDD packages implementing such techniques 
exhibit the following useful properties. 

• They can generate BDDs for large-scale functions, 
some of which have never been represented before by 
previous methods. 

• After generating BDDs, the equivalence of two 
functions can be checked in a constant time. 

• Logic operations can be carried out within a time 
that is almost proportional to the graph size. 

2. 2 Generation of BDDs from Boolean Expressions 

Here we show the method of generating BDDs for the 
functions of given Boolean expressions. 

1. Define the order of input variables, such as Xl, 

X2, "', X n · 

2. Make a BDD with a single node for each input 
variable. 

3. Construct more complex BDDs by applying logic 
operations on BDDs according to the Boolean expres­
sions. 

An example for (Xl /\ X2) V X3 is shown in Fig. 4. 
First, trivial BDDs for Xl, X2, X3 are generated. Then 
applying the AND operation between Xl and X2, the 
BDD of Xl /\ X2 is generated. The final BDD for the 
entire expression is obtained as the result of the OR 
operation between Xl /\ X2 and X3. In this manner, we 
can also generate BDDs for functions given as multiple 
expressions using internal variables. 

The computation time for generating BDDs 

xl xlllX2 

~Xl 1 IIIIIII~ 0 x2 1 
~ IIIIIIII~ 

o OJ AND 0 xl OR 
:tf 71 11 

~ """/ , ~/ 

~~ ~~ 

(x lllX2)v x3 

t 

Fig.4 Generation of BDDs from Boolean expressions. 
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depends on the length of Boolean expressions and the 
size of the BDDs to be generated. Up to now, it has 
been difficult to estimate the time exactly. We know 
that the time for one logic operation is approximately 
proportionaly to the size of the BDDs. In many cases, 
the BDDs grow larger with repeated logic operations 
unless the expression is redundant. Therefore, the final 
few logic operations occupy most of the time, and 
roughly speaking, the total computation time is 
approximately proportional to the size of the final 
BDDs. 

The size of BDDs largely depends on the order of 
the input variables. It is difficult to derive a method 
that always yields the best order, but with some heuris­
tic methods, we are able to find an adequate order in 
many cases [10]-[12]. 

2. 3 Display Formats of Boolean Functions 

After the generation and manipulation of BDDs for 
Boolean expressions, the results are displayed in a 
certain format adapted for calculation. We assume the 
following utilities for aiding research on digital sys­
tems. 

• Tautology checking of Boolean expressions. 
• Equivalence or implication checking between two 

expressions. 
• Finding a counterexample when the above check­

ing failed. 
• Simplification of complicated expressions. 
• Searching for a solution (satisfiable input) of the 

Boolean expression. 
• Enumerating or counting the solutions of the 

expression. 
• Evaluating the complexity of expressions. 

Considering these operations, we provide several 
formats to display Boolean functions represented by 
BDDs. 
Karnaugh map: Unless the number of input variables 
is large, a Karnaugh map representation (Fig. 5) is a 
good way to observe the feature of functions. We can 
readily check tautology or inconsistency by viewing 
the map. However, it is practicable only for less than 
six input functions as the map size grows exponential­
ly. When there are too many inputs but some of them 
are irrelevant to the function, we can reduce the map 
by excluding such input variables. The relevance 
checking can be implemented efficiently using BDD 
operations. 
Sum-of-products format: As shown in Fig. 6, the 
sum-of-products format (also called PLAs, cube sets, 
or two-level logic) is another good method of display­
ing Boolean functions since it enumerates satisfiable 
solutions of the function. Using the method presented 
in [l3], we can quickly generate an irredundant sum­
of-products (ISOP) format from BDDs. ISOP format 
can be utilized to evaluate a kind of complexity of 

be oo 01 11 10 
ar--r---r--.,.---, 

F: 0 1 1--+-+-+---1 
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Fig. 5 A Karnaugh map. Fig.6 An irredundant sum-of­
products format. 

Fig. 7 A multi-level Boolean expression for a BDD. 

Boolean functions. Tautology checking can easily be 
performed by looking at the ISOP format. 
BDD representation: Some kinds of Boolean func­
tions, such as parity functions, require exponential 
length expressions to display them in the sum-of­
products format, however, they can be represented in 
BDDs compactly. In such cases, it is useful to display 
BDDs graphically. If no graphic utility is available, 
there is a method of displaying BDDs with multi-level 
Boolean expressions by assigning an internal variable 
to each node of the BDDs, as shown in Fig. 7. 
Statistical information: When the function is too 
complex to display all at once, it is useful to output 
statistical information, such as the number of solu­
tions, density of truth table (ratio of 0/1), number of 
nodes in the BDDs, length of ISOP format, and num­
ber of relevant input variables. These data can be 
computed efficiently using BDD operations. 
Satisfiable solutions: We do not have to display 
Boolean functions completely when we seek solutions 
or counterexamples to a problem given as a Boolean 
expression. In many cases, anyone of solutions can be 
shown quite easily, even if the function is too complex 
to display. By traversing BDDs, we can find a solution 
in a time proportional to the number of inputs. 

2.4 Application to Combinatorial Problems (1) 

We introduce a method of solving combinatorial 
problems using BDDs [5]. Here we consider the 
problems that seek a combination of values to inputs 
which gives the minimum at a cost function and 
satisfies a constraint function. Namely, where 
cost function: 

n 
Cost=~Wi'Xi (Wi>O,XiE{O, I}) 

i=1 
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constraint junction: 

j (Xl, Xz, "', Xn) E{O, I}, 

to seek values for XI, XZ, "', Xn which makes Cost 
minimum under the constraint j = 1. Many NP com­
plete problems can be described in the above format. 

To solve the problem using BDDs, we first gener­
ate a BDD for j. In the BDD, the set of paths from the 
root node to the terminal node with the '1' value 
corresponds to the solutions of the problem. On each 
path, the edges labeled' l' represent assigning the .value 
'1' to the input, namely it takes the cost for the mput. 
Therefore, we may find a path to the' l' terminal node 
in the BD D so that the total cost of '1' edges is 
minimum. 

Searching for the minimum cost path is im­
plemented based on back tracking of the BDD. .It 
appears to take an exponential time, but we can avoId 
duplicate tracking for shared sub graphs in the BDD by 
storing the minimum cost for the subgraph and refer­
ring to it at the second visit. This technique eliminates 
the need to visit each node more than once, so we can 
find the minimum cost path in a time proportional to 
the number of nodes in the BDD. 

In this method, we can immediately solve the 
problem if the BDD for the constraint function can be 
generated in the main memory of the computer. Of 
course, it is still a problem in NP, so in general the 
BDD requires an exponential number of nodes and 
overflows the memory. However, there are many 
practical examples where the BDD becomes surprising­
ly compact. 

The BDD-based method features customizability. 
We can automatically solve any problem if it is de­
scribed as Boolean expressions. In terms of computa­
tion time and storage, this method may not be as good 
as conventional methods which are devised by effective 
heuristics for a specific problem. The BDD-based 
method appears suitable for implementing prototypes 
for aiding research on algorithms in digital systems. 

3. Manipulation of Boolean Expressions Including 
Arithmetic Operations 

It is possible to describe any combinatorial problem as 
Boolean expressions; however, arithmetic operations, 
such as addition, subtraction, multiplication, equality 
and inequality, are also used for describing many 
practical problems, as seen in linear-integer program­
ming. For example, a majority function with five 
inputs can be expressed concisely using arithmetic 
operations as: 

Xl +XZ+X3+X4+X5~3, 

otherwise it becomes a difficult expression as: 

(XI!\XZ!\X3) V (Xl !\ XZ!\X4) V (XI!\XZ!\X5) 
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V (XI!\X3!\X4) V (Xl !\ X3!\X5) V (XI!\X4!\X5) 

V (XZ!\X3!\X4) V (XZ!\X3!\X5) V (XZ!\X4!\X5) 

V (X3!\X4!\X5)' 

In this section, we show an efficient method of 
representing and manipulating such expressions in­
cluding arithmetic operations using BDDs. 

3. 1 Definitions 

For manipulating Boolean expressions including arith­
metic operations, we define arithmetic Boolean expres­
sions and Boolean-to-integer junctions, which are 
extended models of conventional Boolean expressions 
and Boolean functions. . 

Arithmetic Boolean expressions are extended 
Boolean expressions which include not only logic 
operations but also arithmetic operations,. s~ch. as 
addition (+), subtraction (-), and multIplIcatIOn 
( X ). Each variable is assumed to have a value of 
either ° or 1. Any integer is allowed to be used for a 
constant. Equality (=) and inequality «, >, ~, ~) 
are also operations which return a value of either 1 
(true) or ° (false). . . 

For example, (3 X Xl + xz) is an anthmetic 
Boolean expression with respect to the variables Xl and 
Xz. (3 X Xl + xz<4) is another example. 

When logic operations are applied to integer 
values other than ° and 1, we assume that they execute 
bit-wise logic operations for the binary coded integers, 
like in many programming languages. Under this 
modeling, conventional Boolean expressions become 
special cases of arithmetic Boolean functions. 

The value of the expression (3 X Xl + xz) becomes ° when Xl =xz=o, or 4 when Xl =Xz= l. We can see 
that an arithmetic Boolean expression represents a 
function from binary vector to integer: (B n ---4 I ) . 
We call such a function the Boolean-to-integer (B-to-
I) function. . 

A sub-part of the arithmetic Boolean expreSSIOns 
also represents a B-to-I function. Th~refore, any 
operation in arithmetic Boolean expreSSIOns ca~ be 
defined as an operation between two B-to-I functIOns. 
We can get B-to-I functions for arithmetic Boolean 
expressions by applying operations on B-to-I func­
tions according to the expressions. 

We show an example of obtaining the B-to-I 
function for the expression (3XXI+Xz<4) in Fig. 8. 

xlx2 000110 II 

3)(xl 0 0 3 3 

3 Xxi + x2 0 3 4 

3Xxl+~<4 0 

Fig. 8 Computation of arithmetic Boolean expressions. 
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First, we apply multiplication between a constant 
function of 3 and one input function of XI, to obtain 
the B-to-I function for (3 X Xl)' Then applying addi­
tion with X2, the function for (3 X Xl + X2) is obtained. 
Finally we can get a B-to-l function for the entire 
expression (3 X Xl + X2< 4) by applying the comparison 
operator «) with the constant function of 4. From 
the result of computation, we see that this arithmetic 
Boolean expression is equivalent to the expression (Xl 

V Xz). 

3.2 Handling B-to-l Functions Using BDDs 

The method of Fig. 8 computes the behavior of B-to-l 
functions by enumerating all the input combinations. 
This method is impracticable when there are many 
input variables since the number of combinations 
grows exponentially. We show an efficient method of 
handling B-to-l Functions using BDDs. 

As shown in Fig. 9, by encoding an integer with 
some particular bit length of binary code, a B-to-l 
function can be decomposed into a number of Boolean 
functions which represent whether respective bits of the 
binary code are 1 or O. These Boolean functions can be 
represented efficiently using BDDs. Namely, a B-to-l 
function can be represented by a vector of BDDs. 

This method supports only finite values of integers 
because the bit length should be fixed in advance. If 
we allocate enough long bits, we will suffer no incon­
venience from this constraint. For negative numbers, 
we use 2's complement representation in our implemen­
tation. As the most significant bit is used for the sign 
bit, the corresponding BDD indicates the condition 
under which the B-to-l function returns a negative 
value. 

Logic operations, such as AND, OR and EXOR, 
are implemented as bit-wise operations between the 
two BDD vectors. Applying BDD operations for 
respective bits, the result of a new B-to-I function is 
generated. We defined two kinds of inversion opera­
tions. One is bit-wise inversion, and the other is 
logical inversion, which returns 1 only for 0, otherwise 
it returns O. 

Arithmetic addition can be composed using logic 
operations on BDDs by simulating a conventional 
hardware algorithm of full-adders which are designed 

f=3Xxl +x2 fn ... f3 f2 fJ fo 

xl x2 f (f2 fJ fo) 

a a 0(000) 

a I (001) 

a 3 (all) 
4 (100) 

Fig.9 BDD representation for B-to-I functions. 
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as combinational circuits. We adopt a simple algorith­
m of a ripple carry adder, which computes from the 
lower bit to the higher bit propagating carries. In the 
same way, other operations, such as subtraction, multi­
plication, division and shifting can also be composed. 
Exception handling should be considered for overflow 
and division by zero. 

Positive/negative checking is immediately indicat­
ed by the BDD for the sign bit. Using subtraction 
followed by sign checking, we can compose the com­
parison operation between two B-to-l functions. This 
operation generates a new B-to-l function which 
returns a value of either 1 or 0 to express satisfiability 
of the equality or inequality. 

We can compute the upper or lower bounds of a 
B-to-l function for all the input combinations. This 
operation can be composed efficiently based on binary 
search. To seek the upper bound, we first check 
whether the function may ever exceed 2n. If there is a 
case in which it exceeds 2n, then we next compare it 
with 2n +2n-\ or 2n

-
1

. In this way, fixing each bit from 
the higher to the lower, the upper bound can be 
computed. The comparison on each bit is composed 
by BDD operations. The lower bound is found in a 
similar way. 

Computing the upper (lower) bound is defined as 
a unary operation on B-to-l functions which returns a 
constant function. This operation can be used conve­
niently in arithmetic Boolean expressions. For exam­
ple, the expression: 

UpperBound (F) = =F 

(F is an arithmetic Boolean expression) 

gives a function which returns 1 when F has its upper 
bound value, otherwise returns 0, namely it is the 
condition to have F maximum. 

3. 3 Display Formats of B-to-I Functions 

We propose several good formats for displaying B-to-l 
functions represented by BDDs. 
Integer Karnaugh Maps: Ordinary Karnaugh maps 
are used to display a matrix of logic values (O/l). 
Integer Karnaugh maps use integer values for each 
element, as shown in Fig. 10. This method is helpful to 
observe the behavior of the B-to-l function. Like 

f=2Xa+3Xb-4Xc+d 

cd 
ab 
o 0 

f: 0 1 

1 

0 

00 

0 
3 

5 

2 

01 11 10 

1 -3 -4 

4 0 -1 

6 2 1 

3 -1 -2 

Fig. 10 An integer Karnaugh map. 
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±: Ca/l.c/<d)V(b/l.c ) 

f2: ( a/l.b;\"C)V\a/l.c/l.d)V( b/l.c/l.d )V(b/l.c ) 

fl: ( a/l.D)V( a/l.d )v(a/l.b/l.d) 

fO: (b/l.d)V(5/1.d) 

Fig. 11 A bit-wise expression. 

ordinary Karnaugh maps, they are practicable only for 
fewer than six input functions. When there are too 
many inputs, there is a good way to make a matrix for 
only six input variables and display the upper (lower) 
bound for the rest of variables. 
Bit-wise Expressions: When the B-to-I function is 
too complex for integer Karnaugh maps, we display 
the function with a number of Boolean expressions in 
the sum-of-products format, which represents respec­
tive bits of binary coding. This bit-wise format is not 
so helpful for showing the behavior of the functions as 
integer numbers, but it allows us to observe the fre­
quency of appearance of an input variable and can 
estimate a kind of complexity of the functions. 

For concise display, we suppress showing the 
expression of the sign bit if the function never returns 
negative values. If the function always gives a small 
value and its higher bits are always zero, it is displayed 
with zero suppression (omitting showing expressions 
of '0'). In this reduction rule, a B-to-I function which 
returns only 1 or 0 is simply displayed by a single 
Boolean expression. Moreover, a function which 
returns a constant integer is expressed by a decimal or 
hex number, not by a bit-wise expression. These 
reduction rules are applied automatically by checking 
the BDD representation to be displayed. 
Resynthesis of Arithmetic Boolean Expressions: It 
would be good if we could display the B-to-I function 
by a simply arithmetic Boolean expression, such as Xl 

+ X2. Unfortunately, such a method have not been 
developed yet because it is difficult to extract arithme­
tic operations from BDD representations and it is not 
clear what expression is simple. We expect this tech­
nique to be related to the extraction of arithmetic 
functions from logic circuits [14]. 

3.4 Application to Combinatorial Problems (2) 

Using the above method, we can generate BDDs for 
constraint functions of combinatorial problems given 
by arithmetic Boolean expressions, and can solve the 
problems in the way presented in Sect. 2. This method 
enables us to solve 0-1 linear programming by han­
dling equalities and inequalities directly, without cod­
ing complicated procedures 'in a programming lan­
guage. 

Another feature of using arithmetic Boolean 
expressions is that we can compute combinator:ial 
problems whose cost function is expressed by non­
linear expressions, whereas the method presented in 
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Sect. 2 is limited to handle linear cost functions. 
Whether the cost function is linear or not, the upper 
(lower) bound can be computed by generating BDD 
representations for the B-to-I functions which repre­
sent the cost function explicitly. This approach 
extends categories of problems to be solved using BDD 
techniques. However, when the cost function is linear, 
the method in Section 2 is better since it solves prob­
lems without generating BDDs for the cost function. 

4. Arithmetic Boolean Expression Manipulator 
BEM-II 

We implemented BEM-I!, which generates BDDs of 
B-to- I functions for arithmetic Boolean expressions 
and displays them in various formats. This section 
gives the specifications of BEM~I! and its usage. 

4. 1 Specification 

BEM- I! has a C-Shell-like interface, both for inter­
active execution from the keyboard input and for batch 
jobs from a script file. The program is written in yacc, 
C, and C+ + languages. It runs on 32 bit UNIX 
machines. 

In BEM- I! scripts, we describe arithmetic expres­
sions with the kind of variables, input variables and 
register variables. Input variables, denoted by strings 
starting with a lower-case letter, represent the inputs of 
functions to be computed. They are assumed to have 
a value of either 1 or O. Register variables, denoted by 
strings starting with an upper-case latter, are used for 
identifying the memory for saving a temporarily 
computed B-to-I function. We can describe multi­
level expressions using these two types of variables. 
The results of computation are displayed by irredun­
dant Boolean expressions with input variables only, 
not including register variables. BEM- I! allows 65,535 
different input variables to be used. There is no limit 
on the number of register variables. 

BEM- I! supports operators such as logical AND, 
OR, EXOR, NOT, plus, minus, multiply, shift, equal­
ity, inequality, and upper/lower bound. The syntax of 
expressions almost conforms to C language. Neither 
If-then-else nor while-do are supported because the 
system may fail to fetch the next command when the 
branching condition is given by an expression contain­
ing input variables. The list of operators are shown in 
appendix A. 

BEM- I! generates BDDs representing B-to-l 
functions for given arithmetic Boolean expressions. It 
is enough fast to compute expressions that used to be 
manipulated by hand. As BEM- I! can generate huge 
BDDs with millions of nodes, limited only by the size 
of the memory, we can solve large-scale and compli­
cated problems to a degree. The results are displayed 
in various formats such as integer Karnaugh maps and 
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bit-wise expressions, as shown in the foregoing sec­
tions. An example of interactive execution is given in 
Appendix B. 1. 

4.2 Performance Evaluation-for 8-Queens Problem 

We conducted an experiment to solve 8-Queens prob­
lem using BEM- I! by describing the problem with 
arithmetic Boolean expressions. 

First, we allocated 64 input variables to represent 
the point on the chessboard matrix. These represent 
whether or not there is a queen on that points. The 
constraints that the input variables should satisfy are 
expressed as follows: 

• The sum of 8 variables in the same column is 1. 
• The sum of 8 variables in the same row is 1. 
• The sum of variables on the same diagonal line is 

less than 2. 
These constraints can be described with simple 

arithmetic Boolean expressions as: 

Cond1 = (Xll +XIZ+ X13+'" +XlS= = 1) 

Condz= (XZl +XZZ+ XZ3+'" + XZs= = 1) 

Solutions = Condd\ Condz/\ ... 

We show a complete script in Appendix B. 2. 
BEM- I! feeds the above expressions directly and 

tries to generate BDDs which represent the set of 
solutions. If it succeeds in generating BDDs in the 
main memory, we can immediately find a solution to 
the problem and count the number of the solutions. 
(else it may abort). In this way, we can solve the 
8-Queens problem by handling abstract forms of the 
problem. 

Table 1 shows the results when we applied this 
method to the N-Queens problems. The column #var 
shows the number of input variables, and # BDD is the 
number of nodes in the BDDs for representing the set 
of solutions. We used a SPARC Station 2 (SunOS 
4.1.2,128 MByte). 

In the experiments, we solved the problem up to N 
= 11. This shows that BEM- I! is less powerful than 
conventional methods, which have solved up to N = 15 
using an algorithm based on backtraking and heuris­
tics. This drawback arises from the feature that BEM­
I! solves all problems in the same way by generating 

Table 1 Results on N -Queens problems. 

N #var #BDD -olutior time(s) 

S 64 2450 92 6.1 

9 81 9556 352 18.3 

10 100 25944 724 68.S 

11 121 9'1821 2680 1081.9 
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Boolean functions without using specific properties of 
the problem. There is also another disadvantage we 
cannot find any solution (not a quasi-best one) when 
the BDDs cannot be generated because of memory 
overflow. 

However, this method has the great advantage of 
customizability. Using BEM- I!, we can compose 
scripts for various applications much more easily than 
developing and tuning a specific program. The script 
for the 8-Queens problem took only 10 minutes to 
make. Considering the customizability, we conclude 
that BEM- I! has good computation performance in 
terms of the total time for programming and execution. 

4.3 Application for LSI CAD/DA 

In researching and developing an algorithm for LSI 
design systems, we often simulate the algorithm for a 
small instance to confirm its correctness and efficiency. 
BEM- I! is suitable to such a purpose. It allows us to 
conduct experiments On algorithms much more 
efficiently than using hand simulation. 

In Appendix B.3, we show a script to solve a 
subset sum problem, that is to find a maximum subset 
under an upper bound of total cost. It can be solved 
by 0-1 linear programming. The 0-1 knapsack prob­
lem is described in a similar way. Such problems are 
often seen in LSI design systems, such as resource 
scheduling/ allocation, logic optimization, and layout. 

Using BEM- I!, we can solve the subset sum prob­
lem by describing a very simple and readable script for 
BEM- I!. We can glance the costs for all the cases by 
an integer Karnaugh map if the problem is not so 
large. This is greatly helpuful for analyzing the behav­
ior of expression. 

BEM- I! is second to well-optimized heuristic 
algorithms for solving large-scale problems, but it may 
be utilized as a helpful tool in research and develop­
ment of LSI design systems. 

5. Conclusion 

We have presented a method of computing Boolean 
expressions including arithmetic operations. This 
method consists of an efficient data structure, manipu-

. lation algorithms, and good display formats. BEM- II, 
implemented based on the above techniques, is custom­
izable for various applications. We expect it to be 
utilized as a helpuful tool in research and development 
on digital systems. 

BEM- I! may abort during computations of large­
scale or complicated problems, because it solves all 
problems in the same way by generating Boolean func­
tions without using the specific properties of the prob­
lem. In such cases, it will be good to devise a combina­
tion ofBDD techniques and well-optimized algorithms 
developed for a spacific application. 
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Appendix A: List of Operators 

The syntax of arithmetic Boolean expressions conforms 

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO. 10 OCTOBER 1993 

to C language. The fGllowings are the available 
operators in the order of priority. 

( ) 
[ ] 

+ - (unary) 

* + - (binary) 
« » 
< <= > >= 

!= 
81; 

? : 
UpperBound( LowerBound ( ) 

F [0] returns F reduced with a don't care condition of 
0=0. ! is logical inversion. ! F returns 1 when F= 
0, else returns O. - is bit-wise inversion. It is different 
to !. 0 returns - 1. F?O:H returns 0 when F = 1, else 
returns H. 

Appendix B: Examples of Execution 

B. 1 Interactive Mode 

% bemII 
***** BEM-II: Boolean Expression Manipulator II (Ver. 3.2) ***** 
bemII> symbol a(3) b(2) e(4) d(l) 
bemII> Sum = a*3 + b*4 + e*5 - d*2 
bemII> print Sum 

+-: !a 81; !b 81; !e 81; d 

3: a 81; b 81; e I a 81; e 81; !d I !a 81; !b 81; !e 81; d I b 81; e 81; !d 
2: b - ( a 81; e 81; d I !a 81; e 81; !d I !a 81; !e 81; d ) 
1: d - ( a 81; !e ) 
0: a e 

bemII> print /map Sum 
a b : e d 

00 01 11 10 
00 0 -2 3 5 
01 4 2 7 9 
11 7 5 10 12 
10 I 3 1 6 8 

bemII> print UpperBound(Sum) 
12 

bemII> print LowerBound(Sum) 
-2 

bemII> print Sum > 6 
a 81; b 81; !d I a 81; e 8I;!d b 81; e 

bemII> F = Sum > 6 
bemII> print /mineover F 
<Positive>: a b 
bemII> print /rnineost F 

5 
bemII> exit 
% 
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B.2 8-Queens Problem 

Script for Input 

####### 8-Queens Problem ####### 
symbol aOO al0 a20 a30 a40 a50 a60 a70 
symbol aOl all a21 a31 a41 a51 a61 a71 
symbol a02 a12 a22 a32 a42 a52 a62 a72 
symbol a03 a13 a23 a33 a43 a53 a63 a73 
symbol a04 a14 a24 a34 a44 a54 a64 a74 
symbol a05 a15 a25 a35 a45 a55 a65 a75 
symbol a06 a16 a26 a36 a46 a56 a66 a76 
symbol a07 a17 a27 a37 a47 a57 a67 a77 

XO = (aOO + al0 + a20 + a30 + a40 + a50 + 
Xl = (aOl + all + a21 + a31 + a41 + a51 + 
X2 = (a02 + a12 + a22 + a32 + a42 + a52 + 
X3 = (a03 + a13 + a23 + a33 + a43 + a53 + 
X4 = (a04 + a14 + a24 + a34 + a44 + a54 + 

X5 = (a05 + a15 + a25 + a35 + a45 + a55 + 
X6 = (a06 + a16 + a26 + a36 + a46 + a56 + 
X7 = (a07 + a17 + a27 + a37 + a47 + a57 + 

a60 + a70 == 
a61 + a71 == 
a62 + a72 == 
a63 + a73 == 
a64 + a74 == 

a65 + a75 == 
a66 + a76 == 
a67 + a77 == 

YO = (aOO + aOl + a02 + a03 + a04 + a05 + a06 + a07 == 
Yl = (al0 + all + a12 + a13 + a14 + a15 + a16 + a17 == 
Y2 = (a20 + a21 + a22 + a23 + a24 + a25 + a26 + a27 == 
Y3 = (a30 + a31 + a32 + a33 + aM + a35 + a36 + a37 == 
Y4 = (a40 + a41 + a42 + a43 + a44 + a45 + a46 + a47 == 
Y5 = (a50 + a51 + a52 + a53 + a54 + a55 + a56 + a57 == 
Y6 = (a60 + a61 + a62 + a63 + a64 + a65 + a66 + a67 == 
Y7 = (a70 + a71 + a72 + a73 + a74 + a75 + a76 + a77 == 

Zl = (al0 + aOl < 2) 
Z2 = (a20 + all + a02 < 2) 
Z3 = (a30 + a21 + a12 + a03 < 2) 
Z4 = (a40 + a31 + a22 + a13 + a04 < 2) 
Z5 = (a50 + a41 + a32 + a23 + a14 + a05 < 2) 
Z6 = (a60 + a51 + a42 + a33 + a24 + a15 + a06 < 2) 

1) 
1) 
1) 
1) 
1) 

1) 
1) 
1) 

1) 
1) 
1) 
1) 
1) 
1) 
1) 
1) 

Z7 = (a70 + a61 + a52 + a43 + a34 + a25 + a16 + a07 < 2) 
Z8 = (a71 + a62 + a53 + a44 + a35 + a26 + a17 
Z9 = (a72 + a63 + a54 + a45 + a36 + a27 < 2) 
Za = (a73 + a64 + a55 + a46 + a37 < 2) 
Zb = (a74 + a65 + a56 + a47 < 2) 
Ze = (a75 + a66 + a57 < 2) 
Zd = (a76 + a67 < 2) 

Wl = (a06 + a17 < 2) 
W2 = (a05 + a16 + a27 < 2) 
W3 = (a04 + a15 + a26 + a37 < 2) 
W4 = (a03 + a14 + a25 + a36 + a47 < 2) 
W5 = (a02 + a13 + a24 + a35 + a46 + a57 < 2) 
W6 = (aOl + a12 + a23 + a34 + a45 + a56 + a67 
W7 = (aOO + all + a22 + a33 + a44 + a55 + a66 
W8 = (al0 + a21 + a32 + a43 + a54 + a65 + a76 
W9 = (a20 + a31 + a42 + a53 + a64 + a75 < 2) 
Wa = (a30 + a41 + a52 + a63 + a74 < 2) 
Wb = (a40 + a51 + a62 + a73 < 2) 
We = (a50 + a61 + a72. < 2) 
Wd = (a60 + a71 < 2) 

c = 1 
C = C " XO " Xl " X2 t X3 t X4 " X5 " X6 t X7 
C = C " YO t Yl " Y2 t Y3 t Y4 t Y5 t Y6 t Y7 

< 2) 

< 2) 
+ a77 < 2) 
< 2) 

C = C t Zl t Z2 /I: Z3 t Z4 t Z5 t Z6 t Z7 t Z8 t Z9 t Za t Zb !z Ze t Zd 
C = C /I: Wl t W2 /I: W3 t W4 t W5 t W-6 t W7 /I: W8 " W9 /I: Wa /I: Wb !z We !z Wd 

print / size C 
print /eount C 
print /mincover C 

Result of Execution 
X bemII queen8. bem 

2450 (3014) 
92 

<Positive>: a77 a36 a05 a24 a53 a12 a61 a40 
X 
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B. 3 Subset Sum Problem 

Script for Input 

##### SUBSET-SUM Problem ##### 
symbol abc d e f 

Sum = 2*a + 3*b + 4*c + 3*d + 5*e + 6*f 
print /map Sum 

S = Sum * (Sum <10) 
print /map S 

C = UpperBound (s) 
print C 
print (C == S) 

Result of Execution 

X bem!! subsetsum.bem 
a b c d e f 

I 000 
000 I 0 
001 I 4 
011 I 7 
010 I 3 

I 
110 I 5 
111 I 9 
101 I 6 
100 I 2 
abc d e f 

I 000 
000 I 0 
001 I 4 
011 I 7 
010 I 3 

I 
110 I 
111 I 
101 I 
100 I 

9 

001 011 
6 11 

10 15 
13 18 

9 14 

11 16 
15 20 
12 17 

8 13 

001 011 
6 0 
0 0 
0 0 
9 0 

0 0 
0 0 
0 0 
8 0 

010 110 111 101 100 
5 8 14 9 3 
9 12 18 13 7 

12 15 21 16 10 
8 11 17 12 6 

10 13 19 14 8 
14 17 23 18 12 
11 14 20 15 9 

7 10 16 11 5 

010 110 111 101 100 
5 8 0 9 3 
9 0 0 0 7 
0 0 0 0 0 
8 0 0 0 6 

0 0 0 0 8 
0 0 0 0 0 
0 0 0 0 9 
7 0 0 0 5 

at b t e" !d t !e /I:!f at!b" c " d t !e t !f I !a" b t !e t !d /I: 
!e " f I !a" !b t c" !d /I: e t !f I !a t !b t !c /I: d " !e " f 

X 

terns . 
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