

Instructions for use

Title BEM-II: An Arithmetic Boolean Expression Manipulator Using BDDs (Special Section on VLSI Design and CAD
Algorithms)

Author(s) Minato, Shin-ichi

Citation IEICE transactions on fundamentals of electronics, communications and computer sciences, E76(A10), 1721-1729

Issue Date 1993-10-25

Doc URL http://hdl.handle.net/2115/47467

Rights copyright©1993 IEICE

Type article

File Information 58_IEICE76_1721.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO. 10 OCTOBER 1993
1721

[PAPER Special Section on VLSI Design and CAD Algorithms

BEM-II: An Arithmetic Boolean Expression
Manipulator U~ing BODs

SUMMARY Recently, there has been a lot of research on
solving combinhtorial problems using Binary Decision Diagrams
(BDDs), which are very efficient representations of Boolean
functions. We have already developed a Boolean Expression
Manipulator, which calculates and reduces Boolean expressions
quickly based on BDD techniques. This greatly aids our works
on developing VLSI CAD systems and solving combinatorial
problems. Any combinatorial problem can be described in
Boolean expressions; however, arithmetic operations, such as
addition, subtraction, multiplication, equality and inequality,
are also used for describing many practical problems. Arithmetic
operations provide simple descriptions of problems in many
cases. In this paper, we present an arithmetic Boolean expression
manipulator (BEM- II), based on BDD techniques. BEM- II
calculates Boolean expressions containing arithmetic operations
and then displays the results in various formats. It can solve
problems represented by a set of equalities and inequalities,
which are dealt with using 0-1 linear programming. We show
the efficient data structure based on BDD representation, algo­
rithms for manipulating Boolean expressions with arithmetic
operations, and good formats for displaying the results. Finally
we present the specification of BEM- II and an example of
application to the 8-Queens problem. BEM- II is customizable to
various applications. It has good computation performance in
terms of the total time for programming and execution. We
expect BEM- II to be a helpful tool in research and development
on digital systems.
key words: BDD (binary decision diagram), Boolean junction,
arithmetic Boolean expression, B-to-J (Boolean-to-integer) junc­
tion, combinatorial problem

1. Introduction

Manipulating Boolean functions is an important tech­
nique for implementing VLSI CAD systems and for
various problems in the theory of algorithms and
complexity. Binary Decision Diagrams (BDDs) ,
which were proposed by Akers [I] and Bryant [2], are
graph representations of Boolean functions; Recently,
BDDs have attracted much attention because they
enable us to manipulate Boolean functions efficiently
in terms of time and space. There are many cases where
the algorithm based on conventional Boolean function
representations, such as truth tables or cube sets, can be
improved and efficiently adapted for BDD operations
[3], [4]. Besides VLSI CAD systems, BDDs can be
used in the method of solving binate covering prob-

Manuscript received March 22, 1993.
Manuscript revised May 18, 1993.

t The author is with NTT LSI Laboratories, Atsugi-shi,
243-01 Japan.

Shin-ichi MINATO"f, Member

lems [5], [6], which has various applications.
In researching and developing digital systems, we

sometimes describe and calculate Boolean expressions
to consider problems or procedures. It is a cumber­
some job to calculate or reduce Boolean expressions by
hand, even if the expressions have few variables. In
cases having more than 5 or 6 variables, we might as
well give up.

We have already developed a Boolean Expression
Manipulator (BEM) [7]. That program calculates and
reduces Boolean expressions quickly based on BDD
techniques. Expressions which can hardly be
manipulated by hand can be processed in a second
using BEM. It enables us to check the equivalence and
implication of Boolean expressions easily. It greatly
helped our work on developing VLSI CAD systems
and solving combinatorial problems.

Any combinatorial problem can be described in
Boolean expressions; however, arithmetic operations,
such as addition, subtraction, multiplication, equality
and inequality, are also used for describing many
practical problems, as seen in linear-integer program­
ming. Such expressions can be rewritten using logic
operations only, but they would be complex and hard
to read. Arithmetic operations provide simple descrip­
tions of pro blems in many cases.

In this paper, we present a new Boolean expression
manipulator BEM- II, which allows the use of arithme­
tic operations. BEM- II can directly solve problems
represented by a set of equalities or inequalities, which
are dealt with using 0-1 linear programming. Of
course, BEM- II can also manipulate ordinary Boolean
expressions as it incorporates the original BEM.
Furthermore, the output formats have been improved.
We show the data structure, algorithms for calculating
Boolean expressions with arithmetic operations, and
good formats for displaying results.

The remainder of this paper is organized as fol­
lows. In Sect. 2, we explain the techniques for
manipulating ordinary Boolean functions using BDDs.
In Sect. 3, we show a method for manipulating
Boolean expressions with arithmetic operations. In
Sect. 4, we present the implementation of BEM- II and
its applications.

1722

2. Boolean Expression Manipulation Using BDDs

2.1 BDD

A Binary Decision Diagram (BDD) is a directed graph
representation of a Boolean function, as shown in Fig.
1. BDDs have two terminal nodes, which we call the
O-terminal node and l-terminal node, and many deci­
sion nodes with two edges, called the O-edge and
l-edge. A BDD is derived by reducing a binary tree
graph, as shown in Fig. 2. The binary tree represents
the recursive execution of Shannon's expansion.

The following reduction rules give a Reduced
Ordered BDD (ROBDD) , which represents a Boolean
function efficiently (see [2] for details.)
(1) Eliminate all the redundant nodes whose two
edges point to the same node.
(2) Share all the equivalent sub-graphs.
ROBDDs give canonical forms for Boolean functions
when the variable order is fixed. Most works on BDDs
are based on the above reduction rules. In the follow­
ing sections, for the sake of simplification, we refer to
ROBDDs as BDDs (or original BDDs).

Since there are 22n kinds of n-input Boolean func­
tions, the representation requires at least 2n bit of
memory in the worst case. It is known that a BDD for
an n-input function includes 0 (2n

/ n) nodes in gen­
erar[8]. As each node consumes about 0 (n) bit (to
distinguish the two child nodes from 0 (2n

/ n) nodes),
the total storage exceeds 2n bit. However, the size of
BDDs varies with the kind of function, unlike truth
tables which always require 2n bit of memory. There
is a class of Boolean functions that can be represented

(x3 /\x2)v XI (x3 /\x2)v XI

t t

Fig. 1 A BDD. Fig. 2 A binary decision tree.

Fig.3 A shared BDD.

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO. 10 OCTOBER 1993

by a polynomial size of BDDs, and many practical
functions fall into this class [9). This is an attractive
feature of BDDs.

A set of BDDs representing multiple functions can
be united into a graph which consists of BDDs sharing
their sub-graphs with each other. The efficiency of
manipulation can be improved by managing all the
BDDs as a single graph, as in Fig. 3. We call such
graphs SBDDs (Shared BDDs) [10). We can further
reduce the operation time and memory requirement by
using attributed edges [10], which represent certain
logic operations such as inversion.

BDD packages implementing such techniques
exhibit the following useful properties.

• They can generate BDDs for large-scale functions,
some of which have never been represented before by
previous methods.

• After generating BDDs, the equivalence of two
functions can be checked in a constant time.

• Logic operations can be carried out within a time
that is almost proportional to the graph size.

2. 2 Generation of BDDs from Boolean Expressions

Here we show the method of generating BDDs for the
functions of given Boolean expressions.

1. Define the order of input variables, such as Xl,

X2, "', X n ·

2. Make a BDD with a single node for each input
variable.

3. Construct more complex BDDs by applying logic
operations on BDDs according to the Boolean expres­
sions.

An example for (Xl /\ X2) V X3 is shown in Fig. 4.
First, trivial BDDs for Xl, X2, X3 are generated. Then
applying the AND operation between Xl and X2, the
BDD of Xl /\ X2 is generated. The final BDD for the
entire expression is obtained as the result of the OR
operation between Xl /\ X2 and X3. In this manner, we
can also generate BDDs for functions given as multiple
expressions using internal variables.

The computation time for generating BDDs

xl xlllX2

~Xl 1 IIIIIII~ 0 x2 1
~ IIIIIIII~

o OJ AND 0 xl OR
:tf 71 11

~ """/ , ~/

~~ ~~

(x lllX2)v x3

t

Fig.4 Generation of BDDs from Boolean expressions.

MINATO: BEM-II: AN ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS

depends on the length of Boolean expressions and the
size of the BDDs to be generated. Up to now, it has
been difficult to estimate the time exactly. We know
that the time for one logic operation is approximately
proportionaly to the size of the BDDs. In many cases,
the BDDs grow larger with repeated logic operations
unless the expression is redundant. Therefore, the final
few logic operations occupy most of the time, and
roughly speaking, the total computation time is
approximately proportional to the size of the final
BDDs.

The size of BDDs largely depends on the order of
the input variables. It is difficult to derive a method
that always yields the best order, but with some heuris­
tic methods, we are able to find an adequate order in
many cases [10]-[12].

2. 3 Display Formats of Boolean Functions

After the generation and manipulation of BDDs for
Boolean expressions, the results are displayed in a
certain format adapted for calculation. We assume the
following utilities for aiding research on digital sys­
tems.

• Tautology checking of Boolean expressions.
• Equivalence or implication checking between two

expressions.
• Finding a counterexample when the above check­

ing failed.
• Simplification of complicated expressions.
• Searching for a solution (satisfiable input) of the

Boolean expression.
• Enumerating or counting the solutions of the

expression.
• Evaluating the complexity of expressions.

Considering these operations, we provide several
formats to display Boolean functions represented by
BDDs.
Karnaugh map: Unless the number of input variables
is large, a Karnaugh map representation (Fig. 5) is a
good way to observe the feature of functions. We can
readily check tautology or inconsistency by viewing
the map. However, it is practicable only for less than
six input functions as the map size grows exponential­
ly. When there are too many inputs but some of them
are irrelevant to the function, we can reduce the map
by excluding such input variables. The relevance
checking can be implemented efficiently using BDD
operations.
Sum-of-products format: As shown in Fig. 6, the
sum-of-products format (also called PLAs, cube sets,
or two-level logic) is another good method of display­
ing Boolean functions since it enumerates satisfiable
solutions of the function. Using the method presented
in [l3], we can quickly generate an irredundant sum­
of-products (ISOP) format from BDDs. ISOP format
can be utilized to evaluate a kind of complexity of

be oo 01 11 10
ar--r---r--.,.---,

F: 0 1 1--+-+-+---1

1723

Fig. 5 A Karnaugh map. Fig.6 An irredundant sum-of­
products format.

Fig. 7 A multi-level Boolean expression for a BDD.

Boolean functions. Tautology checking can easily be
performed by looking at the ISOP format.
BDD representation: Some kinds of Boolean func­
tions, such as parity functions, require exponential
length expressions to display them in the sum-of­
products format, however, they can be represented in
BDDs compactly. In such cases, it is useful to display
BDDs graphically. If no graphic utility is available,
there is a method of displaying BDDs with multi-level
Boolean expressions by assigning an internal variable
to each node of the BDDs, as shown in Fig. 7.
Statistical information: When the function is too
complex to display all at once, it is useful to output
statistical information, such as the number of solu­
tions, density of truth table (ratio of 0/1), number of
nodes in the BDDs, length of ISOP format, and num­
ber of relevant input variables. These data can be
computed efficiently using BDD operations.
Satisfiable solutions: We do not have to display
Boolean functions completely when we seek solutions
or counterexamples to a problem given as a Boolean
expression. In many cases, anyone of solutions can be
shown quite easily, even if the function is too complex
to display. By traversing BDDs, we can find a solution
in a time proportional to the number of inputs.

2.4 Application to Combinatorial Problems (1)

We introduce a method of solving combinatorial
problems using BDDs [5]. Here we consider the
problems that seek a combination of values to inputs
which gives the minimum at a cost function and
satisfies a constraint function. Namely, where
cost function:

n
Cost=~Wi'Xi (Wi>O,XiE{O, I})

i=1

1724

constraint junction:

j (Xl, Xz, "', Xn) E{O, I},

to seek values for XI, XZ, "', Xn which makes Cost
minimum under the constraint j = 1. Many NP com­
plete problems can be described in the above format.

To solve the problem using BDDs, we first gener­
ate a BDD for j. In the BDD, the set of paths from the
root node to the terminal node with the '1' value
corresponds to the solutions of the problem. On each
path, the edges labeled' l' represent assigning the .value
'1' to the input, namely it takes the cost for the mput.
Therefore, we may find a path to the' l' terminal node
in the BD D so that the total cost of '1' edges is
minimum.

Searching for the minimum cost path is im­
plemented based on back tracking of the BDD. .It
appears to take an exponential time, but we can avoId
duplicate tracking for shared sub graphs in the BDD by
storing the minimum cost for the subgraph and refer­
ring to it at the second visit. This technique eliminates
the need to visit each node more than once, so we can
find the minimum cost path in a time proportional to
the number of nodes in the BDD.

In this method, we can immediately solve the
problem if the BDD for the constraint function can be
generated in the main memory of the computer. Of
course, it is still a problem in NP, so in general the
BDD requires an exponential number of nodes and
overflows the memory. However, there are many
practical examples where the BDD becomes surprising­
ly compact.

The BDD-based method features customizability.
We can automatically solve any problem if it is de­
scribed as Boolean expressions. In terms of computa­
tion time and storage, this method may not be as good
as conventional methods which are devised by effective
heuristics for a specific problem. The BDD-based
method appears suitable for implementing prototypes
for aiding research on algorithms in digital systems.

3. Manipulation of Boolean Expressions Including
Arithmetic Operations

It is possible to describe any combinatorial problem as
Boolean expressions; however, arithmetic operations,
such as addition, subtraction, multiplication, equality
and inequality, are also used for describing many
practical problems, as seen in linear-integer program­
ming. For example, a majority function with five
inputs can be expressed concisely using arithmetic
operations as:

Xl +XZ+X3+X4+X5~3,

otherwise it becomes a difficult expression as:

(XI!\XZ!\X3) V (Xl !\ XZ!\X4) V (XI!\XZ!\X5)

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO. 10 OCTOBER 1993

V (XI!\X3!\X4) V (Xl !\ X3!\X5) V (XI!\X4!\X5)

V (XZ!\X3!\X4) V (XZ!\X3!\X5) V (XZ!\X4!\X5)

V (X3!\X4!\X5)'

In this section, we show an efficient method of
representing and manipulating such expressions in­
cluding arithmetic operations using BDDs.

3. 1 Definitions

For manipulating Boolean expressions including arith­
metic operations, we define arithmetic Boolean expres­
sions and Boolean-to-integer junctions, which are
extended models of conventional Boolean expressions
and Boolean functions. .

Arithmetic Boolean expressions are extended
Boolean expressions which include not only logic
operations but also arithmetic operations,. s~ch. as
addition (+), subtraction (-), and multIplIcatIOn
(X). Each variable is assumed to have a value of
either ° or 1. Any integer is allowed to be used for a
constant. Equality (=) and inequality «, >, ~, ~)
are also operations which return a value of either 1
(true) or ° (false). . .

For example, (3 X Xl + xz) is an anthmetic
Boolean expression with respect to the variables Xl and
Xz. (3 X Xl + xz<4) is another example.

When logic operations are applied to integer
values other than ° and 1, we assume that they execute
bit-wise logic operations for the binary coded integers,
like in many programming languages. Under this
modeling, conventional Boolean expressions become
special cases of arithmetic Boolean functions.

The value of the expression (3 X Xl + xz) becomes ° when Xl =xz=o, or 4 when Xl =Xz= l. We can see
that an arithmetic Boolean expression represents a
function from binary vector to integer: (B n ---4 I) .
We call such a function the Boolean-to-integer (B-to-
I) function. .

A sub-part of the arithmetic Boolean expreSSIOns
also represents a B-to-I function. Th~refore, any
operation in arithmetic Boolean expreSSIOns ca~ be
defined as an operation between two B-to-I functIOns.
We can get B-to-I functions for arithmetic Boolean
expressions by applying operations on B-to-I func­
tions according to the expressions.

We show an example of obtaining the B-to-I
function for the expression (3XXI+Xz<4) in Fig. 8.

xlx2 000110 II

3)(xl 0 0 3 3

3 Xxi + x2 0 3 4

3Xxl+~<4 0

Fig. 8 Computation of arithmetic Boolean expressions.

MIN A TO: BEM- II: AN ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS

First, we apply multiplication between a constant
function of 3 and one input function of XI, to obtain
the B-to-I function for (3 X Xl)' Then applying addi­
tion with X2, the function for (3 X Xl + X2) is obtained.
Finally we can get a B-to-l function for the entire
expression (3 X Xl + X2< 4) by applying the comparison
operator «) with the constant function of 4. From
the result of computation, we see that this arithmetic
Boolean expression is equivalent to the expression (Xl

V Xz).

3.2 Handling B-to-l Functions Using BDDs

The method of Fig. 8 computes the behavior of B-to-l
functions by enumerating all the input combinations.
This method is impracticable when there are many
input variables since the number of combinations
grows exponentially. We show an efficient method of
handling B-to-l Functions using BDDs.

As shown in Fig. 9, by encoding an integer with
some particular bit length of binary code, a B-to-l
function can be decomposed into a number of Boolean
functions which represent whether respective bits of the
binary code are 1 or O. These Boolean functions can be
represented efficiently using BDDs. Namely, a B-to-l
function can be represented by a vector of BDDs.

This method supports only finite values of integers
because the bit length should be fixed in advance. If
we allocate enough long bits, we will suffer no incon­
venience from this constraint. For negative numbers,
we use 2's complement representation in our implemen­
tation. As the most significant bit is used for the sign
bit, the corresponding BDD indicates the condition
under which the B-to-l function returns a negative
value.

Logic operations, such as AND, OR and EXOR,
are implemented as bit-wise operations between the
two BDD vectors. Applying BDD operations for
respective bits, the result of a new B-to-I function is
generated. We defined two kinds of inversion opera­
tions. One is bit-wise inversion, and the other is
logical inversion, which returns 1 only for 0, otherwise
it returns O.

Arithmetic addition can be composed using logic
operations on BDDs by simulating a conventional
hardware algorithm of full-adders which are designed

f=3Xxl +x2 fn ... f3 f2 fJ fo

xl x2 f (f2 fJ fo)

a a 0(000)

a I (001)

a 3 (all)
4 (100)

Fig.9 BDD representation for B-to-I functions.

1725

as combinational circuits. We adopt a simple algorith­
m of a ripple carry adder, which computes from the
lower bit to the higher bit propagating carries. In the
same way, other operations, such as subtraction, multi­
plication, division and shifting can also be composed.
Exception handling should be considered for overflow
and division by zero.

Positive/negative checking is immediately indicat­
ed by the BDD for the sign bit. Using subtraction
followed by sign checking, we can compose the com­
parison operation between two B-to-l functions. This
operation generates a new B-to-l function which
returns a value of either 1 or 0 to express satisfiability
of the equality or inequality.

We can compute the upper or lower bounds of a
B-to-l function for all the input combinations. This
operation can be composed efficiently based on binary
search. To seek the upper bound, we first check
whether the function may ever exceed 2n. If there is a
case in which it exceeds 2n, then we next compare it
with 2n +2n-\ or 2n

-
1

. In this way, fixing each bit from
the higher to the lower, the upper bound can be
computed. The comparison on each bit is composed
by BDD operations. The lower bound is found in a
similar way.

Computing the upper (lower) bound is defined as
a unary operation on B-to-l functions which returns a
constant function. This operation can be used conve­
niently in arithmetic Boolean expressions. For exam­
ple, the expression:

UpperBound (F) = =F

(F is an arithmetic Boolean expression)

gives a function which returns 1 when F has its upper
bound value, otherwise returns 0, namely it is the
condition to have F maximum.

3. 3 Display Formats of B-to-I Functions

We propose several good formats for displaying B-to-l
functions represented by BDDs.
Integer Karnaugh Maps: Ordinary Karnaugh maps
are used to display a matrix of logic values (O/l).
Integer Karnaugh maps use integer values for each
element, as shown in Fig. 10. This method is helpful to
observe the behavior of the B-to-l function. Like

f=2Xa+3Xb-4Xc+d

cd
ab
o 0

f: 0 1

1

0

00

0
3

5

2

01 11 10

1 -3 -4

4 0 -1

6 2 1

3 -1 -2

Fig. 10 An integer Karnaugh map.

1726

±: Ca/l.c/<d)V(b/l.c)

f2: (a/l.b;\"C)V\a/l.c/l.d)V(b/l.c/l.d)V(b/l.c)

fl: (a/l.D)V(a/l.d)v(a/l.b/l.d)

fO: (b/l.d)V(5/1.d)

Fig. 11 A bit-wise expression.

ordinary Karnaugh maps, they are practicable only for
fewer than six input functions. When there are too
many inputs, there is a good way to make a matrix for
only six input variables and display the upper (lower)
bound for the rest of variables.
Bit-wise Expressions: When the B-to-I function is
too complex for integer Karnaugh maps, we display
the function with a number of Boolean expressions in
the sum-of-products format, which represents respec­
tive bits of binary coding. This bit-wise format is not
so helpful for showing the behavior of the functions as
integer numbers, but it allows us to observe the fre­
quency of appearance of an input variable and can
estimate a kind of complexity of the functions.

For concise display, we suppress showing the
expression of the sign bit if the function never returns
negative values. If the function always gives a small
value and its higher bits are always zero, it is displayed
with zero suppression (omitting showing expressions
of '0'). In this reduction rule, a B-to-I function which
returns only 1 or 0 is simply displayed by a single
Boolean expression. Moreover, a function which
returns a constant integer is expressed by a decimal or
hex number, not by a bit-wise expression. These
reduction rules are applied automatically by checking
the BDD representation to be displayed.
Resynthesis of Arithmetic Boolean Expressions: It
would be good if we could display the B-to-I function
by a simply arithmetic Boolean expression, such as Xl

+ X2. Unfortunately, such a method have not been
developed yet because it is difficult to extract arithme­
tic operations from BDD representations and it is not
clear what expression is simple. We expect this tech­
nique to be related to the extraction of arithmetic
functions from logic circuits [14].

3.4 Application to Combinatorial Problems (2)

Using the above method, we can generate BDDs for
constraint functions of combinatorial problems given
by arithmetic Boolean expressions, and can solve the
problems in the way presented in Sect. 2. This method
enables us to solve 0-1 linear programming by han­
dling equalities and inequalities directly, without cod­
ing complicated procedures 'in a programming lan­
guage.

Another feature of using arithmetic Boolean
expressions is that we can compute combinator:ial
problems whose cost function is expressed by non­
linear expressions, whereas the method presented in

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO. 10 OCTOBER 1993

Sect. 2 is limited to handle linear cost functions.
Whether the cost function is linear or not, the upper
(lower) bound can be computed by generating BDD
representations for the B-to-I functions which repre­
sent the cost function explicitly. This approach
extends categories of problems to be solved using BDD
techniques. However, when the cost function is linear,
the method in Section 2 is better since it solves prob­
lems without generating BDDs for the cost function.

4. Arithmetic Boolean Expression Manipulator
BEM-II

We implemented BEM-I!, which generates BDDs of
B-to- I functions for arithmetic Boolean expressions
and displays them in various formats. This section
gives the specifications of BEM~I! and its usage.

4. 1 Specification

BEM- I! has a C-Shell-like interface, both for inter­
active execution from the keyboard input and for batch
jobs from a script file. The program is written in yacc,
C, and C+ + languages. It runs on 32 bit UNIX
machines.

In BEM- I! scripts, we describe arithmetic expres­
sions with the kind of variables, input variables and
register variables. Input variables, denoted by strings
starting with a lower-case letter, represent the inputs of
functions to be computed. They are assumed to have
a value of either 1 or O. Register variables, denoted by
strings starting with an upper-case latter, are used for
identifying the memory for saving a temporarily
computed B-to-I function. We can describe multi­
level expressions using these two types of variables.
The results of computation are displayed by irredun­
dant Boolean expressions with input variables only,
not including register variables. BEM- I! allows 65,535
different input variables to be used. There is no limit
on the number of register variables.

BEM- I! supports operators such as logical AND,
OR, EXOR, NOT, plus, minus, multiply, shift, equal­
ity, inequality, and upper/lower bound. The syntax of
expressions almost conforms to C language. Neither
If-then-else nor while-do are supported because the
system may fail to fetch the next command when the
branching condition is given by an expression contain­
ing input variables. The list of operators are shown in
appendix A.

BEM- I! generates BDDs representing B-to-l
functions for given arithmetic Boolean expressions. It
is enough fast to compute expressions that used to be
manipulated by hand. As BEM- I! can generate huge
BDDs with millions of nodes, limited only by the size
of the memory, we can solve large-scale and compli­
cated problems to a degree. The results are displayed
in various formats such as integer Karnaugh maps and

\II1NATO: BEM-II: AN ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS

bit-wise expressions, as shown in the foregoing sec­
tions. An example of interactive execution is given in
Appendix B. 1.

4.2 Performance Evaluation-for 8-Queens Problem

We conducted an experiment to solve 8-Queens prob­
lem using BEM- I! by describing the problem with
arithmetic Boolean expressions.

First, we allocated 64 input variables to represent
the point on the chessboard matrix. These represent
whether or not there is a queen on that points. The
constraints that the input variables should satisfy are
expressed as follows:

• The sum of 8 variables in the same column is 1.
• The sum of 8 variables in the same row is 1.
• The sum of variables on the same diagonal line is

less than 2.
These constraints can be described with simple

arithmetic Boolean expressions as:

Cond1 = (Xll +XIZ+ X13+'" +XlS= = 1)

Condz= (XZl +XZZ+ XZ3+'" + XZs= = 1)

Solutions = Condd\ Condz/\ ...

We show a complete script in Appendix B. 2.
BEM- I! feeds the above expressions directly and

tries to generate BDDs which represent the set of
solutions. If it succeeds in generating BDDs in the
main memory, we can immediately find a solution to
the problem and count the number of the solutions.
(else it may abort). In this way, we can solve the
8-Queens problem by handling abstract forms of the
problem.

Table 1 shows the results when we applied this
method to the N-Queens problems. The column #var
shows the number of input variables, and # BDD is the
number of nodes in the BDDs for representing the set
of solutions. We used a SPARC Station 2 (SunOS
4.1.2,128 MByte).

In the experiments, we solved the problem up to N
= 11. This shows that BEM- I! is less powerful than
conventional methods, which have solved up to N = 15
using an algorithm based on backtraking and heuris­
tics. This drawback arises from the feature that BEM­
I! solves all problems in the same way by generating

Table 1 Results on N -Queens problems.

N #var #BDD -olutior time(s)

S 64 2450 92 6.1

9 81 9556 352 18.3

10 100 25944 724 68.S

11 121 9'1821 2680 1081.9

1727

Boolean functions without using specific properties of
the problem. There is also another disadvantage we
cannot find any solution (not a quasi-best one) when
the BDDs cannot be generated because of memory
overflow.

However, this method has the great advantage of
customizability. Using BEM- I!, we can compose
scripts for various applications much more easily than
developing and tuning a specific program. The script
for the 8-Queens problem took only 10 minutes to
make. Considering the customizability, we conclude
that BEM- I! has good computation performance in
terms of the total time for programming and execution.

4.3 Application for LSI CAD/DA

In researching and developing an algorithm for LSI
design systems, we often simulate the algorithm for a
small instance to confirm its correctness and efficiency.
BEM- I! is suitable to such a purpose. It allows us to
conduct experiments On algorithms much more
efficiently than using hand simulation.

In Appendix B.3, we show a script to solve a
subset sum problem, that is to find a maximum subset
under an upper bound of total cost. It can be solved
by 0-1 linear programming. The 0-1 knapsack prob­
lem is described in a similar way. Such problems are
often seen in LSI design systems, such as resource
scheduling/ allocation, logic optimization, and layout.

Using BEM- I!, we can solve the subset sum prob­
lem by describing a very simple and readable script for
BEM- I!. We can glance the costs for all the cases by
an integer Karnaugh map if the problem is not so
large. This is greatly helpuful for analyzing the behav­
ior of expression.

BEM- I! is second to well-optimized heuristic
algorithms for solving large-scale problems, but it may
be utilized as a helpful tool in research and develop­
ment of LSI design systems.

5. Conclusion

We have presented a method of computing Boolean
expressions including arithmetic operations. This
method consists of an efficient data structure, manipu-

. lation algorithms, and good display formats. BEM- II,
implemented based on the above techniques, is custom­
izable for various applications. We expect it to be
utilized as a helpuful tool in research and development
on digital systems.

BEM- I! may abort during computations of large­
scale or complicated problems, because it solves all
problems in the same way by generating Boolean func­
tions without using the specific properties of the prob­
lem. In such cases, it will be good to devise a combina­
tion ofBDD techniques and well-optimized algorithms
developed for a spacific application.

1728

Acknowledgments

The author would like to express his appreciation to
Tohru Adachi, Makoto Endo and Atsushi Takahara
of NTT LSI laboratories, Toshiaki Miyazaki of NTT
Transmission Systems Laboratories and Masayuki
Yanagiya of NTT Communication Switching Labora­
tories for their encouragement.

References

[I] Akers, S. B., "Binary Decision Diagrams," IEEE Trans.
Comput., pp. 509-516, 1978.

[2] Bryant, R. E., "Graph-Based Algorithms for Boolean
Function Manipulation," IEEE Trans. Comput., pp. 677
-691, 1986.

[3] Matsunaga, Y., and Fujita, M., "Multi-level LogicOptim­
ization Using Binary Decision Diagrams," in Proc. ICCAD
'89, pp. 556-559, 1989.

[4] Minato, S., Ishiura, N., and Yajima, S., "Fast Tautology
Checking Using Shared Binary Decision Diagram­
Benchmark Results," in Proc. IFIP International Workshop
on Applied Formal Methods for Correct VLSI Design,
pp. 580-584, 1989.

[5] Lin, Bill, and Somenzi, Fabio, "Minimization of Sym­
bolic Relations," in Proc. IEEE ICCAD '90, pp.88-91,
1990.

[6] Jeong, S.-W., and Somenzi, F., "A New Algorithm for the
Binate Covering Problem and its Application to the
Minimization of Boolean Relations," in Proc. IEEE
ICCAD '92, pp. 417-420, 1992.

[7] Minato, S., Ishiura, N., and Yajima, S., "Symbolic Simu­
lation Using Shared Binary Decision Diagram," 1989
IEICE Natl. Conv., Rec. IEICE, SA-7-5.

[8] Liaw, H.-T., and Lin, c.-S., "On the OBDD­
Representation of General Boolean Functions," IEEE
Trans. Comput., pp. 661-664, 1992.

[9] Yajima, S., Ishiura, N., "A Class of Logic Functions
Expressible by a Polynomial-Size Binary Decision Dia­
grams," in Proc. of the Synthesis and Simulation
Meeting and Int. Interchange (SASIMI '90), 1990.

[10] Minato, S., Ishiura, N., and Yajima, S., "Shared Binary
Decision Diagram with Attributed Edgen for Efficient
Boolean Function Manipulation," A CM / IEEE Proc.
27th DA C, pp. 52-57, 1990.

[11] Fujita, M., Matsunaga, Y., and Kakuda, T., "On Variable
Ordering of Binary Decision Diagrams for the Applica­
tion of Multi-level Logic Synthesis," in Proc. the European
Conference on Design Automation, pp. 50-54, 1991.

[12] Minato, S., "Minimum-Width Method of Variable Order­
ing for Binary Decision Diagrams," IEICE Trans. Fund­
amentals, vol. E75-A, no. 3, pp. 392-399, 1992.

[13] Minato, S., "Fast Generation of Irredundant Sum-of­
Products Forms from Binary Decision Diagrams," in Proc.
of the Synthesis and Simulation Meeting and Int.
Interchange (SASIMI '92, Japan), pp. 64-73, 1992.

[14] Ohmura, M., Yasuura, H., and Tamaru, K., "Extraction
of Functional Information from Combinational
Ciacuits," in Proc. IEEE ICCAD '90, pp. 176-179, 1990.

Appendix A: List of Operators

The syntax of arithmetic Boolean expressions conforms

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO. 10 OCTOBER 1993

to C language. The fGllowings are the available
operators in the order of priority.

()
[]

+ - (unary)

* + - (binary)
« »
< <= > >=

!=
81;

? :
UpperBound(LowerBound ()

F [0] returns F reduced with a don't care condition of
0=0. ! is logical inversion. ! F returns 1 when F=
0, else returns O. - is bit-wise inversion. It is different
to !. 0 returns - 1. F?O:H returns 0 when F = 1, else
returns H.

Appendix B: Examples of Execution

B. 1 Interactive Mode

% bemII
***** BEM-II: Boolean Expression Manipulator II (Ver. 3.2) *****
bemII> symbol a(3) b(2) e(4) d(l)
bemII> Sum = a*3 + b*4 + e*5 - d*2
bemII> print Sum

+-: !a 81; !b 81; !e 81; d

3: a 81; b 81; e I a 81; e 81; !d I !a 81; !b 81; !e 81; d I b 81; e 81; !d
2: b - (a 81; e 81; d I !a 81; e 81; !d I !a 81; !e 81; d)
1: d - (a 81; !e)
0: a e

bemII> print /map Sum
a b : e d

00 01 11 10
00 0 -2 3 5
01 4 2 7 9
11 7 5 10 12
10 I 3 1 6 8

bemII> print UpperBound(Sum)
12

bemII> print LowerBound(Sum)
-2

bemII> print Sum > 6
a 81; b 81; !d I a 81; e 8I;!d b 81; e

bemII> F = Sum > 6
bemII> print /mineover F
<Positive>: a b
bemII> print /rnineost F

5
bemII> exit
%

MINATO : BEM-II: AN ARITHMETIC BOOLEAN EXPRESSION MANIPULATOR USING BDDS

B.2 8-Queens Problem

Script for Input

####### 8-Queens Problem #######
symbol aOO al0 a20 a30 a40 a50 a60 a70
symbol aOl all a21 a31 a41 a51 a61 a71
symbol a02 a12 a22 a32 a42 a52 a62 a72
symbol a03 a13 a23 a33 a43 a53 a63 a73
symbol a04 a14 a24 a34 a44 a54 a64 a74
symbol a05 a15 a25 a35 a45 a55 a65 a75
symbol a06 a16 a26 a36 a46 a56 a66 a76
symbol a07 a17 a27 a37 a47 a57 a67 a77

XO = (aOO + al0 + a20 + a30 + a40 + a50 +
Xl = (aOl + all + a21 + a31 + a41 + a51 +
X2 = (a02 + a12 + a22 + a32 + a42 + a52 +
X3 = (a03 + a13 + a23 + a33 + a43 + a53 +
X4 = (a04 + a14 + a24 + a34 + a44 + a54 +

X5 = (a05 + a15 + a25 + a35 + a45 + a55 +
X6 = (a06 + a16 + a26 + a36 + a46 + a56 +
X7 = (a07 + a17 + a27 + a37 + a47 + a57 +

a60 + a70 ==
a61 + a71 ==
a62 + a72 ==
a63 + a73 ==
a64 + a74 ==

a65 + a75 ==
a66 + a76 ==
a67 + a77 ==

YO = (aOO + aOl + a02 + a03 + a04 + a05 + a06 + a07 ==
Yl = (al0 + all + a12 + a13 + a14 + a15 + a16 + a17 ==
Y2 = (a20 + a21 + a22 + a23 + a24 + a25 + a26 + a27 ==
Y3 = (a30 + a31 + a32 + a33 + aM + a35 + a36 + a37 ==
Y4 = (a40 + a41 + a42 + a43 + a44 + a45 + a46 + a47 ==
Y5 = (a50 + a51 + a52 + a53 + a54 + a55 + a56 + a57 ==
Y6 = (a60 + a61 + a62 + a63 + a64 + a65 + a66 + a67 ==
Y7 = (a70 + a71 + a72 + a73 + a74 + a75 + a76 + a77 ==

Zl = (al0 + aOl < 2)
Z2 = (a20 + all + a02 < 2)
Z3 = (a30 + a21 + a12 + a03 < 2)
Z4 = (a40 + a31 + a22 + a13 + a04 < 2)
Z5 = (a50 + a41 + a32 + a23 + a14 + a05 < 2)
Z6 = (a60 + a51 + a42 + a33 + a24 + a15 + a06 < 2)

1)
1)
1)
1)
1)

1)
1)
1)

1)
1)
1)
1)
1)
1)
1)
1)

Z7 = (a70 + a61 + a52 + a43 + a34 + a25 + a16 + a07 < 2)
Z8 = (a71 + a62 + a53 + a44 + a35 + a26 + a17
Z9 = (a72 + a63 + a54 + a45 + a36 + a27 < 2)
Za = (a73 + a64 + a55 + a46 + a37 < 2)
Zb = (a74 + a65 + a56 + a47 < 2)
Ze = (a75 + a66 + a57 < 2)
Zd = (a76 + a67 < 2)

Wl = (a06 + a17 < 2)
W2 = (a05 + a16 + a27 < 2)
W3 = (a04 + a15 + a26 + a37 < 2)
W4 = (a03 + a14 + a25 + a36 + a47 < 2)
W5 = (a02 + a13 + a24 + a35 + a46 + a57 < 2)
W6 = (aOl + a12 + a23 + a34 + a45 + a56 + a67
W7 = (aOO + all + a22 + a33 + a44 + a55 + a66
W8 = (al0 + a21 + a32 + a43 + a54 + a65 + a76
W9 = (a20 + a31 + a42 + a53 + a64 + a75 < 2)
Wa = (a30 + a41 + a52 + a63 + a74 < 2)
Wb = (a40 + a51 + a62 + a73 < 2)
We = (a50 + a61 + a72. < 2)
Wd = (a60 + a71 < 2)

c = 1
C = C " XO " Xl " X2 t X3 t X4 " X5 " X6 t X7
C = C " YO t Yl " Y2 t Y3 t Y4 t Y5 t Y6 t Y7

< 2)

< 2)
+ a77 < 2)
< 2)

C = C t Zl t Z2 /I: Z3 t Z4 t Z5 t Z6 t Z7 t Z8 t Z9 t Za t Zb !z Ze t Zd
C = C /I: Wl t W2 /I: W3 t W4 t W5 t W-6 t W7 /I: W8 " W9 /I: Wa /I: Wb !z We !z Wd

print / size C
print /eount C
print /mincover C

Result of Execution
X bemII queen8. bem

2450 (3014)
92

<Positive>: a77 a36 a05 a24 a53 a12 a61 a40
X

1729

B. 3 Subset Sum Problem

Script for Input

SUBSET-SUM Problem #####
symbol abc d e f

Sum = 2*a + 3*b + 4*c + 3*d + 5*e + 6*f
print /map Sum

S = Sum * (Sum <10)
print /map S

C = UpperBound (s)
print C
print (C == S)

Result of Execution

X bem!! subsetsum.bem
a b c d e f

I 000
000 I 0
001 I 4
011 I 7
010 I 3

I
110 I 5
111 I 9
101 I 6
100 I 2
abc d e f

I 000
000 I 0
001 I 4
011 I 7
010 I 3

I
110 I
111 I
101 I
100 I

9

001 011
6 11

10 15
13 18

9 14

11 16
15 20
12 17

8 13

001 011
6 0
0 0
0 0
9 0

0 0
0 0
0 0
8 0

010 110 111 101 100
5 8 14 9 3
9 12 18 13 7

12 15 21 16 10
8 11 17 12 6

10 13 19 14 8
14 17 23 18 12
11 14 20 15 9

7 10 16 11 5

010 110 111 101 100
5 8 0 9 3
9 0 0 0 7
0 0 0 0 0
8 0 0 0 6

0 0 0 0 8
0 0 0 0 0
0 0 0 0 9
7 0 0 0 5

at b t e" !d t !e /I:!f at!b" c " d t !e t !f I !a" b t !e t !d /I:
!e " f I !a" !b t c" !d /I: e t !f I !a t !b t !c /I: d " !e " f

X

terns .

Shin-ichi Minato was born in Ishi­
kawa, Japan, on August 30, 1965. He
received the B.E. and M.E. degrees in
Information Science from Kyoto Univer­
sity, Japan in 1988 and 1990, respectively.
Since joining NTT LSI Laboratories,
Kanagawa, Japan in 1990, he has been
working on the research of logic design
systems. His current interest is in the
representation and manipulation . of
Boolean functions for logic synthesis sys-

