
165

�
�

�
�特集論文

Frequent Closed Item Set Mining Based
on Zero-suppressed BDDs

Shin-ichi Minato Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, 060-0814 Japan.
minato@ist.hokudai.ac.jp

Hiroki Arimura (affiliation as previous author)
arim@ist.hokudai.ac.jp

keywords: data mining, item set, BDD, ZBDD, closed pattern

Summary

Frequent item set mining is one of the fundamental techniques for knowledge discovery and data min-
ing. In the last decade, a number of efficient algorithms for frequent item set mining have been presented,
but most of them focused on just enumerating the item set patterns which satisfy the given conditions, and
it was a different matter how to store and index the result of patterns for efficient data analysis. Recently,
we proposed a fast algorithm of extracting all frequent item set patterns from transaction databases and
simultaneously indexing the result of huge patterns using Zero-suppressed BDDs (ZBDDs). That method,
ZBDD-growth, is not only enumerating/listing the patterns efficiently, but also indexing the output data
compactly on the memory to be analyzed with various algebraic operations. In this paper, we present a vari-
ation of ZBDD-growth algorithm to generate frequent closed item sets. This is a quite simple modification
of ZBDD-growth, and additional computation cost is relatively small compared with the original algorithm
for generating all patterns. Our method can conveniently be utilized in the environment of ZBDD-based
pattern indexing.

1. Introduction

Frequent item set mining is one of the fundamen-
tal techniques for knowledge discovery and data min-
ing. Since the introduction by Agrawal et al.[Agrawal
93], the frequent item set mining and association rule
analysis have been received much attentions from many
researchers, and a number of papers have been pub-
lished about the new algorithms or improvements for
solving such mining problems[Goethals 03a, Han 04,
Zaki 00]. However, most of such item set mining al-
gorithms focused on just enumerating or listing the
item set patterns which satisfy the given conditions
and it was a different matter how to store and index
the result of patterns for efficient data analysis.

Recently, we proposed a fast algorithm[Minato 06]
of extracting all frequent item set patterns from trans-
action databases, and simultaneously indexing the re-
sult of huge patterns on the computer memory using
Zero-suppressed BDDs. That method, called ZBDD-
growth, does not only enumerate/list the patterns ef-
ficiently, but also indexes the output data compactly

on the memory. After mining, the result of patterns
can efficiently be analyzed by using algebraic opera-
tions.

The key of the method is to use BDD-based data
structure for representing sets of patterns. BDDs[Bryant
86] are graph-based representation of Boolean func-
tions, now widely used in VLSI logic design and verifi-
cation area. For the data mining applications, it is im-
portant to use Zero-suppressed BDDs (ZBDDs)[Minato
93], a special type of BDDs, which are suitable for
handling large-scale sets of combinations. Using ZB-
DDs, we can implicitly enumerate combinatorial item
set data and efficiently compute set operations over
the ZBDDs.

In this paper, we present an interesting variation of
ZBDD-growth algorithm to generate frequent closed
item sets. Closed item sets are the subset of item set
patterns each of which is the unique representative
for a group of sub-patterns relevant to the same set
of transaction records. Our method is a quite sim-
ple modification of ZBDD-growth. We inserted sev-
eral operations in the recursive procedure of ZBDD-

166 人工知能学会論文誌 22 巻 2 号 SP-D（2007 年）

Fig. 1 A Boolean function and a combinatorial item set.

Fig. 2 An example of ZBDD.

growth, to filter the closed patterns from all frequent
patterns. The experimental result shows that the ad-
ditional computation cost is relatively small compared
with the original algorithm for generating all patterns.
Our method can conveniently be utilized in the envi-
ronment of ZBDD-based data mining and knowledge
indexing.

2. ZBDD-based item set representation

As the preliminary section, we describe the methods
for efficiently indexing item set data based on Zero-
suppressed BDDs.

2・1 Combinatorial item set and ZBDDs

A combinatorial item set consists of the elements
each of which is a combination of a number of items.
There are 2n combinations chosen from n items, so we
have 22n

variations of combinatorial item sets. For ex-
ample, for a domain of five items a, b, c, d, and e, we
can show examples of combinatorial item sets as:
{ab, e}, {abc, cde, bd, acde, e}, {1, cd}, 0. Here “1” de-
notes a combination of null items, and “0” means an
empty set. Combinatorial item sets are one of the ba-
sic data structure for various problems in computer
science, including data mining.

A combinatorial item set can be mapped into Boolean

Fig. 3 Example of tuple-histogram.

Fig. 4 ZBDD vector for tuple-histogram.

space of n input variables. For example, Figure 1
shows a truth table of Boolean function: F = (a b c)∨
(b c), but also represents a combinatorial item set
S = {ab, ac, c}. Using BDDs for the corresponding
Boolean functions, we can implicitly represent and
manipulate combinatorial item set. In addition, we
can enjoy more efficient manipulation using “Zero-
suppressed BDDs” (ZBDD)[Minato 93], which are spe-
cial type of BDDs optimized for handling combina-
torial item sets. An example of ZBDD is shown in
Figure 2.

The detailed techniques of ZBDD manipulation are
described in the articles[Minato 93]. A typical ZBDD
package supports cofactoring operations to traverse
0-edge or 1-edge, and binary operations between two
combinatorial item sets, such as union, intersection,
and difference. Our ZBDD package generates new
ZBDD nodes in the main memory, as the results of
these algebraic operations. The computation time
for each operation is almost linear to the number of
ZBDD nodes related to the operation. We can also
delete a ZBDD which has become useless, and such
garbage ZBDD nodes are efficiently collected to be
used for another new ZBDD.

Frequent Closed Item Set Mining Based on Zero-suppressed BDDs 167

2・2 Tuple-Histograms and ZBDD vectors

A Tuple-histogram is the table for counting the num-
ber of appearance of each tuple in the given database.
An example of tuple-histogram is shown in Figure 3.
This is just a compressed table of the database to
combine the same tuples appearing more than once
into one line with the frequency.

Our item set mining algorithm manipulates ZBDD-
based tuple-histogram representation as the internal
data structure. Here we describe how to represent
tuple-histograms using ZBDDs. Since ZBDDs are
representation of sets of combinations, a simple ZBDD
distinguishes only existence of each tuple in the database.
In order to represent the numbers of tuple’s appear-
ances, we decompose the number into m-digits of ZBDD
vector {F0,F1, . . ., Fm−1} to represent integers up to
(2m− 1), as shown in Figure 4. Namely, we encode
the appearance numbers into binary digital code, as
F0 represents a set of tuples appearing odd times
(LSB = 1), F1 represents a set of tuples whose ap-
pearance number’s second lowest bit is 1, and similar
way we define the set of each digit up to Fm−1.

In the example of Figure 4, The tuple frequencies
are decomposed as: F0 = {abc, ab, c}, F1 = {ab, bc},
F2 = {abc}, and then each digit can be represented
by a simple ZBDD. The three ZBDDs shares their
sub-graphs each other.

Now we explain the procedure for constructing a
ZBDD-based tuple-histogram from original database.
We read a tuple data one by one from the database,
and accumulate the single tuple data to the histogram.
More concretely, we generate a ZBDD of T for a sin-
gle tuple picked up from the database, and accumu-
late it to the ZBDD vector. The ZBDD of T can be
obtained by starting from “1” (a null-combination),
and applying “Change” operations several times to
join the items in the tuple. Next, we compare T and
F0, and if they have no common parts, we just add T

to F0. If F0 already contains T , we eliminate T from
F0 and carry up T to F1. This ripple carry procedure
continues until T and Fk have no common part. Af-
ter finishing accumulations for all data records, the
tuple-histogram is completed.

Using the notation F .add(T) for addition of a tuple
T to the ZBDD vector F , we describe the procedure
of generating tuple-histogram H for given database
D.

H = 0
forall T ∈D do

H = H .add(T)
return H

When we construct a ZBDD vector of tuple-histogram,
the number of ZBDD nodes in each digit is bounded
by total appearance of items in all tuples. If there are
many partially similar tuples in the database, the sub-
graphs of ZBDDs are shared very well, and compact
representation is obtained. The bit-width of ZBDD
vector is bounded by logSmax, where Smax is the ap-
pearance of most frequent items.

Once we have generated a ZBDD vector for the
tuple-histogram, various operations can be executed
efficiently. Here are the instances of operations used
in our pattern mining algorithm.
•H .factor0(v): Extracts sub-histogram of tuples

without item v.
•H .factor1(v): Extracts sub-histogram of tuples

including item v and then delete v from the tuple
combinations. (also considered as the quotient of
H/v)
• v ·H : Attaches an item v on each tuple combina-

tions in the histogram F .
•H1 + H2: Generates a new tuple-histogram with

sum of the frequencies of corresponding tuples.
•H .tuplecount: The number of tuples appearing

at least once.
These operations can be composed as a sequence of
ZBDD operations. The result is also compactly rep-
resented by a ZBDD vector. The computation time
is bounded by roughly linear to total ZBDD sizes.

3. ZBDD-growth Algorithm

Recently, we developed a ZBDD-based algorithm[Minato
06], ZBDD-growth, to generate “all” frequent item set
patterns. Here we describe this algorithm as the basis
of our method for “closed” item set mining.

ZBDD-growth is based on a recursive depth-first
search over the ZBDD-based tuple-histogram repre-
sentation. The basic algorithm is shown in Figure 5,
where H is a ZBDD for the tuple-histogram of the
given database, and α is a given number of minimum
support threshold.

In this algorithm, we choose an item v used in
H , and compute the two sub-histograms H1 and H0.
(Namely, H = (v ·H1)∪H0.) Since we always choose
v at the highest position in the ZBDD vector, H1 and
H0 can be obtained just by referring the 1-edge and 0-
edge of the highest ZBDD-node, and the computation
time for factoring each digit of ZBDD is a constant

168 人工知能学会論文誌 22 巻 2 号 SP-D（2007 年）

ZBDDgrowth(H,α)
{

if(H has only one item v)
if(v appears more than α)

return v ;
else return “0” ;

F ← Cache(H) ;
if(F exists) return F ;
v← H.top ; /* Top item in H */
H1←H .factor1(v) ;
H0←H .factor0(v) ;
F1←ZBDDgrowth(H1,α) ;
F0←ZBDDgrowth(H0 +H1,α) ;
F ← (v ·F1)∪F0 ;
Cache(H) ← F ;
return F ;

}

Fig. 5 ZBDD-growth algorithm.

to the ZBDD size.

The number of appearance of v in H can be cal-
culated by seeing the total number of records in H1.
This computation is done in a linear time to the total
ZBDD size of H1. The heaviest operation in ZBDD-
growth algorithm is to generate ZBDD for (H0 + H1).
This requires union and intersection operations for
each corresponding digit of H0 and H1, and the re-
sult of ZBDD sometimes grows large depending on the
data property. Anyway, the total computation time
is linearly bounded by the size of ZBDDs related to
the operations.

The algorithm consists of the two recursive calls,
one of which computes the subset of patterns includ-
ing v, and the other computes the patterns excluding
v. The two subsets of patterns can be obtained as a
pair of pointers to ZBDDs, and then the final result
of ZBDD is computed. This procedure may require
an exponential number of recursive calls, however, we
prepare a hash-based cache, Cache(H), to store the
result of each recursive call. Each entry in the cache
is formed as pair (H,F), where H is the pointer to
the ZBDD vector for a given tuple-histogram, and F

is the pointer to the result of ZBDD. On each recur-
sive call, we check the cache to see whether the same
histogram H has already appeared, and if so, we can
avoid duplicate processing and return the pointer to
F directly. By using this technique, the computa-
tion time becomes almost linear to the final (may be
largest) ZBDD size.

In our implementation, we use some simple tech-
niques to prune the search space. For example, if H1

and H0 are equivalent, we may skip to compute F0.
For another case, we can stop the recursive calls if
total frequencies in H is no more than α. There are
some other elaborate pruning techniques, but they
needs additional computation cost for checking the
conditions, so sometimes effective but not always.

4. Frequent closed item set mining

In frequent item set mining, we sometimes faced
with the problem that a huge number of frequent pat-
terns are extracted and hard to find useful informa-
tion. Closed item set mining is one of the techniques
to filter important subset of patterns. In this section,
we present a variation of ZBDD-growth algorithm to
generate frequent closed item sets.

4・1 Closed item sets

Closed item sets are the subset of item set pat-
terns each of which is the unique representative for
a group of sub-patterns relevant to the same set of
tuples. For more clear definition, we first define the
common item set Com(ST) for the given set of tuples
ST , such that Com(ST) is the set of items commonly
included in every tuple T ∈ ST . Next, we define oc-
curence Occ(D,X) for the given database D and item
set X, such that Occ(D,X) is the subset of tuples in
D, each of which includes X. Using these notations,
if an item set X satisfies Com(Occ(D,X)) = X, we
call X is a closed item set in D.

For example, let us consider the database D as
shown in Figure 3. Here, all item set patterns with
threshold α = 1 is: {abc, ab, ac, a, bc, b,c}, but closed
item sets are: {abc, ab, bc, b,c}. In this example, “ac”
is eliminated from a closed pattern because
Occ(D,“ac”) = Occ(D,“abc”).

In recent years, many researchers discuss the effi-
cient algorithms for closed item set mining. One of
the remarkable result is LCM algorithm[Uno 03] pre-
sented by Uno et. al. LCM is a depth-first search
algorithm to extract closed item sets. It features that
the computation time is bounded by linear to the out-
put data length. Our ZBDD-based algorithm is also
based on a depth-first search manner, so, it has simi-
lar properties as LCM. The major difference is in the
data structure of output data. Our method generates
ZBDDs for the set of closed patterns, ready to go for
more flexible analysis using ZBDD operations.

Frequent Closed Item Set Mining Based on Zero-suppressed BDDs 169

P .permit(Q)

{
if(P =“0” or Q =“0”) return “0” ;

if(P = Q) return P ;

if(P =“1”) return “1” ;

if(Q =“1”)

if(P include “1”) return “1” ;

else return “0” ;

R← Cache(P,Q) ;

if(R exists) return R ;

v←TopItem(P,Q) ; /* Top item in P,Q */

(P0, P1)←factors of P by v ;

(Q0,Q1)←factors of Q by v ;

R← (v ·P1.permit(Q1))

∪ (P0.permit(Q0 ∪Q1)) ;

Cache(P,Q) ← R ;

return R ;

}

Fig. 6 Permit operation.

4・2 Eliminating non-closed patterns

Our method is a quite simple modification of ZBDD-
growth shown in Figure 5. We inserted several oper-
ations in the recursive procedure of ZBDD-growth,
to filter the closed patterns from all frequent pat-
terns. The ZBDD-growth algorithm is starting from
the given tuple-histogram H , and computes the two
sub-histograms H1 and H0, such that H = (v ·H1)∪
H0. Then ZBDD-growth(H1) and ZBDD-growth(H1 +
H0) is recursively executed.

Here, we consider the way to eliminate non-closed
patterns in this algorithm. We call the new algorithm
ZBDD-growthC(H). It is obvious that (v· ZBDD-
growthC(H1)) generates (a part of) closed patterns
for H each of which includes v, because the occur-
rence of any closed pattern with v is limited in (v ·
H1), thus we may search only for H1. Next, we con-
sider the second recursive call ZBDD-growthC(H1 +
H0) to generate the closed patterns without v. Im-
portant point is that some of patterns generated by
ZBDD-growthC(H1 +H0) may have the same occur-
rence as one of the patterns with v already found
in H1. The condition of such duplicate pattern is
that it appears only in H1 but irrelevant to H0. In
other words, we eliminate the patterns from ZBDD-
growthC(H1 +H0) such that the patterns are already
found in ZBDD-growthC(H1) but not included in any
tuples in H0.

For checking the condition for closed patterns, we
can use a ZBDD-based operation, called permit op-
eration by Okuno et al.[Okuno 98].∗1 P .permit(Q)

∗1 Permit operation is basically same as SubSet operation

ZBDDgrowthC(H,α)

{
if(H has only one item v)

if(v appears more than α)

return v ;

else return “0” ;

F ← Cache(H) ;

if(F exists) return F ;

v←H.top ; /* Top item in H */

H1 ←H .factor1(v) ;

H0 ←H .factor0(v) ;

F1←ZBDDgrowthC(H1 , α) ;

F0←ZBDDgrowthC(H0 +H1, α) ;

F ← (v ·F1)∪
(F0− (F1−F1.permit(H0))) ;

Cache(H) ← F ;

return F ;

}

Fig. 7 ZBDD-growthC algorithm.

returns a set of combinations in P each of which
is a subset of some combinations in Q. For exam-
ple, when P = {ab, abc, bcd} and Q = {abc, bc}, then
P .permit(Q) returns {ab, abc}. The permit operation
is efficiently implemented as a recursive procedure of
ZBDD manipulation, as shown in Figure 6. The com-
putation time of permit operation is almost linear to
the ZBDD size.

Finally, we describe the ZBDD-growthC algorithm
using the permit operation, as shown in Figure 7. The
difference from the original algorithm is only one line,
written in the frame box.

5. Experimental Results

Here we show the experimental results to evaluate
our new method. We used a Pentium-4 PC, 800MHz,
1.5GB of main memory, with SuSE Linux 9. We can
deal with up to 40,000,000 nodes of ZBDDs in this
machine.

Table 1 shows the time and space for generating
ZBDD vectors of tuple-histograms for the FIMI2003
benchmark databases[Goethals 03b]. This table shows
the computation time and space for providing input
data for ZBDD-growth algorithm. In this table, #T

shows the number of tuples, total|T | is the total of tu-
ple sizes (total appearances of items), and |ZBDD| is
the number of ZBDD nodes for the tuple-histograms.
We can see that tuple-histograms can be constructed

by Coudert et al.[Coudert 93], defined for ordinary BDDs.

170 人工知能学会論文誌 22 巻 2 号 SP-D（2007 年）

Table 1 Generation of tuple-histograms[Minato 06].

Data name #T total|T | |ZBDD Vector| Time(s)
T10I4D100K 100,000 1,010,228 552,429 55.6
T40I10D100K 100,000 3,960,507 3,396,395 155.73
chess 3,196 118,252 40,028 0.98
connect 67,557 2,904,951 309,075 33.19
mushroom 8,124 186,852 8,006 1.09
pumsb 49,046 3,629,404 1,750,883 167.10
pumsb star 49,046 2,475,947 1,324,502 125.17
BMS-POS 515,597 3,367,020 1,350,970 1,317.07
BMS-WebView-1 59,602 149,639 46,148 19.55
BMS-WebView-2 77,512 358,278 198,471 184.83
accidents 340,183 11,500,870 3,877,333 128.47

Table 2 Result of the original ZBDD-growth[Minato 06].

Data name: #Frequent (output) Time(sec)
Min. freq. α patterns |ZBDD|

mushroom: 5,000 41 11 0.06
1,000 123,277 1,417 2.60

200 18,094,821 12,340 8.60
50 198,169,865 36,652 9.11
16 1,176,182,553 53,804 6.59
4 3,786,792,695 59,970 3.18
1 5,574,930,437 40,557 0.68

T10I4D100K: 5,000 10 10 20.51
1,000 385 382 75.81

200 13,255 4,288 223.78
50 53,385 20,364 365.52
16 175,915 89,423 500.09
4 3,159,067 1,108,723 602.83

BMS-WebView1: 1,000 31 31 2.43
200 372 309 5.39
50 8,191 3,753 28.55
40 48,543 12,176 53.15
36 461,521 34,790 84.11
35 1,177,607 47,457 93.14
34 4,849,465 64,601 102.55
33 69,417,073 80,604 111.69
32 1,531,980,297 97,692 115.42
31 8,796,564,756,112 117,101 119.80
30 35,349,566,550,691 152,431 125.58

for all instances in a feasible time and space. The
ZBDD sizes are almost same or less than total|T |.

After generating ZBDD vectors for the
tuple-histograms, we applied ZBDD-growth algorithm
to generate frequent patterns. Table 2 show the re-
sults of the original ZBDD-growth algorithm[Minato
06] for the selected benchmark examples, “mushroom,”
“T10I4D100K,” and “BMS-WebView-1.” The execu-
tion time does not include the time for generating the
initial ZBDD vectors for tuple-histograms.

The results shows that the ZBDD size is exponen-
tially smaller than the number of patterns for “mush-
room.” This is a significant effect of using the ZBDD
data structure. On the other hand, no remarkable
reduction is seen in ”T10I4D100K.” ”T10I4D100K”
is known as an artificial database, consists of ran-
domly generated combinations, so there are almost
no relationship between the tuples. In such cases,
ZBDD nodes cannot be shared well, and only the
overhead factor is revealed. For the third example,
“BMS-WebView-1,” the ZBDD size is almost linear
to the number of patterns when the output size is
small, however, an exponential factor of reduction is

observed for the cases of generating huge patterns.

Next, we show the experimental results of frequent
closed pattern mining using ZBDD-growthC algorithm.
In Table 3, we show the results for the same exam-
ples as used in the experiment of the original ZBDD-
growth. The last column Time(closed)/T ime(all) shows
the ratio of computation time between the ZBDD-
growthC and the original ZBDD-growth algorithm.
We can observe that the computation time is almost
the same order as the original algorithms for “mush-
room” and “BMS-WebView-1,” but some additional
factor is observed for “T10I4D100K.” Anyway, filter-
ing closed item sets has been regarded as not a easy
task. We can say that the ZBDD-growthC algorithm
can generate closed item sets with a relatively small
additional cost from the original ZBDD-growth.

Finally, we compared our results with a state-of-
the-art implementation of the LCM algorithm[Uno
03] on the same PC. The results are shown in the right
most column of Table 3. We can observe that the
LCM-based program is more than a hundred times
faster than our ZBDD-based program. The LCM al-
gorithm features that the computation time is lin-

Frequent Closed Item Set Mining Based on Zero-suppressed BDDs 171

Table 3 Results of ZBDD-based closed pattern mining.

Data name: #Freq. (output) ZBDD- Time(closed) LCM[Uno 03]
Min. freq. α closed |ZBDD| growthC /Time(all) Time(s)

patterns Time(s)
mushroom: 5,000 16 16 0.06 1.00 0.01

1,000 3,427 1,660 2.75 1.06 0.14
200 26,968 9,826 8.84 1.03 0.32
50 68,468 19,054 11.90 1.31 0.53
16 124,411 24,841 12.24 1.84 0.68
4 203,882 26,325 12.07 3.80 0.77
1 238,709 20,392 11.85 17.43 0.79

T10I4D100K: 5,000 10 10 43.94 2.14 0.06
1,000 385 382 145.03 1.91 0.56

200 13,108 4,312 2,657.40 11.88 0.98
50 46,993 20,581 4,556.90 12.47 1.24
16 142,520 89,185 5,755.32 11.51 1.56
4 1,023,614 691,154 18,529.82 30.74 3.97

BMS-WebView-1: 1,000 31 31 3.95 1.62 0.03
200 372 309 15.22 2.82 0.09
50 7,811 3,796 46.02 1.61 0.15
40 29,489 11,748 87.14 1.64 0.22
36 64,762 25,117 135.39 1.61 0.36
35 76,260 30,011 150.87 1.62 0.43
34 87,982 35,392 168.18 1.64 0.51
33 99,696 40,915 189.42 1.70 0.63
32 110,800 46,424 203.40 1.76 0.78
31 120,190 51,369 229.40 1.91 0.95
30 127,131 55,407 253.15 2.02 1.20

early bounded by the total size of closed item sets.
In addition, the implementation is highly optimized
for enumerating the number of closed item sets with-
out printing out. On the other hand, ZBDD-based
method is especially effective when a huge number
of item sets produced and they are compactly repre-
sented by small size of ZBDDs. In general, closed
item sets are already reduced representation of all
item sets, and in such cases, ZBDD-based compres-
sion is not very effective.

If our final goal is only enumerating closed item
sets, the LCM algorithm would be much better. How-
ever, our ZBDD-based method does not only enumer-
ate but also constructs efficient data structures for in-
dexing the result of item sets, and they can be used for
various data analysis with ZBDD-based algebraic set
operations. Here we show several examples of useful
post-processing.

(Extracting all non-closed patterns): After ex-
ecuting ZBDD-growth and -growthC, we can easily
obtain a set of non-closed patterns by applying a dif-
ference operation between the two ZBDDs of all item
sets and closed item sets.

(Filtering closed patterns with sub-patterns):
By using “factor1(v)” operation, we can filter the sub-
set of closed patterns including an item v. Repeating
this operations, “key-word filtering” of closed pat-
terns can be executed.

(Filtering closed patterns by a permissible set):
When a set of permissible patterns are given as a
ZBDD, we can filter the closed patterns each of which

satisfies the constraint given by the ZBDD. For ex-
ample, we first generate a ZBDD representing a set
of patterns each of which contains exactly three items.
Next we generate all closed patterns by ZBDD-growthC.
Then, an intersection operation between the two ZB-
DDs extracts all closed patterns each of which consists
of three items.

6. Conclusion

In this paper, we presented a variation of ZBDD-
growth algorithm to generate frequent closed item
sets. Our method is a quite simple modification of
ZBDD-growth. We inserted several operations in the
recursive procedure of ZBDD-growth, to filter the closed
patterns from all frequent patterns. The experimental
result shows that the additional computation cost is
relatively small compared with the original algorithm
for generating all patterns.

In order to just enumerate the closed patterns, our
method is not faster than LCM algorithm, which is an
existing state-of-the-art method. The main reason is
that the closed patterns are already a kind of reduced
information of the frequent patterns. In such cases,
the ZBDD-based data compressing power is not very
effective, and only the overhead factor reveals.

However, our method is still useful because it does
not only enumerate but also constructs an efficient
indexing data structure for all set of closed patterns,
and we can apply various data analysis tasks using
the ZBDD-based algebraic operations. In addition, it

172 人工知能学会論文誌 22 巻 2 号 SP-D（2007 年）

will be an interesting future work to deeply combine
the techniques of ZBDD manipulation and the LCM
algorithm.

Acknowledgments

This research was partially supported by Grant-
in-Aid for Specially Promoted Research on “Semi-
Structured Data Mining,” 17002008, Ministry of Ed-
ucation, Culture, Sports, Science and Technology of
Japan.

♦ References ♦
[Agrawal 93] Agrawal, R., Imielinski, T., and Swami, A. N.:

Mining association rules between sets of items in large

databases, in Buneman, P. and Jajodia, S. eds., Proc. of the
1993 ACM SIGMOD International Conference on Manage-
ment of Data, Vol. 22(2) of SIGMOD Record, pp. 207–216

(1993)
[Bryant 86] Bryant, R. E.: Graph-based algorithms for

Boolean function manipulation, IEEE Transactions on
Computers, Vol. C-35, No. 8, pp. 677–691 (1986)

[Coudert 93] Coudert, O., Madre, J. C., and Fraisse, H.: A

new viewpoint on two-level logic minimization, in Proc. of
30th ACM/IEEE Design Automation Conference, pp. 625–

630 (1993)
[Goethals 03a] Goethals, B.: Survey on frequent pattern

mining (2003), http://www.cs.helsinki.fi/u/goethals/

publications/survey.ps

[Goethals 03b] Goethals, B. and Zaki, M. J.: Fre-

quent itemset mining dataset repository (2003), Fre-
quent Itemset Mining Implementations (FIMI’03),

http://fimi.cs.helsinki.fi/data/

[Han 04] Han, J., Pei, J., Yin, Y., and Mao, R.: Mining fre-
quent patterns without candidate generation: a frequent-

pattern tree approach, Data Mining and Knowledge Dis-
covery, Vol. 8, No. 1, pp. 53–87 (2004)

[Minato 93] Minato, S.: Zero-suppressed BDDs for set ma-
nipulation in combinatorial problems, in Proc. of 30th
ACM/IEEE Design Automation Conference, pp. 272–277

(1993)
[Minato 06] Minato, S. and Arimura, H.: Frequent pattern

mining and knowledge indexing based on zero-suppressed
BDDs, in The 5th International Workshop on Knowledge
Discovery in Inductive Databases (KDID’06), pp. 83–94

(2006)
[Okuno 98] Okuno, H., Minato, S., and Isozaki, H.: On the

properties of combination set operations, in Information
Procssing Letters, Vol. 66, pp. 195–199, Elsevier (1998)

[Uno 03] Uno, T., Uchida, Y., Asai, T., and Arimura, H.:
LCM: an efficient algorithm for enumerating frequent
closed item sets, in Proc. Workshop on Frequent

Itemset Mining Implementations (FIMI’03) (2003),
http://fimi.cs.helsinki.fi/src/

[Zaki 00] Zaki, M. J.: Scalable algorithms for association

mining, IEEE Trans. Knowl. Data Eng., Vol. 12, No. 2,
pp. 372–390 (2000)

〔担当委員：瀧本 英二〕

Received August 15, 2006.

Author’s Profile

Minato, Shin-ichi (Member)

He received the B.E., M.E., and D.E. degrees
in Information Science from Kyoto University in
1988, 1990, and 1995, respectively. From 1990
to 2004, he was a researcher of NTT Laborato-
ries, and he was a Visiting Scholar at Stanford
University in 1997. Since 2004, he has been an
associate professor of Hokkaido University. His
research interests include data structures and al-

gorithms for manipulating large-scale logic data. He published “Bi-
nary Decision Diagrams and Applications for VLSI CAD” (Kluwer,

1995). He is a member of IEEE, IEICE, and IPSJ.

Arimura, Hiroki (Member)

He received the B.S. degree in 1988 in Physics,
the M.S. and the Dr.Sci. degrees in 1990 and
1994 in Information Systems from Kyushu Uni-
versity. From 1990 to 1996, he was at the De-
partment of Artificial Intelligence in Kyushu In-
stitute of Technology, and from 1996 to 2004, he
was at the Department of Informatics in Kyushu
University. Since 2006, he has been a profes-

sor of the Graduate School of Information Science and Technol-
ogy Hokkaido University, Sapporo, Japan. His research interests
include data mining, computational learning theory, information
retrieval, and algorithm design. He is a member of JSAI, IPSJ,
and ACM.

