
156 人工知能学会論文誌 22 巻 2 号 SP-C（2007 年）

�
�

�
�特集論文

Symmetric Item Set Mining Method
Using Zero-suppressed BDDs
and Application to Biological Data

Shin-ichi Minato Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, 060-0814 Japan.
minato@ist.hokudai.ac.jp

Kimihito Ito Research Center for Zoonosis Control,
Hokkaido University, Sapporo, 060-0818 Japan.
itok@czc.hokudai.ac.jp

keywords: data mining, item set, BDD, ZBDD, biological database

Summary

In this paper, we present a method of finding symmetric items in a combinatorial item set database.
The techniques for finding symmetric variables in Boolean functions have been studied for long time in
the area of VLSI logic design, and the BDD (Binary Decision Diagram) -based methods are presented to
solve such a problem. Recently, we have developed an efficient method for handling databases using ZBDDs
(Zero-suppressed BDDs), a particular type of BDDs. In our ZBDD-based data structure, the symmetric item
sets can be found efficiently as well as for Boolean functions. We implemented the program of symmetric
item set mining, and applied it to actual biological data on the amino acid sequences of influenza viruses.
We found a number of symmetric items from the database, some of which indicate interesting relationships
in the amino acid mutation patterns. The result shows that our method is helpful for extracting hidden
interesting information in real-life databases.

1. Introduction

Frequent item set mining is one of the fundamental
techniques for knowledge discovery. Since the intro-
duction by Agrawal et al.[Agrawal 93], the frequent
item set mining and association rule analysis have
been received much attentions from many researchers,
and a number of papers have been published about
the new algorithms or improvements for solving such
mining problems[Goethals 03a].

After generating frequent item set data, we some-
times faced with the problem that the results of item
sets are too large and complicated to retrieve useful
information. Therefore, it is important for practical
data mining to extract the key structures from the
item set data. Closed/maximal item set mining[Uno
04] is one of the useful methods to find important item
sets. Disjoint decomposition of item set data[Minato
05a] is another powerful method for extracting hidden
structures from frequent item sets.

In this paper, we propose one more interesting method
for finding hidden structure from large-scale item set

data. Our method is based on the symmetry of items.
It means that the exchange of a pair of symmetric
items has completely no effect for the database infor-
mation. This is a very strict property and it will be
a useful association rule for the database analysis.

The symmetry of variables is a fundamental concept
in the theory of Boolean functions, and the method of
symmetry checking has been studied for long time in
VLSI logic design area. There are some state-of-the-
art algorithms[Mishchenko 03, Kettle 06] using BDDs
(Binary Decision Diagrams)[Bryant 86] to solve such
a problem. The BDD-based techniques can be ap-
plied to data mining area. Recently, we found that
ZBDDs (Zero-suppressed BDDs)[Minato 93] are very
suitable for representing large-scale item set data used
in transaction database analysis[Minato 05b].

In this paper, we discuss the property of symmet-
ric items in transaction database, and then present
an efficient algorithm to find all symmetric item sets
using ZBDDs. We also show the experimental re-
sult for an actual biological database on the amino

Symmetric Item Set Mining Method Using Zero-suppressed BDDs and Application to Biological Data 157

acid sequences of influenza viruses[Krug 01][Ito 06].
We found a number of symmetric items from the
database, some of which indicate an interesting re-
lationship of amino acid mutation patterns. The re-
sult shows that our method is helpful for extracting
hidden information in real-life databases.

2. Preliminaries

Here we briefly describe the basic techniques of
BDDs and ZBDDs for representing combinatorial item
sets efficiently.

2・1 BDDs

BDD (Binary Decision Diagram) is a directed graph
representation of the Boolean function, as illustrated
in Figure 1(a). It is derived by reducing a binary
tree graph representing recursive Shannon’s expan-
sion, indicated in Figure 1(b). The following reduc-
tion rules yield a Reduced Ordered BDD (ROBDD),
which can efficiently represent the Boolean function.
(see [Bryant 86] for details.)
•Delete all redundant nodes whose two edges point

to the same node. (Figure 3(a))
• Share all equivalent sub-graphs. (Figure 3(b))

ROBDDs provide canonical forms for Boolean func-
tions when the variable order is fixed. Most researches
on BDDs are based on the above reduction rules. In
the following sections, ROBDDs will be referred to as
BDDs (or ordinary BDDs) for the sake of simplifica-
tion.

As shown in Figure 2, a set of multiple BDDs can be
shared each other under the same fixed variable order-
ing. In this way, we can handle a number of Boolean
functions simultaneously in a monolithic memory space.

Using BDDs, we can uniquely and compactly repre-
sent many practical Boolean functions including AND,
OR, parity, and arithmetic adder functions. Using
Bryant’s algorithm[Bryant 86], we can efficiently con-
struct a BDD for the result of a binary logic operation
(i.e. AND, OR, XOR), for given a pair of operand
BDDs. This algorithm is based on hash table tech-
niques, and the computation time is almost linear to
the data size unless the data overflows the main mem-
ory. (see [Minato 96] for details.)

Based on these techniques, a number of BDD pack-
ages have been developed in 1990’s and widely used
for large-scale Boolean function manipulation, espe-
cially popular in VLSI CAD area.

2・2 ZBDDs and combinatorial item sets

BDDs are originally developed for handling Boolean
function data, however, they can also be used for im-
plicit representation of combinatorial item sets. Here
we call “combinatorial item set” for a set of elements
each of which is a combination out of n items. This
data model often appears in real-life problems, such
as combinations of switching devices(ON/OFF), fault
combinations, and sets of paths in the networks.

A combination of n items can be represented by an
n-bit binary vector, (x1x2 . . .xn), where each bit, xk ∈
{1,0}, expresses whether or not the item is included
in the combination. A set of combinations can be
represented by a list of the combination vectors. In
other words, a combinatorial item set is a subset of
the power set of n items.

A combinatorial item set can be mapped into Boolean
space by using n-input variables for each bit of the
combination vector. If we choose any one combina-
tion vector, a Boolean function determines whether
the combination is included in the combinatorial item
set. Such Boolean functions are called characteris-
tic functions. For example, the left side of Figure 5
shows a truth-table representing a Boolean function
(abc)∨ (bc), but also represents a combinatorial item
set {ab, ac, c}. Using BDDs for characteristic func-
tions, we can implicitly and compactly represent com-
binatorial item sets. The logic operations AND/OR
for Boolean functions correspond to the set operations
intersection/union for combinatorial item sets. By
using BDDs for characteristic functions, we can ma-
nipulate combinatorial item sets efficiently. They can
be generated and manipulated within a time roughly
proportional to the BDD size. When we handle many
combinations including similar patterns
(sub-combinations), BDDs are greatly reduced by node
sharing effect, and sometimes an exponential reduc-
tion benefit can be obtained.

Zero-suppressed BDD (ZBDD)[Minato 93] is
a special type of BDDs for efficient manipulation of
combinatorial item sets. ZBDDs are based on the
following special reduction rules.
•Delete all nodes whose 1-edge directly points to

the 0-terminal node, and jump through to the
0-edge’s destination, as shown in Figure 4.
• Share equivalent nodes as well as ordinary BDDs.

Notice that we do not delete the nodes whose two
edges point to the same node, which used to be deleted
by the original rule. The zero-suppressed deletion rule
is asymmetric for the two edges, as we do not delete

158 人工知能学会論文誌 22 巻 2 号 SP-C（2007 年）

0

c

b

a

c cc

b

1 001 1 1 1

10 0 0 0

0 0

0

1 1 1

1 1

1

F

c

b

a

0 1

0

0

0

1

1

1

F

(a) BDD. (b) Binary tree.
Fig. 1 BDD and binary tree: F = (a∧ b)∨ c .

b

a

0 1

00

0

11

1

b

aa
0 01

1

F1 F2 F3 F4

F 1 = a∧ b

F 2 = a⊕ b

F 3 = b

F 4 = a∨ b
Fig. 2 Shared multiple BDDs.

0
x

1

f

jump

f f1f0

xx
00 11

f1f0

x
0 1

share

(a) Node deletion. (b) Node sharing.

Fig. 3 Reduction rules of ordinary BDDs

0

0

x
1

Jump

f f

Fig. 4 ZBDD reduction rule.

the nodes whose 0-edge points to a terminal node. It
is proved that ZBDDs also give canonical forms as
well as ordinary BDDs under a fixed variable order-
ing.

Here we summarize the features of ZBDDs.
• In ZBDDs, the nodes of irrelevant items (never

chosen in any combination) are automatically
deleted by ZBDD reduction rule. In ordinary
BDDs, irrelevant nodes still remain and they may
spoil the reduction benefit of sharing nodes. An
example is shown in Figure 5. In this case, the
item d is irrelevant, but ordinary BDD for char-
acteristic function Fz(a, b, c) and Fz(a, b, c, d) be-
come different forms. On the other hand, ZBDDs
for Fz(a, b, c) and Fz(a, b, c, d) become identical
forms and completely shared.
• Each path from the root node to the 1-terminal

node corresponds to each combination in the set.
Namely, the number of such paths in the ZBDD
equals to the number of combinations in the set.
In ordinary BDDs, this property does not always
hold.
•When no equivalent nodes exist in a ZBDD, that

is the worst case, the ZBDD structure explicitly
stores all items in all combinations, as well as us-
ing an explicit linear linked list data structure.
Namely, (the order of) ZBDD size never exceeds
the explicit representation. If more nodes are
shared, the ZBDD is more compact than linear
list.

The detailed techniques of ZBDD manipulation are
described in the articles[Minato 93, Minato 01]. A
typical ZBDD package supports cofactoring opera-
tions to traverse 0-edge or 1-edge, and binary oper-
ations between two combinatorial item sets, such as
union, intersection, and difference. The computation
time for each operation is almost linear to the number
of ZBDD nodes related to the operation.

3. Symmetric item sets in transaction

databases

3・1 Symmetry of variables in Boolean func-

tions

The symmetry is a fundamental concept in the the-
ory of Boolean functions. A symmetric Boolean func-
tion means that any exchange of input variables has
no effect for the output value. In other words, the
output value is decided only by the total number of
true assignments in the n-input variables. The parity
check functions and threshold functions are typical
examples of symmetric functions.

When the function is not completely symmetric, we
sometimes find partial groups of symmetric variables.
If two variables are exchangeable without any out-
put change, we call them symmetric variables in the
function. An obvious property holds that if the pairs
(a, b) and (a, c) are both symmetric, then any pair in
(a, b, c) is symmetric.

As finding symmetric variables leads to compact
logic circuits, it has been studied for long time in VLSI

Symmetric Item Set Mining Method Using Zero-suppressed BDDs and Application to Biological Data 159

Fig. 5 Effect of ZBDD reduction rule.

Fig. 6 Four sub-functions for symmetry checking.

Fig. 7 Four sub-combinations for symmetry checking.

logic design area. In order to check the symmetry
of the two variables v1 and v2 in the function F , as
shown in Figure 6, we first extract four sub-functions:
F00,F01,F10, and F11 by assigning all combinations of
constant values 0/1 into v1 and v2. We then compare
of F01 and F10. If the two are equivalent, we can see
the two variables are symmetric. In principle, we need
n(n− 1)/2 times of symmetry checks for all possible
variable pairs. There have been proposed some state-
of-the-art algorithms[Mishchenko 03, Kettle 06] using
BDDs (Binary Decision Diagrams)[Bryant 86] to solve
such a problem efficiently.

3・2 Symmetric Items in combinatorial item

sets

Here we discuss the symmetry of items in a com-
binatorial item set. For example we consider the fol-
lowing combinatorial item set:

S = {abc, acd, ad, bcd,bd,c, cd}.
In this case, the item a and b are symmetric but the
other pairs of variables are not symmetric. The sym-
metry can be confirmed as shown in Figure 7. First
we classify the combinations into four categories: (1)
both a and b included, (2) only a is included, (3)
only b is included, and (4) neither included. Namely,
it can be written as: S = abS11 ∪ aS10 ∪ bS01 ∪S00.
Then, we can determine the symmetry of a and b by
comparing S10 and S01. If the two subsets are equiv-
alent, a and b are exchangeable. For the above exam-
ple, S11 = {c}, S10 = {cd, d}, S01 = {cd, d}, and S00 =
{c, cd}. We can see a and b are symmetric as S10 =
S01.

Even if we do not know the actual meaning of the
item a and b in the original database, we can expect
that a and b would have somehow strong relationship
if the symmetric property holds. It is a kind of hidden
information. It would be a useful and interesting task
to find all possible symmetric item sets from the given
databases. This method can be used not only for
original database but also for frequent item set data
to find some relationships between the items.

4. ZBDD-based algorithm for finding
symmetric item sets

As shown in article[Minato 05b], the ZBDD-based
data structure is quite effective (exponentially in ex-
treme cases) for handling transaction databases, espe-

160 人工知能学会論文誌 22 巻 2 号 SP-C（2007 年）

SymChk(S,v1, v2) /* Assume v1 higher than v2 in the ZBDD ordering.*/
{

if (S = 0 or S = 1) return 1 ;
r← Cache(S,v1 , v2) ;
if (r exists) return r ;
t1 ← S.top ; /* Top item in S */
if (t1 higher than v1)

(S1,S0)← (Cofactors of S by t1) ;
r← SymChk(S1, v1, v2) && SymChk(S0, v1, v2) ;

else
(S1,S0)← (Cofactors of S by v1) ;
t2← Max(S1.top,S0.top) ; /* Top item in S1,S0 */
if (t2 higher than v2)

(S11,S10)← (Cofactors of S1 by t2) ;
(S01,S00)← (Cofactors of S0 by t2) ;
r← SymChk((t2S11 ∪S10), t2, v2) && SymChk((t2S01 ∪S00), t2, v2) ;

else
(S11,S10)← (Cofactors of S1 by v2) ;
(S01,S00)← (Cofactors of S0 by v2) ;
r← (S10 = S01)? 1 : 0 ;

endif
endif
Cache(S,v1 , v2) ← r ;
return r ;

}
Fig. 8 Sketch of the symmetry checking algorithm.

cially when the item sets include many similar partial
combinations. Now we show an efficient algorithm of
finding symmetric item sets based on ZBDD opera-
tions.

First we explain the cofactor operation on ZBDDs.
Cofactor(S,v) classifies a combinatorial item set S

into the two subsets, one of which includes the item v

and the other does not. Namely, it extracts S1 and S0

such that S = vS1 ∪S0. If the item v is the top (high-
est ordered) item in the ZBDD, then S1 and S0 are
the two sub-graphs pointed by 1-edge and 0-edge of
the top decision node, and the cofactor operation can
be done in a constant time. Therefore, if the item
v1 and v2 are the first and second top items in the
ZBDD, the symmetry checking is quite easy because
S10 (subset with v1 but not v2) and S01 (subset with
v2 but not v1) can be extracted and compared in a
constant time.

This “naive” checking method works quite efficiently
only if the v1 and v2 are at the highest positions. Oth-
erwise, we have to generate temporary ZBDDs for S10

and S01 by cofactor operations. If S10 and S01 are
quite different, we may easily find the asymmetry of
two items by checking a small part of ZBDDs. How-
ever, the naive method always generates the whole
ZBDDs for S10 and S01 and then compare them. To
address this inefficiency, we developed an efficient re-
cursive algorithm as presented in Figure 8.

In this algorithm, first we get the top item t in the

ZBDD S, and extract S1 and S0 as the cofactors of
S by t. We then recursively check the symmetry of
(v1, v2) for each subset S1 and S0, and if they are sym-
metric for the both, we can see they are symmetric
for S.

This procedure may require an exponential num-
ber of recursive calls in terms of the number of items
higher than v1, v2 in the ZBDD, however, we do not
have to execute the procedure twice for the same
ZBDD node because the results will be the same.
Therefore, the number of recursive calls is bounded
by the ZBDD size, by using a hash-based cache to
save the result of procedure for each ZBDD node. In
addition, if we found the two items are asymmetric
either for S1 or S0, we may immediately quit the pro-
cedure and conclude they are asymmetric for S.

In our checking algorithm, the cofactor operation is
always applied to the highest ordered items, and each
recursive procedure can be executed in a constant
time. Thus, the total computation time is bounded
by O(|G|), where |G| is the ZBDD size for S. Re-
peating this procedure for all item pairs in S, we can
extract all possible symmetric item sets in O(n2|G|)
time, where n is number of items. The time will be
shorter in practice because the most of item pairs are
asymmetric in usual cases. In addition, the benefit of
hash-based cache can be shared in the repetition of
checking different item pairs.

Lastly we note that there have been several efficient

Symmetric Item Set Mining Method Using Zero-suppressed BDDs and Application to Biological Data 161

symmetry checking algorithms for Boolean function
data using ordinary BDDs[Mishchenko 03, Kettle 06],
but it is not trivial to apply the techniques to the
ZBDDs since the primitive operations of ZBDDs are
different from those of ordinary BDDs. Our work is
the first proposal of the efficient symmetry checking
algorithm for combinatorial item sets using ZBDDs.

5. Implementation and Application to
biological data

We implemented our symmetric checking algorithm.
The program is based on our own ZBDD package,
and additional 70 lines of C++ code for the sym-
metry checking algorithm. We used a Pentium-4 PC,
800MHz, 1.5GB of main memory, with SuSE Linux 9.
We can manipulate up to 20,000,000 nodes of ZBDDs
in this PC.

5・1 Experiment for basic performance evalu-

ation

For evaluating the basic performance, we applied
our method to the practical transaction databases
chosen from FIMI2003 benchmark set[Goethals 03b].
We first constructed a ZBDD for the set of all tu-
ples in the database, and then apply our symmetry
checking algorithm for all item pairs. The results are
shown in Table 1. “Sym. pairs” shows the number of
symmetric pairs we found. Our result demonstrates
that we succeeded in extracting all symmetric item
sets for a practical size of databases within a feasi-
ble computation time. We can see that no symmetric
pairs are found in “T10I4D100K.” It is a reasonable
result because this data is randomly generated and
there is no strong relationship between any pair of
items.

Table 2 shows the comparison of our symmetry
checking algorithm to the “naive” method, which al-
ways generates the whole ZBDDs for S10 and S01 and
then compare them. The differences of computation
time are more than hundred times in larger instances.
This result shows that our recursive checking algo-
rithm is remarkably effective to find symmetric item
pairs.

5・2 Experiment of amino acid sequence anal-

ysis

Hokkaido University Research Center for Zoonosis
Control is conducting a research project for finding

patterns of the amino acid substitutions in a por-
tion of influenza viruses, in order to predict possi-
ble structural changes in the future viruses[Ito 06].
The hemagglutinin (HA) is the major surface gly-
coprotein of influenza viruses and plays an impor-
tant role in virus entry into host cells. The HA of
influenza viruses undergoes antigenic drift to escape
from antibody-mediated immune pressure. The amino
acid sequences of HAs mutate every year, and the con-
tinuously cause epidemic in the world.

We applied our symmetric item set mining method
to a real-life biological data, the amino acid sequences
of the HA of human influenza viruses. The data we
used are the 1,657 instances of amino acid sequences
of type “H3N2” HAs of human influenza viruses, iso-
lated during 1968 to 2006 in the world. Each sequence
has 328 positions of amino acids, and each position
has one of the 20 amino acid types: {R, K, H, P,
A, L, G, V, I, W, M, S, Y, Q, T, F, N, C, E, D}.
Namely, the total combinatorial space is as many as
20328. The sequence data also has a field of the year
when the virus was isolated. The data is available at
the public database of NCBI Influenza resources[Nat
05].

In our experiment, we prepared primitive items as
all possible pairs of a position and a amino acid type.
We used 20× 328 = 6,560 different items in total. For
example, the item “125T” means that the amino acid
“T” appears at the 125th position. We used the let-
ter “X” when the data of a position is missing, for in-
stance, “167X” means that we don’t know the amino
acid at the 167th position. The field of the year is
expressed as “Y1989.” In this way, the sequence data
can be represented as follows:

Y1968 1Q 2D 3L 4P 5G ... 326K 327Q 328T
Y1973 1Q 2D 3F 4P 5G ... 326K 327Q 328T
Y1999 1Q 2K 3L 4P 5G ... 326K 327Q 328T
· · ·

The data contains 1,657 lines of such combinatorial
item sets.

We conducted an experiment of generating a ZBDD
for the amino acid sequence data and then extracting
all symmetric item sets from the ZBDDs. In our re-
sult, the number of ZBDD nodes is 168,261. The
CPU time just for ZBDD construction was 17.9 sec-
ond. Next, we execute our algorithm of symmetric
item set mining for the ZBDD. The total computation
time for checking 21,513,520(= 6560C2) item pairs was
725 sec, and we found 64 groups of symmetric items,

162 人工知能学会論文誌 22 巻 2 号 SP-C（2007 年）

Table 1 Experimental result for basic performance evaluation

Data name #Item #Record #Tuple ZBDD Time(sec) for Sym. Time(sec)
nodes ZBDD gen. pairs for sym.chk.

mushroom 119 8,124 8,124 8,006 1.1 19 0.6
T10I4D100K 870 100,000 89,135 547,777 59.2 0 61.7
pumsb 2,113 49,046 48,474 1,749,775 166.7 90 1,152.0
BMS-Web-View-1 497 59,602 18,473 42,629 24.9 6 30.2
accidents 468 340,183 339,898 3,876,468 127.5 11 18.0

Table 2 Comparison to naive checking method.

Data name Time(sec) for sym.chk.
our method naive method.

mushroom 0.6 1.2
T10I4D100K 61.7 28,482.0
pumsb 1,152.0 (> 24h)
BMS-Web-View-1 30.2 251.8
accidents 18.0 53,290.3

as follows.

(324P 321R 320M 314L 306P 301T 296N 290N 287S
281C 277C 266S 256G 255R 254P 250N 241D 240G
237V 224R 200G 191Q 181G 166V 153W 147F 136S
134G 132Q 125F 123E 119E 116G 113A 111L 100Y
90R 89E 84W 76C 73D 71L 70L 69A 68D 66L 65T
64C 61G 52C 42L 39A 28T 26V 18H) (13W 12R
11Q 10R 9A 7T 6M) (309A 307X 303R 258X 232M
117X 24X) (303X 187M 180X 133X 120C 60X) (212L
210K 209C 108V 107C) (74X 62X 47X 21X 2X) (322Y
311P 310E 276S 86I) (322X 318X 294C 234X 19X)
(328L 327K 326I 323E) (258S 238R 164V 1P) (173G
163M 104E 62A) (225A 211X 183Q 6D) (190N 186D
15M) (203A 198P 11T) (235A 216Y 115P) (214V 23R
3M) (327R 127L 110L) (159R 118M 34T) (146R 139F
31V) (180W 120F 60D) (225N 193F) (225H 33R)
(104G 93S) (298D 124R) (252T 152S) (218X 140I)
(95C 94T) (131D 33N) (87I 80L) (275E 46L) (304V
72X) (140T 139X) (328P 325X) (257F 98N) (219T
2R) (327L 325Q) (193T 183P) (218A 205C) (21R
17R) (144A 126S) (328S 294Y) (187K 156S) (311E
170H) (244M 83R) (53S 6K) (114L 9K) (309G 213R)
(173R 124E) (212A 133G) (172A 80R) (292Q 291H)
(15X 14X) (97S 96Y) (236T 226P) (319R 249A) (278V
169S) (319G 249G) (318T 234W) (257Y 98Y) (235T
115S) (232I 24T) (210Q 108L) (127W 110S) (126T
83T)

In the result, the first symmetric group of a large
number of items represents the items commonly ap-
pear in all the sequences, in other words, they are
the amino acid positions which have never changed.
The other symmetric groups are related to a part of
sequences, and the pair of positions may have some in-
teresting biological relationship. For example, (225N
193F) is one of the symmetric item pair, and we checked
the mutations of the 225th and the 193rd amino acid
positions with our visualization tool[Hok 05]. Some
portions of the graphic output are shown in Figure 9.

We can observe that the two amino acid positions
have a strong co-relation in the very recent sequences
after 2005.

There is a related work[Ito 06][Korber 93] to ex-
tract co-related amino acid positions based on mu-
tual information analysis. The calculation of mutual
information also gives a relationship between the two
positions, however, it indicates the total behaviors of
all sequence data, and would not be effective to find
a relationship sharply seen in a portion of sequence
instances. Our method will be useful to detect such
relationships.

The symmetric item sets extracted in our method
does not always correspond to biologically meaning-
ful relationships, however, some of them may have
such interesting information. We have already known
many kind of data mining techniques such as frequent
pattern mining, closed pattern mining, etc. Our sym-
metric item set mining will be a new alternative method
for knowledge discovery.

6. Conclusion

In this paper, we presented an efficient method for
extracting all symmetric item sets in transaction
databases. The experimental results show that our
method efficiently extracts hidden information from
the large-scale database. It is applicable to a real-life
biological database, which includes 6,560 items and
requires 21,513,520 pairs of symmetry checking. Our
method will be useful to detect a sharp relationship
hidden in a limited portion of database and may also
be useful for pruning noisy data.

As our future work, we are considering more ef-
ficient algorithm to be applied for more larger ZB-
DDs, and it would also be interesting to develop “ap-

Symmetric Item Set Mining Method Using Zero-suppressed BDDs and Application to Biological Data 163

R
K
H
P
A
L
G
V
I

W
M
S
Y
Q
T
F
N
C
E
D

19
99

19
98

19
97

19
96

19
95

19
94

19
93

19
92

19
91

19
90

19
89

19
88

19
87

19
86

19
85

19
84

19
83

19
82

19
81

19
80

19
79

19
78

19
77

19
76

19
75

19
74

19
73

19
72

19
71

19
70

19
69

19
68

am
in

o
ac

id

year

20
06

20
05

20
04

20
03

20
02

20
01

20
00

19
99

year

225
193

Fig. 9 Mutations at the 225th and the 193rd amino acid positions.

proximately” symmetry checking method which al-
lows some errors or noise in the data.

Acknowledgments

The autors would like to thank Hiroki Arimura for
his valuable discussions and comments. This research
was partially supported by Grant-in-Aid for Specially
Promoted Research on “Semi- Structured Data Min-
ing,” 17002008, Ministry of Education, Culture, Sports,
Science and Technology of Japan.

♦ References ♦
[Agrawal 93] Agrawal, R., Imielinski, T., and Swami, A. N.:

Mining association rules between sets of items in large
databases, in Buneman, P. and Jajodia, S. eds., Proc. of the
1993 ACM SIGMOD International Conference on Manage-

ment of Data, Vol. 22(2) of SIGMOD Record, pp. 207–216
(1993)

[Bryant 86] Bryant, R. E.: Graph-based algorithms for
Boolean function manipulation, IEEE Transactions on
Computers, Vol. C-35, No. 8, pp. 677–691 (1986)

[Goethals 03a] Goethals, B.: Survey on frequent pattern
mining (2003), http://www.cs.helsinki.fi/u/goethals/

publications/survey.ps

[Goethals 03b] Goethals, B. and Zaki, M. J.: Fre-

quent itemset mining dataset repository (2003), Fre-
quent Itemset Mining Implementations (FIMI’03),
http://fimi.cs.helsinki.fi/data/

[Hok 05] Hokkaido University Research Center for Zoonosis
Control: PlotH3N2 (2005), Available from:

http://www.czc.hokudai.ac.jp/~murakami/plot-H3N2/

[Ito 06] Ito, K., Igarashi, M., Kida, H., and Takada, A.:
Computer analysis of structural changes in H3 hemagglu-

tinins of human Influenza viruses iolated dring 1968 to
2006, in Proc. Thirteenth International Conference Nega-
tive Strand Viruses 2006, p. 28 (2006)

[Kettle 06] Kettle, N. and King, A.: An anytime symme-
try detection algorithm for ROBDDs, in Proc. IEEE/ACM

11th Asia and South Pacific Design Automation Confer-
ence (ASPDAC-2006), pp. 243–248 (2006)

[Korber 93] Korber, B. T., Farber, R. M., Wolpert, D. H.,
and Lapedes, A. S.: Covariation of mutations in the V3
loop of human immunodeficiency virus type 1 envelope pro-

tein, in an information theoretic analysis, Proc. the Na-
tional Academy of Sciences, Vol. 90, pp. 7176–7180 (1993)

[Krug 01] Krug, R. M. and Lamb, R. A.: Orthomyxoviridae:
the viruses and their replication, in Knipe, D. M. and How-
ley, P. M. eds., Fields Virology, Philadelphia: Lippincott

Williams & Wilkins, 4th edition (2001)
[Minato 93] Minato, S.: Zero-suppressed BDDs for set ma-

nipulation in combinatorial problems, in Proc. of 30th

ACM/IEEE Design Automation Conference, pp. 272–277
(1993)

[Minato 96] Minato, S.: Binary decision diagrams and appli-
cations for VLSI CAD, Kluwer Academic Publishers (1996)

[Minato 01] Minato, S.: Zero-suppressed BDDs and their
applications, International Journal on Software Tools for
Technology Transfer (STTT), Springer, Vol. 3, No. 2, pp.

156–170 (2001)
[Minato 05a] Minato, S.: Finding simple disjoint decom-

positions in frequent itemset data using zero-suppressed
BDDs, in Proc. IEEE ICDM 2005 workshop on Computa-
tional Intelligence in Data Mining, pp. 3–11 (2005), ISBN-

0-9738918-5-8
[Minato 05b] Minato, S. and Arimura, H.: Efficient combi-

natorial item set analysis based on zero-suppressed BDDs,

164 人工知能学会論文誌 22 巻 2 号 SP-C（2007 年）

in Proc. IEEE/IEICE/IPSJ International Workshop on

Challenges in Web Information Retrieval and Integration
(WIRI-2005), pp. 3–10 (2005)

[Mishchenko 03] Mishchenko, A.: Fast computation of sym-
metries in Boolean functions, IEEE Trans. Computer-Aided
Design, Vol. 22, No. 11, pp. 1588–1593 (2003)

[Nat 05] National Center for Biotechnology Information: In-
fluenza virus resource (2005), Available from:

http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html

[Uno 04] Uno, T., Asai, T., Uchida, Y., and Arimura, H.: An
efficient algorithm for enumerating closed patterns in trans-

action databases, in Proc. the 8th International Conference
on Discovery Science 2004 (DS-2004) (2004)

〔担当委員：瀧本 英二〕

Received August 15, 2006.

Author’s Profile

Minato, Shin-ichi (Member)

He received the B.E., M.E., and D.E. degrees
in Information Science from Kyoto University in
1988, 1990, and 1995, respectively. From 1990
to 2004, he was a researcher of NTT Laborato-
ries, and he was a Visiting Scholar at Stanford
University in 1997. Since 2004, he has been an
associate professor of Hokkaido University. His
research interests include data structures and al-

gorithms for manipulating large-scale logic data. He published “Bi-
nary Decision Diagrams and Applications for VLSI CAD” (Kluwer,

1995). He is a member of IEEE, IEICE, and IPSJ.

Ito, Kimihito (Member)

He received his B.A. in 1992, his M.A. in 1994,
and his Ph.D. in 1999 all in electrical engineer-
ing, and all from Hokkaido University. After
postdoctoral positions at Meme Media Labora-
tory at Hokkaido University, he worked as an In-
structor at Graduate School of Information Sci-
ence and Technology at Hokkaido University, from
2004 to 2005. He is currently an Associate Pro-

fessor at Hokkaido University Research Center for Zoonosis Con-
trol. His research interests focus on bioinformatics, artificial intel-
ligence, and their application to zoonosis control. He is a member
of Japanese Society of Artificial Intelligence, and a member of the
editing committee.

