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Mayer-Vietoris sequences and coverage problems in
sensor networks

Zin Arai · Kazunori Hayashi ·
Yasuaki Hiraoka

Abstract A coverage problem of sensor networks is studied. Following recent
works by Ghrist et al., in which computational topological methods are ap-
plied for the coverage problem, We present an algorithm for the distributed
computation of the first homology group of planar Rips complexes. The key
idea is to decompose a Rips complex into smaller pieces of subcomplexes, and
to make use of Mayer-Vietoris sequences in order to sum up the homology
groups of subcomplexes. Combined with a sufficient condition for the coverage
which is given in terms of the first homology group, the proposed algorithm
enables us to verify the coverage in a distributed manner.

Keywords Mayer-Vietoris sequences · sensor networks · coverage problems

1 Introduction

A wireless sensor network, which consists of a number of sensor nodes with
signal processing and communication capabilities, has been drawing a lot of
research interest since its birth in the early nineties. What make the sensor
network different from conventional broadband wireless communications sys-
tems are crucial requirements for the sensor nodes of low cost and high energy
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efficiency, since a large number of battery-operated sensor nodes have to be
utilized in common applications. Major power-intensive operations in sensor
nodes are radio communication and signal processing [15]. Therefore the com-
munications range should be strictly restricted, and reducing the amount of
signal processing in sensor nodes is of great importance in the design of wireless
sensor networks.

One of the fundamental problems in the wireless sensor network is a cov-
erage problem. This is because the coverage problem is closely related to both
the network deployment problem, which is directly related to the cost of the
network, and the scheduling problem of sleep and wake-up modes for low power
consumption. Moreover, the coverage is also regarded as one of the important
measures for the quality of service provided by the wireless sensor network.

For the coverage problem in sensor networks, Ghrist et al. have recently
presented computational topological methods ([3], [4] and [5]). Their idea is
to capture global information about the covering from homology groups of a
certain geometric object which can be constructed from local connection infor-
mation between sensors. One of the advantages of a topological method is that
it does not assume the information of absolute locations or orientations for the
sensors, i.e., the method is coordinate-free. Moreover, there is no probabilistic
assumption such as a uniform distributions of sensors in a given domain. These
assumptions, which are sometimes regarded as unrealistic, are necessary for
conventional techniques based on computational geometry (e.g.[7], [10], [12],
[19]) or probabilistic approaches (e.g.[9], [16], [18]). Therefore, the topological
methods have potentials for various practical applications of sensor networks.

Following the paper [3], let us here describe the settings of the coverage
problem we treat.

Assumptions.

A1. Suppose that P is a finite set of sensors (or also called nodes) in a compact
connected domain D ⊂ R

2.
A2. Two sensors v, w ∈ P can communicate with each other when their dis-

tance is less than broadcast radius rb.
A3. Each sensor has radially symmetric covering domains of cover radius

rc ≥ rb/
√
3.

A4. The boundary ∂D is assumed to be connected and piecewise-linear with
nodes marked fence nodes. The distance between any adjacent two fence
nodes is less than rb.

Let B(v; rc) be a disk with radius rc centered at v ∈ P and let U =⋃
v∈P B(v; rc). Then the coverage problem is to ask whether U contains D.

In this setting, the essential step of the topological methods is to build up a
Rips complex [6][17], which can be constructed by local connection information
determined by rb and possesses reasonable covering information U . Here, the
Rips complex Rrb of P is an abstract simplicial complex and is defined as
follows. All nodes in P are assigned to be 0-simplexes, and a (k + 1)-tuple of
nodes v0, · · · , vk determines a k-simplex |v0 · · · vk| in Rrb if and only if any
two nodes of them are within the distance rb. In this paper, we abbreviate
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Rrb to R, and treat their homology groups H∗(R) as integer coefficients (see
e.g.[14] for standard homology theory).

Let us note that, from A4, the boundary ∂D can be identified with a
subcomplex F of R. Then, in the above setting, de Silva and Ghrist presented
the following sufficient condition for the coverage D ⊂ U :

Theorem 1 (de Silva and Ghrist [3]) The sensor covering U contains D
if there exists [α] ∈ H2(R,F) such that δ2[α] �= 0 in H1(F), where δ2 is
the connecting homomorphism arising in the long exact sequence of the pair
(R,F):

· · · −→ H2(F) −→ H2(R) −→ H2(R,F)
δ2−→ H1(F) −→ · · · .

The most important point of this theorem is, as we have already mentioned,
that it does not require absolute coordinates of the sensors or probabilistic
assumptions. The only necessary information is a graph structure for the set
of nodes P , which is equivalent to the 1-skeleton of R and is available from
the conditions of communications between sensors.

Theorem 1 itself is a well worthy result in the sense of providing a novel
method which can deal with difficulties for conventional methods, however,
it includes several problems, especially for implementations, as mentioned in
[3]. The most crucial problem among them is that, although the construction
of the Rips complex only requires the local connection information, a naive
computation of homology groups needs centralized processing. It should be
avoided in the following senses.

First, it is not desirable for all sensors to transmit local connection informa-
tion to a central base station, because this procedure requires huge amount of
communications or long distance communications, and is, after all, equivalent
to assuming the global information, like computational geometric approaches.
Due to the restriction of batteries for sensors, such communications should not
be adopted. Second, even if one can obtain the integrated connection informa-
tion at one place, the present computational complexity of homology groups
is in the range of orders from quadratic to quintic in the number of simplices
[8], and we can not ignore this cost for practical implementations.

One possibility to overcome this problem is to adopt a distributed way of
homology computations. That is to say, we would like to somehow sum up
homology groups of small pieces of subregions in parallel in order to obtain
the global homology group. This is the central subject to discuss in this paper.

Our main result in this paper is to present a distributed algorithm for
checking the sufficient condition for the coverage under the assumptions A1-

A5 (“non-pinching condition” A5 and its verifiable substitution Ã5 will be
explained in section 3). The technique is based on distributed homology com-
putations for H1(R), and deeply relies on Mayer-Vietoris sequences (see [14],
for example), which are classical tools in algebraic topology to calculate a ho-
mology group of a union of two appropriate topological objects. Our algorithm
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consists of two parts. One is to derive a decomposition of a given Rips com-
plex R = ∪Kk=1Rk (Algorithm 6), and the other is to sum up homology groups
H1(Rk) to H1(R) (Algorithm 8).

We here note that it is not trivial whether we can always calculateH1(R1∪
R2) by the corresponding Mayer-Vietoris sequence, since this exact sequence
only gives relationships among H∗(R1), H∗(R2), H∗(R1 ∩ R2), and H∗(R1 ∪
R2). The key for the computability of H1(R1 ∪R2), which is shown in Propo-
sition 3, results from the following geometric good property of a planar Rips
complex.

Suppose p : R → R
2 is a projection map which maps each simplex in R

affinely onto the convex hull of its nodes in R
2. The projection of R is called

the shadow and denoted by S. Let π1(R) and π1(S) be the fundamental groups
whose base points are naturally identified by p. The projection map p induces
a homomorphism π(p) : π1(R) → π1(S) on these fundamental groups. Then,
the following theorem holds:

Theorem 2 (Chambers, de Silva, Erickson and Ghrist [1]) Let R be a
Rips complex generated by a finite number of points in R

2. Then π(p) : π1(R) →
π1(S) is an isomorphism. Therefore, H1(R) = H1(S) and hence H1(R) is free.

Let us also note the relationship between the sufficient condition for the
coverage in Theorem 1 and the first homology group. Due to the help of

Theorem 2 again and the non-pinching assumption A5 or Ã5 with slight
modifications of fence nodes, Proposition 4 below states that studying H1(R)
is enough to check the sufficient condition in Theorem 1. That is, we can

show that under the assumptions A1-A5 (or Ã5), sensors cover D if H1(R)
is vanishing (Corollary 5).

To solve the coverage problem, therefore, it suffices to construct an efficient
algorithm for computing H1(R). For this purpose, we are going to present
Algorithm 8, which implements a distributed computations of H1(R). We also
note that besides the coverage problem discussed in this paper, H1(R) also
plays important role to repair holes in the covering as discussed in [3].

This paper is organized as follows. In section 2, we prove a proposition,
which is necessary for the construction of our algorithm via Mayer-Vietoris
sequences. We show several equivalent sufficient conditions for the coverage
of a non-pinching domain D in section 3. Section 4 is the main part of this
paper and is devoted to present the distributed H1(R) computations, which
enable us to distribute the computations for checking a sufficient condition of
the coverage. In the last section, we discuss the computational cost and the
further extensions of our algorithms.

2 Mathematical preliminary

The purpose of this section is to prove the following proposition.
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Proposition 3 Let R1,R2 be Rips complexes satisfying

H0(R1) ∼= H0(R2) ∼= Z, H0(R1 ∩R2) ∼= Z
r, H1(R1) ∼= Z

n, H1(R2) ∼= Z
m.

Then the first homology group of R1 ∪R2 is given by

H1(R1 ∪R2) ∼=
{
Z
n+m (r = 0)

Z
n+m−L+r−1 (r ≥ 1)

where L denotes the rank of the homomorphism i1 that appears in the Mayer-
Vietoris sequence

· · · −→ H1(R1 ∩R2)
i1−→ H1(R1)⊕H1(R2) −→ H1(R1 ∪R2) −→ · · · .

Proof. We consider the Mayer-Vietoris sequence for R1 and R2

· · · δ2 �� H1(R1 ∩R2)
i1 �� H1(R1)⊕H1(R2)

j1 �� H1(R1 ∪R2) ����
�� δ1�	

�� H0(R1 ∩R2)
i0 �� H0(R1)⊕H0(R2)

j0 �� H0(R1 ∪R2) �� 0.

The short exact sequence

0 −→ Im j1−→H1(R1 ∪R2)
δ1−→ Im δ1 −→ 0

splits since Im δ1, being a subgroup of H0(R1 ∩ R2) ∼= Z
r, is free. Therefore

we have

H1(R1 ∪R2) ∼= Im j1 ⊕ Im δ1.

By virtue of Theorem 2, H1(R1 ∪R2) is free and hence so is Im j1. Thus,
for computing Im j1, it suffices to know the rank of i1. That is, we have

Im j1 ∼= (H1(R1)⊕H1(R2))/Ker j1 ∼= Z
n+m/Im i1 ∼= Z

n+m−L.

Next, we compute Im δ1, which depends on r. If r = 0 then R1 ∩ R2 is
empty and henceH1(R1∩R2) also vanishes. It follows from the Mayer-Vietoris
sequence that H1(R1∪R2) ∼= Z

n+m. Assume r ≥ 1. Since H0(R1∩R2) is non-
trivial, R1 and R2 must have at least one 0-simplex in common, and therefore
it follows from H0(R1) ∼= H0(R2) ∼= Z that H0(R1 ∪R2) ∼= Z. Therefore, the
bottom row of the Mayer-Vietoris sequence induces

0 −→ Im δ1 −→ Z
r i0−→ Z

2 j0−→ Z −→ 0

which implies Im δ1 ∼= Z
r−1. �


We note that in view of Theorem 2, the assumptions on the first homology
groups H1 in Proposition 3 is not restrictive at all.
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3 Sufficient conditions for the coverage

Since the first homology group H1(R) of the Rips complex R is the same as
H1(S) by Theorem 2, intuitively saying, the rank of H1(R) counts the number
of “holes” in the shadow S. However, this hole may be outside the regionD and
hence unrelated to the coverage problem. This happens when there exists a
path between fence nodes which runs off the regionD. To avoid this ambiguity,
we add one assumption on the locations of nodes, which guarantees “non-
pinching” via the Rips shadow around the boundary as shown in Figure 1.

Fence 

shadow path

D

vl1

vl2 vr2

vr1v

Fence 
D

Fig. 1 The left figure shows a non-pinching situation and the right figure shows a pinching
situation, respectively.

Assumption A5. The Rips shadow S is included in D.

Note that A5 holds automatically if the region D is convex, that is, for all
x and y in D and all t ∈ [0, 1], we have (1 − t)x + ty ∈ D. If this is not the
case, A5 might be difficult to check from the local information of each sensor.
However, the following verifiable mild condition may be sufficient in practice
from the engineering viewpoint.

For each fence node v, let us denote its two neighboring fence nodes on
both sides as vl1 , vl2 , vr1 , vr2 . A non-pinching condition for v is introduced in
such a way that all fence nodes except for vl1 , vl2 , vr1 , vr2 do not have edges
to v (See Figure 1). Then A5 can be replaced by a verifiable condition:

Assumption Ã5. All fence nodes satisfy the non-pinching condition.

Rigorously speaking, it is possible to show exceptional examples like in

Figure 2 such that Ã5 does not induce A5. The reason for the existence of
such examples is related to the definition of the fence nodes, but we can remove

these singular situations by Ã5 with slight modifications of fence nodes, e.g.,
dealing with v as a fence node in Figure 2. Another example of the exception
can be considered as depicted in Figure 3. However, we can ignore the exception
as we will see in the end of this section. Therefore, for the practical purposes,

Ã5 is enough to guarantee A5.
Then, the sufficient condition for coverage in Theorem 1 can be described

in the following equivalent forms.

Proposition 4 Under the assumption A1-A5, the following four conditions
are equivalent:
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D

shadow path

Fence 

D

v

Fig. 2 An exceptional example satisfying ˜A5, but not A5.

shadow path

Fence 

D
Fig. 3 Another exceptional example. But this shadow path can be homotopically de-
formable to a portion of ∂D via a 2-simplex. Hence, Proposition 4 is still valid in this
case.

1. There exists [α] ∈ H2(R,F) such that δ2[α] �= 0 in H1(F).
2. The homomorphism j1 : H1(R) → H1(R,F) is an isomorphism.
3. The inclusion map i1 : H1(F) → H1(R) is trivial. That is, i1 = 0.
4. H1(R) = 0.

Here j1 and i1 are homomorphisms in the long exact sequence of the pair
(R,F)

· · · −→ H2(R,F)
δ2−→ H1(F)

i1−→ H1(R)
j1−→ H1(R,F)

δ1−→ H0(F)
i0−→ · · · .

Proof The proofs for 2 ⇒ 3 and 4 ⇒ 1 are trivial from the exactness.
(1 ⇒ 2): Since Im δ2 is a subgroup of H1(F) ∼= Z, it takes a form Im δ2 ∼= cZ.
From the assumption, c is a nonzero integer. Since

H1(F)/Ker i1 ∼= H1(F)/Im δ2 ∼= Z/cZ ∼= Zc

and H1(R) is free, the integer c must be one. This leads to i1 = 0, and so j1 is
injective. In addition, Ker i0 = 0 results in δ1 = 0, so implies the surjectivity
of j1. This leads to the statement 2.
(3 ⇒ 4): First, note that S ⊂ D holds from A5. To prove H1(R) = 0, it
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suffices to show that S = D. Because, this implies π1(S) is trivial and then it
follows from Theorem 2 that so is π1(R).

By contradiction, assume that S �= D. Then H1(S) is a non-trivial group
generated by loops around the components of D \S. In particular, the shadow
of the fence cycle is non-zero in H1(S) since p(F) = ∂D.

Now, consider the following diagram:

π1(F)
i∗−−−−→ π1(R)

p∗−−−−→ π1(S)

ψ

⏐⏐� ψ

⏐⏐� ψ

⏐⏐�
H1(F)

i1−−−−→ H1(R)
p1−−−−→ H1(S)

where ψ is the Hurewicz homomorphism. The functorial property of ψ implies
that this diagram commutes. Regard the fence cycle F as an element of π1(F).
Then

ψ ◦ p∗ ◦ i∗(F) = p1 ◦ ψ ◦ i∗(F) �= 0

since it corresponds to the shadow of the fence cycle in H1(S). It follows that

ψ ◦ i∗(F) = i1 ◦ ψ(F) �= 0.

This contradicts our assumption i1 = 0.

It should be noted that the condition A5 is necessary only for the proof

(3 ⇒ 4). This proof shows that another exceptional case that Ã5 does not
induce A5 like Figure 3 is allowed for the validity of Proposition 4. This is
because a shadow edge outside of D can be now homotopically deformable to

some portions of ∂D. In this sense, the condition Ã5, with slight modifications
concerning fence nodes if necessary, is suitable for practical implementations.

The reason to add A5 or Ã5 is related to distributed computations which will
be proposed in the next section. We will explain this subject in section 5 in
more detail.

Now we have reached the goal of this section. By combining Proposition 4
with Theorem 1, we obtain the following sufficient condition for the coverage.

Corollary 5 Under the assumptions A1-A5, sensors cover D if H1(R) = 0.

4 Distributed computation

In this section, we present two algorithms for the distributed computation of

the coverage condition under A1-A5 (or Ã5). For this purpose, let us dis-
tinguish the first K sensors as core sensors and, to each core sensor vk (k =
1, · · · ,K), assign the primary ID k. All calculation related homology compu-
tations will be carried out on the core sensors. We assume that core sensors
can communicate the data of homology groups and matrices used in the com-
putation of homology groups with each other.
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The essence of the following algorithm is divided into two processes. (1)
Spreading the primary ID to adjacent nodes which have not yet obtained the
primary ID based on the breadth first search. The adjacent nodes with different
primary IDs mutually share their primary IDs as their sub IDs. (2) Sensors
on the leaf of the breadth first search tree compose “k-connection sheet” and
return it to their parents. Here a k-connection sheet consists of the following
two lists:

(1) A list of edges connecting two sensors both of which have k as the primary
ID or a sub ID number.

(2) A list of the primary ID and all sub ID numbers for each sensor appearing
in the list (1).

Algorithm 6 (Decomposition of Rips Complexes) Repeat the following
procedure until all core sensors obtain their connection sheets.

1. Each sensor (say v) which already holds own primary ID (say k) performs
the following (a), (b), (c) and (d) in order:
(a) If all adjacent sensors of v have been already assigned a primary ID or

have already been assigned k as one of their sub IDs, then v proceeds to
process 2.

(b) The sensor v assigns k as the primary ID to its adjacent sensors whose
primary IDs have not been assigned yet. The sensors which obtained k
as their primary ID here (primary children of v) start process 1 (we
call v the primary parent of these sensors).

(c) The sensor v assigns k as sub IDs to its adjacent sensors which have
been already assigned the primary ID other than k and does not have
been assigned k as a sub ID. The sensors which obtained k as their sub
IDs here (k-sub children of v) proceed to process 3 (we call v the k-sub
parent of these sensors).

(d) The sensor v waits for its primary children and k-sub children to re-
turn their k-connections sheets. When all answers arrive, v proceeds to
process 4.

2. The sensor v with primary ID k returns to its primary parent the following
data as the k-connection sheet: (1) the edge between v and its primary
parent; (2) its primary ID k. Then v stops (waiting possible assignments
of sub IDs).

3. The sensor v obtained a sub ID k waits for all its adjacent sensors to obtain
their primary IDs (and therefore v obtains all its sub IDs) and then return
the following data to its k-sub parent as the k-connection sheet: (1) the list
of edges between v and sensors having k as primary or sub ID; (2) the list
of primary and sub IDs of v. Then v stops.

4. The sensor v collects all k-connection sheets from its primary and k-sub
children. Combine these sheets into a single k-connection sheet and add
the following data to it: (1) the list of edges between v and sensors having
k as primary or sub ID; (2) the list of primary and sub IDs of v. By
combining and adding we mean taking the union of lists. Then v returns
the k-connection sheet to its primary parent and stops.
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Let us remark that sensors may have multiple sub IDs and the process of
3 and 4 in the algorithm above are executed for each sub ID in parallel. All
sensors appearing in the k-connection sheet of the core sensor vk must possess
the primary or sub ID number k, and vice versa.

We note that the k-connection sheet defines a graph Gk by the list of
edges. Moreover, let us define a subgraph Gkl by the list of all edges in the
k-connection sheet whose nodes on both sides have the primary or sub ID of
l. It is obvious that Gkl = Glk. Let us denote by Rk and Rkl the Rips com-
plexes determined by the graph Gk and Gkl, respectively. Then, the following
proposition about Algorithm 6 holds.

Proposition 7

1. Algorithm 6 finishes in finite steps.
2. If the Rips complex R is connected, all nodes obtain their unique primary

IDs.
3. If the Rips complex R is connected, R = ∪Kk=1Rk.
4. Rk ∩Rl = Rkl.

Proof The statements 1, 2, 4 and R ⊃ ∪Kk=1Rk are clear. Suppose σ ∈ R. Let
us assume there exist two nodes va and vb in σ holding different primary IDs
ka and kb, respectively. Since vb is an adjacent node of va, it has a sub ID ka.
Therefore, all nodes in σ are included in Ra, and σ ∈ Ra holds.

x3 x5 x7

x1 x2

x4 x6 x8

R(1)
1

R(1)
2

Fig. 4 The left figure shows assignments of primary and sub IDs to the communication
network, where x1 and x2 are core sensors. Black nodes (x1, x3, x4 and x5) obtain primary
ID 1 while white nodes (x2, x6, x7 and x8) obtain primary ID 2. Nodes with gray circles
obtain sub IDs. Namely, x4 and x5 obtain sub ID 2, while x6 and x7 obtain sub ID 1. The
right figure shows the derived 1-skeletons of R1 and R2.

We remark that sub IDs possess information about intersections of the
Rips subcomplexes Rk, k = 1, · · · ,K. It is obvious that, if the Rips complex
is not connected, then allocating one core sensor at least to each connected
component guarantees the same results of the statements 2 and 3 in Proposi-
tion 7. In Figure 4, we describe an example of assignments of primary and sub
IDs in the case of K = 2, where x1 and x2 are core sensors. The corresponding
1 and 2-connection sheets are shown in Table 1.

Now, we are in the position to present an algorithm for distributed H1(R)
computations by Proposition 3 and Algorithm 6.
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1-connection sheet
Edge list ID list
(1,3) x1: (1)
(1,4) x3: (1)
(3,4) x4: (1,2)
(3,5) x5: (1,2)
(4,6) x6: (2,1)
(5,6) x7: (2,1)
(5,7)

2-connection sheet
Edge list ID list
(2,7) x2: (2)
(2,8) x4: (1,2)
(4,6) x5: (1,2)
(5,6) x6: (2,1)
(5,7) x7: (2,1)
(6,8) x8: (2)
(7,8)

Table 1 1 and 2-connection sheets of R1 and R2 in Figure 4, respectively. In the edge list,
each pair of numbers expresses the edge with the corresponding vertices. In the ID list, the
first number shows the primary ID and the next shows the sub ID.

Algorithm 8 (Distributed H1(R) computations)

1. Decompose the Rips complex R into Rips subcomplexes {Rk|k = 1, · · · ,K}
by Algorithm 6.

2. Each core sensor vk (k = 1, . . . ,K) computes the homology group H1(Rk)
of corresponding Rips subcomplex Rk.

3. Let k = 2.
4. The core sensor v1 calculates H1(R1 ∪Rk) by means of Proposition 3.
5. Change primary and sub ID numbers k to 1 in all connection sheets.
6. Replace k with k + 1 and repeat the processes 4 and 5 until k = K.

By this algorithm, the homology group H1(R) is calculated by summing
up the homology groups H1(Rk).

A standard algorithm using the Smith normal form (see Chapter 3 of [8],
or Section 1.13 of [11]) can be applied for the computation of the homology
groups. Here we briefly recall the algorithm. Assume we want to compute the
homology group of a Rips complex R. Denote by Cn the n-chain group of R,
the group consists of formal linear combinations of the form m1σ1+ · · ·+mlσl
where mi are integers and σi are n-simplices. We denote by An the matrix
representing the boundary map ∂n : Cn → Cn−1 with respect to this basis of
Cn and Cn−1. What the homology computation algorithm does is to construct
nice bases of Cn so that the matrices representing the boundary maps take
the form of rectangular diagonal (not necessary square) matrices; that is, it
composes elementary transformations to form unimodular matrices Mn, Nn :
Cn → Cn such that Mn and Nn are inverse to each other and the product

Dn := Nn−1AnMn,

which represents ∂n in the new bases, is rectangular diagonal for n = 0, 1, . . . ,
dimR (The matrix N−1 is defined to be the identity). For simplicity, we call
this new basis of Cn the homological basis, and the original basis of Cn the
simplicial basis. With homological bases, we can easily compute Hn(R) =
Ker ∂n/Im ∂n+1. Namely,

Hn(R) =
⊕
j

Z/diZ
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where the sum is taken over all j such that j-th diagonal element of Dn is 0
and dj is the j-th diagonal element of Dn+1. Remark that if R is a planner
Rips complex, then its first homology group is free and therefore we have

H1(R) =
⊕
j

Z

where the sum is taken over all j such that j-th diagonal element of Dn and
Dn+1 are both 0. That is, the basis of H1(R) is obtained as a subset of the
homological basis of C1.

The essential part of the algorithm is process 4. Here the core sensor v1
is required to compute the rank r of H0(R1 ∩ Rk) and the rank L of the
homomorphism

i1 : H1(R1 ∩Rk) → H1(R1)⊕H1(Rk).

The rank r can also be computed by the standard homology computation
algorithm.

Now we discuss how to compute L, the rank of i1. We first construct the
matrix representing i1. Since H1(R1∩Rk), H1(R1) and H1(Rk) are free, there
exist bases α1, . . . , αa of H1(R1 ∩Rk), β1, . . . , βb of H1(R1) and γ1, . . . , γc of
H1(Rk). Here a, b and c are the ranks of corresponding homology groups.
The matrix will be constructed with respect to these bases. Let α be one of
α1, . . . , αa. We will see how to determine its image i1(α) in H1(R1). The image

in H1(Rk) can be determined in the same way. Denote by M
(1,k)
n and N

(1,k)
n

the unimodular matrices constructed in the computation of H1(R1∩Rk), and

by D
(1,k)
n the diagonal representation of the n-th boundary map. Similarly, we

denote by M
(1)
n , N

(1)
n and D

(1)
n these matrices with respect to H1(Rk). We

also denote by Cn(R1 ∩Rk) and Cn(R1) the n-chains of R1∩Rk and R1. As-
sume α corresponds to the j-th coordinate vector ej :=

t(0, . . . , 0, 1, 0, . . . , 0),
where 1 appears only in the j-th row, of C1(R1 ∩ Rk) with respect to the
homological basis. Then in the simplicial basis of C1(R1 ∩ Rk), α is repre-

sented by M
(1,k)
1 ej. Since a simplex of R1∩Rk is also a simplex of R1, we can

naturally embed C1(R1 ∩Rk) into C1(R1). Let E be the matrix representing

this embedding. Then EM
(1,k)
1 ej is the vector which represents the chain α

in terms of the simplicial basis of C1(R1). To take homology, we first change

the coordinate from simplicial to homological by multiplying N
(1)
1 , obtaining

N
(1)
1 EM

(1,k)
1 ej . The projection of C1(R1) onto H1(R1) can be easily com-

puted in the homological basis, by simply omitting rows not corresponding to
β1, . . . , βb, the basis of H1(R1). The result is exactly the vector representing
i1(α) with respect to β1, . . . , βb. Thus we have determined the first column of
the matrix representing i1. We determine the other columns in the same way.
Finally, to compute the rank of i1, it suffices to construct the Smith normal
form of this matrix.

Recall that from Proposition 4 the sufficient condition for the coverage

under the assumption A1-A5 (or Ã5) can be expressed as H1(R) = 0. There-
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fore this algorithm enables distributed computations of the coverage condition,
which will be indispensable for practical implementations.

We remark that the above procedure for summing up the homology groups
H1(Rk) is a very primitive one. It causes computational unbalance focusing on
the core sensor v1. In order to avoid this problem, a simple modification should
be taken into account. For example, we may adopt distributed computations
in Algorithm 8 in such a way that some preassigned core sensors execute
processes 4 and 5 simultaneously with their nearby core sensors.

5 Discussions

In this paper, we have discussed a coverage problem and presented an algo-
rithm to check the sufficient condition for the coverage expressed by means of
homology groups in a distributed manner. We here discuss its computational
costs and further extensions.

First of all, let us consider the total computational cost of Algorithm 8.
Obviously, homology computations determine the total computational com-
plexity.

Most homology computations are based on the Smith normal forms and,
in general, need polynomial orders with respect to the number of simplices
(see [8] or [13] for the recent development of homology computations). The
order p of polynomials depends on geometric settings of problems in the range
2 ≤ p ≤ 5.

In the homology computations in Algorithm 8, we need to calculateH1(Rk)
and H1(R1 ∩Rk) for k = 1, · · · ,K and the rank L for each summing process.
It should be noted that we can apply the method discussed in the paper [2]
to speed up the computations of rank L. This method enables us to detect
whether a cycle with k edges is contractible in our settings and its computa-
tional cost is O(k) with O(m logn) preprocess, wherem and n are the numbers
of edges and points in the Rips complex. That is, the testing of contractibil-
ity is faster than homology computations. At the process 4 of Algorithm 8,
therefore, we may apply this contractibility test for each basis of H1(R1 ∩Rk)
before computing its image under i1. If it is contractible in R1 (or Rk), we
can safely conclude that the image is 0 in H1(R1) (or in H1(Rk)). We can also
reduce the computational cost by using Z2 instead of Z as the coefficient of ho-
mology groups. No information would be lost through this reduction since the
first homology groups of the Rips complexes are free (Theorem 2). The more
detailed estimates with respect to computation-communication trade-offs are
future problems.

Next, let us discuss the extensions of the presented distributed computa-
tions. One extension of the algorithm is to construct distributed computation
algorithms also for homology groups except for H1(R). It should be noted
that the equivalence of the sufficient conditions 1 and 2 under A1-A4 in
Proposition 4 is easily checked. However, the reason that we have to put the

assumption A5 or Ã5 for our settings is to avoid computations of H1(R,F)
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and the homomorphism j1. Therefore, further extensions of distributed com-
putations to other homology groups may remove the non-pinching condition

A5 or Ã5.
Finally, we would like to mention the three dimensional coverage problem

[3]. In this case, the corresponding Rips complex is derived from a set of finite
points in R

3. In order to apply our theory, we need to clarify the topolog-
ical properties of these Rips complexes, as Chambers et al. did for the two
dimensional case [1]. This is a challenging problem from both engineering and
mathematical viewpoints.
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