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Resonant acoustic-phonon modes in a quantum wire

Norihiko Nishiguchi
Department of Engineering Science, HoIrkaido University, Sapporo 060, Japan

(Received 25 January 1995; revised manuscript received 27 April 1995)

We study the extended acoustic-phonon modes in a cylindrical GaAs quantum wire embedded in
bulk AlAs. There are two kinds of resonant acoustic-phonon modes related to the wire dimensions:
one is entirely extended in the system and the other is almost confined in the wire. Displacement
of extended phonon modes in the wire region is enhanced for the resonant modes. The dispersion
relations of these resonant modes have subband structures similar to those of confined phonon modes
in free-standing wires. Owing to the resonant modes, the extended phoDon modes, in the wire region,
have characters of confined phonon modes in a free-standing wire rather than the usual bulk phonon
modes.

I. INTRODUCTION

Transport phenomena of carriers confined in quasi-one-
dirnensional (Q1D) quantum wires have been extensively
studied experimentally and theoretically, because
of the possible high electron mobility owing to the di-
mensional carrier confinement. The QlD wire structures
modify not only electronic states, but also phonon modes.
It is known that, in an embedded quantum wire within
another material (e.g. , a GaAs wire surrounded by A1As),
there are two kinds of optical phonon modes referred to
as confined and excluded optical phonon modes. In
addition to these optical phonon modes, the interface op-
tical phonon modes exist at the wire-surrounding
interface and contribute to electron scattering as do
the confined optical phonons.

In contrast to the optical phonons, acoustic phonons
were assumed to be the usual bulk acoustic phonons with
a three-dimensional (3D) bulk character in the studies
of electron-acoustic-phonon scattering, except in a free-
standing wire, ' although the acoustic-phonon modes
were expected to be modified due to the QlD wire struc-
tures as well. In a previous paper, the present author
analytically showed the existence of two kinds of acoustic-
phonon modes, confined and interface acoustic-phonon
modes, bound to a cylindrical quantum wire surrounded
by another material. The Q1D wire structures will also
modify extended acoustic-phonon modes. The extended
acoustic-phonon modes are coupled modes of longitudi-
nal (LA) and transverse acoustic (TA) waves, due to
the Q1D wire structures, as well as the confined and
interface phonon modes, and resonant phonon modes
related to the wire dimensions are expected to appear.
The resonant phonon modes will modulate displacement
in the wire region. As a result, the electron-acoustic-
phonon couplings are changed, which will afFect elec-
tron scattering. Thus, the modifications in the extended
phonon modes are expected to cause further modifica-
tions in related carrier transport phenomena. The ex-
tended acoustic-phonon inodes of the Q1D wires and
their resonant modes have not been examined yet. In this

paper, we analytically investigate the extended acoustic-
phonon modes of a quantum wire embedded within an-
other bulk material and make clear the resonant acoustic-
phonon modes in the Q1D wire-surrounding systems.

The plan of this paper is as follows. In Sec. II, we
give a model for a quantum wire embedded within an-
other material and formalism based upon the potential
theory. Extended phonon modes are classified into the
three kinds of modes, due to the rotational symmetry of
the modes. We investigate each phonon mode and its
resonant modes in respective subsections of Sec. III. We
also examine the density of states of these phonon modes
in this section. A summary and discussion are given in
Sec. IV.

II. MODEL AND FORMALISM

We consider a GaAs cylindrical wire of radius B sur-
rounded by bulk AlAs. We assume isotropic elastic prop-
erties for both the materials, for simplicity, redefining
the stiffness constants C~ q2's by C~ q2 ——C~ q~

—2C~ 44.
Here, n stands for GaAs (A) and A1As (B).The stifFness
constants used in this paper are CG A, qq

——1.188 x 10
dyncm, CG ~,,44 ——0.594 x 10 dyncm for GaAs
and C~)~, ~~

——1.202 x 10 dyn cm, C~I~. 44 ——0.589 x
10 dyn cm for AlAs. The wire axis is taken as the z
direction and the following calculations are performed in
cylindrical coordinates (r, P, z). Figure 1 shows the geom-
etry of the quantum wire-surrounding system. Since the
isotropic stiffness matrix has the same form in cylindri-
cal and rectangular coordinates, the matrix elements are
converted to abbreviated subscript notation by the rela-
tions 1 = rr, 2 = PP, 3 = zz, 4 = zP, 5 = rz, 6 = rP.
The displacement vector u. is expressed in terms of the
scalar potential P o and two vector potentials % i and

2 as

u =V/ 0+9'x@ i+9'xV'x4' 2. (1)
The vector potentials 4' s. ( j = 1 and 2) are given by
% r = e,P ~ ( j = 1 and 2 ), where e, denotes the unit
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I& z QA1(r, t) = X~1 v/rA1(r) exp [i(qz —cdt + np)], (6b)

QA2(r, t) = XA2 QA2(r) exp [i(qz —cdt + np)] /kA 2, (6c)

where

IN)l, I~
A1As (8)

ff

QAO(r) = I (e~ 0 r) 0 (q VA 0 —cd)

+J (k~ OT) 0 (cd —qv~ 0),
g~, (r) = J„(kA,r),

(7.)
(7b)

f'or j = 1 and. 2. Here, I„(z)and J„(x)are the first kind
of modified Bessel function and Bessel function of the
order n, respectively. KA p and kA ~ (j = 0, 1, and 2)
are the lateral wave vectors defined by

FIG. 1. Geometry of a cylindrical GaAs quantum wire sur-
rounded by bulk AlAs. &A, o = q

(VA, LA )

vector of the z direction. The potential functions P ~ are
readily known to obey the following scalar wave equation,
substituting Eq. (1) into the wave equation for isotropic
media, as

k~, o =
2

0VA. ,LA )
( Cd —q'.
(VA, TA )

(Sb)

(8c)

c)2
p —= [h~ p (C 11 —C 44) + C,44] 7' P ~, (2)

where p denotes the mass densities of GaAs
(5.36 gem ) and of AlAs (3.76 gem ), and 8, ~ is the
Kronecker symbol. The solution of Eq. (2) has the fol-
lowing form:

P ~(r) = f z(r) exp[i(qz —cdt+ nP)], (3)

where n is an integer denoting the n-fold rotational sym-
metry of the function about the wire axis, q the wave
vector in the longitudinal direction, and ~ an angular
frequency.

Substituting Eq. (3) into (2), we obtain the following
differential equation for f ~ as

&a2 1 a
2+(Br T Or T2

Cdq'+, f, (r) = 0.
'U

Here, v ~ denotes the sound velocities of the bulk-LA
and -TA waves given by

Vn, p —Vo. ,LA —(Ccx, ll/P~) i/2

Vcx 1 Vcr, 2 Vn TA (C~,44/Pcs. )
X/2

4'Ao(r t) XAO O'Ao(r) exp [i{qz ~t + n(t')] (6a)

respectively. The sound velocities are vG~A, z,A
4.708 x 10 cmsec, v~~~, ,~A ——3.329 x 10 cmsec
vA)A, g~ ——5.654 x 10 cm sec ) and vA)~, ~~ —3.958 x
10 cm sec . Because vA~A, ,LA & vc A, L~ & vA~~, TJ )5 —1

vc ~, T~, the longitudinal wave number q of extended
phonon modes must be smaller than cd/VAiAff TA. In this
region, Eq. (4) yields a Bessel or modified Bessel equation
for f~o, depending on q, and a Bessel equation for f~i
and f 2 Within the .wire, the finite potential functions
PA& are given by

For the surrounding medium, the potential functions are
given by

4'Bo(r t) —[XB01it'B01(r) + XB02 OB02(r)] exp[i(qz
ldt + nP)]-, (9a)

0'B1(r, t) = [Xaii Qaii(r) + Xa12 @B12(r)]exp[i(qz
cdt+ nP)], — (9b)

c/ia2(r, t) = [XB21@B21(r)+ XB22 O'B22(r)] exp[i(qz
cdt + np)]/k—a 2, (9c)

where

@api(2) (T) = I (Ka p T) [K (Ka p T)] 0 (q va p —Cd)

+J (ka 0 T) [Y' (ka 0)T] (0c—d q va 0),
(10a)
(10b)1PB 1(2)(r) = J (ka . r) [Y (ka r)],

for j = 1 and 2. K (x) and Y (x) are the second kind
of modified Bessel function and Bessel function of the
order n. The lateral wave vectors Ka p and ka ~ ( j
0, 1, and 2) yield

&a,o = q2 —
/Eva, LA ) (1la)

A:a,o = ( Cd

(VB,LA )
Cd

E VB,TA ) (llc)

The stress field is explicitly given by using the dis-
placement vector. The coeKcients y; are determined
for each rotational symmetry order n by applying the
boundary conditions of continuity of displacement vector
and stress fields at the wire-surrounding interface.
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III. EXTENDED PHONON MODES

Extended acoustic-phonon modes are characterized by
the rotational symmetry order n. For n = 0, the co-
eFicients y o and y 2 decouple &om y q because the
matrix elements joining y q to y o and y 2 vanish. As
a result, there are two kinds of azimuthally symmetric
phonon modes. The mode due to V' x %~ is referred to
as a torsional mode and the other due to the sum of the
terms Vgo + V' x V x %2 is referred to as a dilatational
mode, according to the particle motion in a solid. For
a Rnite integer n, there is no longer decoupling among
the coefEcients. All the waves are coupled into phonon
modes termed fiexural modes, whose displacement vector
is expressed by Eq. (1). In the following subsections, we
investigate each phonon mode and its resonant modes.

A. Torsional mode

-1 /2r
q R=6

The displacement vector of the torsional mode has only
the azimuthal component uy. Figure 2(a) shows the am-
plitude tud„defined by u~ = zo~ exp [i(qz —wt)), versus
distance r in the radial direction at frequencies v = 0.70
and 0.78 THz for B = 100 A. . Here, the reduced longitu-
dinal wave number qB is set to qB = 6. The envelope of
amplitudes decreases as r ~ in the surrounding medium
for both cases, and there is no difference between the
cases except for the variation in the wire. The amplitude

at v = 0.78 THz in the wire is obviously reduced from
that at v = 0.70 THz. To see the difI'erence more clearly,
we plot the squared absolute displacement multiplied by
r, rebuy~, for both the cases in Fig. 2(b). The envelopes
of the mode at v = 0.70 THz in the wire and surrounding
medium are connected smoothly at the wire-surrounding
interface. In contrast to this case, a discontinuity of the
envelope develops at the interface in the case of v = 0.78
THz. The magnitude of r~u~~ in the wire becomes ap-
proximately 0.7 times as large as that in the surrounding
medium.

For quantitative comparison, we introduce the ratio E
of averaged r~u~ in the wire to that in the whole system
de6ned by

R R,
r~u~ dr/ lim — r~u~ dr.

Rs~OO g O

(12)

In Eq. (12), we assume the surrounding medium to be a
cylinder with radius R„which is taken to be infinite after
integration. The ratio E gives the ratio of the squared
envelope of the amplitude in the wire to that in the sur-
rounding medium at the wire-surrounding interface. E
should be unity unless we take into account the efFects
of the @ID wire structures on phonon modes. Therefore
the phonon modes, when E ) 1, are concentrated in the
wire region in comparison with those of the plain bulk
systems without the @ID wire structures. On the other
hand, the phonon modes are suppressed in the wire for
E ( 1. In contrast to these cases, the phonon modes for
E = 1 are entirely extended in both the wire and sur-
rounding medium like bulk phonon modes in the plain
bulk systems.

The E of the torsional extended phonon mode versus
frequency is plotted for R = 100 A in Fig. 3, for several

0 P Ae~~

~

~ ~ ~ ~ ~ ~ ~
~ )

1.0—

(b)

1.0—

0.5—

0.0—
0.0

~ ~

\
~ ~

~ ~

IIt II

I:: I:::Ij''::I':::0
0.5 1.0

I

~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~

~ ~

I ~

1.5 2.0 2.5

~ ~
~ ~
~ ~
~ ~
~ ~

3.0

0.5—

0.0

qR=8

qR=7

qR=6

~q R=85

qR=9
A

FIG. 2. (a) Amplitudes m~ of the torsional acoustic-phouou
mode versus distance r in the radial direction. The dotted and
solid lines denote the amplitude at v = 0.70 and 0.78 THz for
R = 100 4, respectively. The dashed line is the envelope func-
tion r . The reduced longitudinal wave vector qB is 6xed
at 6. (b) The squared absolute displacement multiplied by r,
r~u~~, versus r. The reduction of amplitude for v = 0.?8 THz
in the wire is apparent.

0.2
I

0.4
I

0.6 0.8

FIG. 3. Ratio I" of the torsional phonon mode versus fre-
quency for R = 100 A.. Peaks and valleys appear periodically
for various magnitudes of the reduced longitudinal wave vec-
tor qB, and the peak heights are almost unity, except for the
peaks for qA = 8.5.
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1.0-

0.0—
0 10

qR
20

FIG. 4. Dispersions of the resonant torsional modes for
B = 100 A. The thick solid lines denote the dispersions and
the thin lines in the shaded region between the bulk-TA~ A,
and -TA~~A, dispersion curves are those of the confined tor-
sional phonon mode (Ref. 31). The open circles denote the
dispersions of the torsional phonon mode of a free-standing
wire with the same radius.

magnitudes of the reduced longitudinal wave number qB
in the &equency region u & q v~1~, TA. F is not a mono-
tonic function of &equency but has peaks and valleys,
which appear alternately and shift to the high-frequency
region with the increase in qB. The peak heights are
unity, independent of &equency and of the reduced longi-
tudinal wave number qB, except for a few peaks. Sharp-
ening of peaks and substantial increases of their heights
are found in the vicinity of the bulk-TAA1~, dispersion,
and the spiky peaks disappear with an increase of qR,
e.g. , from qB = 8.5 to 9.0. On the other hand, the val-
leys become deeper, nearing the bulk-TA~1A, dispersion
and the valleys near the bulk-TAA1A, dispersion disap-
pear with the increase in qB.

The variation of F reflects resonance of phonons in the
Q1D wires. Then we hereafter refer to the phonon modes
at the peaks with F & 1 as resonant modes and term, for
convenience, the trajectories of the peak positions in the
u-q plane the dispersions of the resonant phonon modes.

As denoted in Fig. 3, the cases for v = 0.70 THz
and v = 0.78 THz correspond to a peak (A) and val-

ley (B), respectively. The amplitude at the wire surface
at v = 0.70 THz has a local maximum, ignoring its sign,
and the amplitude at v = 0.78 THz becomes a node.
Then we may compare the peaks to the phonon modes
of a free-standing wire and the valleys to those of a wire
with a fixed boundary. Figure 4 illustrates the disper-
sion relations of resonant modes together with those of
phonon modes in a free-standing wire for B = 100 A. .
The thick solid lines and the open circles denote the dis-

persions of the resonant torsional modes and torsional
phonon mode of a free-standing wire with the same ra-
dius, respectively. The dispersions of the resonant modes
almost coincide with those of the torsional phonon mode
of a free-standing wire.

In the shaded &equency region ~ ( q vA1A, TA in Fig. 4,
acoustic phonons are confined to the quantum wire and
the dispersions of the confined phonon modes have sub-
band structures. F diverges for the confined modes.
Then the sharpening of the peaks for the extended
phonon modes near the bulk-TAA1A, dispersion curve
may be related to transition of the extended phonon
modes to confined ones. The thin solid lines in the shaded
region of Fig. 4 denote the dispersions of the con6ned
torsional mode. The dispersions of the resonant modes
are linked to those of the confined torsional mode at the
bulk-TAA~~, dispersion curve as we expected. Then we
can attribute the substantial increase of amplitude in the
wire to the transition of extended phonon modes to con-
Gned phonon modes.

B. Dilatational mode

The dilatational phonon mode is the other azimuthal
symmetric phonon mode, whose displacement vector u
has only the radial u„and axial components u, in con-
trast to the torsional mode. Defining the amplitude vv of
the displacement vector field by u = w exp[i(qz —wt)j,
the phase of the axial component m, of the amplitude is
shifted by a/2 from the radial component to„.Figure 5(a)
illustrates the amplitudes of the dilatational mode ver-
sus r at v = 0.50 THz, where qB = 7, and Fig. 5(b)
plots r~u~ versus r. A large reduction of r~u~2 in the
wire is found in comparison with that in the surrounding
medium.

Figure 6 shows the F of the dilatational mode versus
frequency for some reduced longitudinal wave numbers
qB in the frequency region q v~1A, TA & u ( q v~1A, z, A.
There are two kinds of peaks in this frequency region: one
is the small peaks which appear in the lower frequency
side of the region, and the other is the large peaks which
appear in the higher frequency side. The small peaks
are broad and their heights are approximately unity.
However, the small peaks become spiky and larger as
they near the bulk-TAA1A, dispersion. These features of
the small peaks suggest that the resonant dilatational
phonon modes are the same kind of resonant torsional
modes and are related to the confined dilatational phonon
mode.

In contrast to the small peaks, the large peaks are al-
ways spiky, independent of the bulk-TA~~A, dispersion,
and are an order of magnitude larger than the small
peaks, which means extremely large amplitude in the
wire. The large peaks do not disappear, and the number
of the spiky peaks increases with the reduced longitudinal
wave number qB. Thence the spiky peaks imply another
kind of resonant phonon mode.

To make the difference clear between the resonant di-
latational phonon modes with the small F ( 1) and
large I" ()) 1), we examine the contribution of the
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tional to the square root of the product of ratio E and the
relative contribution of the LA wave to the dilatational
mode. The volume change in the wire, as a result, takes
place only around the resonant dilatational modes with
large F and is suppressed in the frequency region between
the resonant modes. The shaded region in Fig. 7(b) de-
notes F, omitting the contribution of the TA wave in the
wire to the F, which con6rms that the volume change is
induced at around the resonant dilatational modes with
large F.

Owing to the difFerent features of the two kinds of res-
onant dilatational modes, we expect two kinds of disper-
sions of these modes. Figure 8 shows the dispersions of
the resonant dilatational modes together with the dis-
persions of the confined dilatational mode. The thin and
thick solid lines denote the dispersions of the resonant
dilatational modes with small F and large F, respec-
tively. The dispersions of the resonant dilatational modes
with small F have subband structures, which begin at the
bulk-LAG A, dispersion curve and are linked to those of
the confined phonon modes denoted by the dashed lines,
at the bulk-TA~~A, dispersion curve. In contrast to this
case, the dispersions of the resonant modes with large
F begin at the bulk-LAA~~, dispersion curve and tend
to the bulk-LAG A, dispersion curve with the increase
in the reduced longitudinal wave number qB. However,
they do not intersect the bulk-LAc A, dispersion curve,
and exhibit subband structures similar to those of the

1.0—

confined phonon modes. Based on these features con-
cerning the displacements and the dispersions, we may
conclude that the resonant modes with large F are qua-
siconfined phonon modes with dilatation.

In the frequency region u ) qvA1A, z,~, the LA waves
become real waves in both the wire and surrounding
medium. Then, the six waves are connected at the wire-
surrounding interface so that they satisfy the boundary
conditions. Since four boundary conditions are applied
on the displacement and stress fields, two coefBcients can
be taken arbitrarily. For example, any combinations of
arbitrary y~o and y~~ are permitted. Then, we examine
the extended phonon modes in the following two cases:
(1) when the displacement in the wire is solely attributed
to an LA wave and (2) when it is attributed to a TA wave.

Figure 9 shows the ratio F versus &equency for both
the cases, where q = 0. The solid and dashed lines de-
note the polarization of the phonon mode: the longitudi-
nal (L) and transverse (T) wave in the wire, respectively.
The ratio F oscillates with frequency as in the case of
the torsional mode (Fig. 3), and the peak heights are ap-
proximately unity, irrespective of the polarization of the
mode in the wire. We observe the same kind of oscillation
of the E for Rnite longitudinal wave numbers qB. Then,
in this frequency region, only entirely extended resonant
modes exist. The dispersions of the resonant modes are
plotted in Fig. 8 by the solid (I) and dashed (T) lines,
tending toward the bulk-LA~~A, dispersion curve with in-
creasing qB. However, the dispersion curves disappear on
the way since the magnitude of ratio F becomes smaller
than unity as it nears the LA~~A, dispersion curve.

0,8—

0.6—

x

C. Flexural modes

Since the degrees of freedom exceed the number of
the boundary conditions by two in the frequency region

0.4-

1.0—

0.2—

0.0-
0

qR
15

0.5—

FIG. 8. Dispersions of the resonant dilatational phonon
inodes for R = 100 A. The thick and thin solid lines in
the frequency region q vA», ,TA & ~ & q vA&A, ,LA denote the
quasiconfined and entirely extended resonant modes, respec-
tively. The dashed lines in the shaded region between the
bulk- TAC A, and TAAjA, dispersion curves are the dispersions
of the confined dilatational modes (Ref. 31). The solid (L)
and dashed (T) lines in the region cu ) qv+]A i,+ are the dis-
persions of the entirely extended resonant modes attributed
solely to the I.A wave and TA wave in the wire, respectively.

0.2 0.4 0.6
v (THz)

0.8 1.0

FIG. 9. Ratio I" of the dilatational phonon modes versus
frequency for B = 100 A in the region w & qvA~A, r,~. The
solid and dashed lines in the region u ) qvA~A, i,A are the
dispersions of the resonant modes solely due to the I A wave
and TA wave in the wire, respectively. The longitudinal wave
number is taken as q = 0.
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q v~IA, T~ & u & q v~jA, L~, two of eight coefIicients can
be taken to be arbitrary. Then we investigate the fIex-
ural modes in the cases [A] (X~o ——1, X~q —0), [B]
(Xxo = 1 Xxz ——0), and [C] (Xxo = 0 Xxx = 1).

Figure 10(a) illustrates the amplitudes of the flexural
mode with n = 1 and Fig. 10(b) the corresponding r[u[
for case [A]. The azimuthal my and axial amplitude com-
ponents m difFer in phase from the radial component m„
by 7r/2. The azimuthal component m4, vanishes and the
radial zo„and axial components ~, coincide at the wire
axis due to the rotational symmetry of the mode. The
amplitudes are very large in the wire as compared with
those of the surrounding medium. Such large amplitudes
are observed for the quasiconfined phonon modes.

Figure 11(a) illustrates the ratio I" versus frequency
for the three cases in the frequency region qvA1A, TA &
u ( qvp, ~A, 1,A for qR = 8 and Fig. 11(b) shows the cor-
responding relative contribution of the LA wave to the
flexural mode with n = 1. E has small and large peaks
like the dilatational mode, denoting the entirely extended
and quasiconfined resonant phonon modes. Aside from
the small peaks whose height is lower than unity, there
are two small peaks at v = 0.56 and 0.68 THz in case [C],
which coincide with the small peaks of case [B]. The large
peak at +=0.65 THz exists in cases [A] and B]. Thus
case [B] has mixed spectra of cases [A] and [C]. The rel-
ative contributions of the LA wave to the fIexural mode
also correlate to ratio E, which confirms that the local
volume change is induced at around the quasicon6ned
phonon modes and that the entirely extended resonant
modes are efFectively the shear wave modes. The ampli-

10= (a) qR=8
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FIG. 11. (a) Ratio I' of the Ilexural phonon mode with
n = 1 versus frequency for B = 100 A. in the frequency region
qvA~~, ,TA ( cu ( qvAt~, ,z, ~ and (b) the corresponding can-
tribution of the LA wave to the Qexural phonon at qR = 8.
The thick solid, thin solid, and dashed lines correspond to
cases [A], [B],and [C] discussed in the text, respectively. The
dashed horizontal line in (a) denotes the change of scale from
a linear to a logarithmic one.

5 0

w

~ ~

(b)

10—

0
0

FIG. 10. (a) The radial, axial, and azimuthal components
of amplitude w of the Qexural phonon mode with n = 1 at
v = 0.648 THz and qA = 8 for A = 100 A. and (b) the corre-
sponding r ~u[ versus r in the radial direction The amplit. ude
in the wire is found to be extremely enlarged in comparison
with that in the surrounding medium.

tude in the wire or ratio E of the quasiconfined phonon
modes decreases with mixing of the TA wave component,
and the quasiconfined mades disappear in case [C], where
there is no contribution of the LA wave to the flexural
mode. The facts confirm that the LA wave is essential to
the quasiconfined phonon modes.

Figure 12 shows the dispersions of the resonant flexural
modes of case [B] with n = 1 together with the disper-
sions of the confined flexural mode with n = 1. Here, we
note that the mixture of dispersions of cases [A] and [C)
coincides with the dispersions of case [B] as mentioned
above. Then we may regard the dispersions of case [B]as
those for the arbitrary combinations of coefBcients. The
thin and thick solid lines denote the entirely extended
and quasiconfined resonant modes, respectively. These
resonant modes have subband structures of dispersions
similar to those of the dilatational mode, except that the
dispersions of both resonant modes start at the bulk-
LAA(~, dispersion curve.

In the frequency region ~ & qvA~~, j.~, since the LA
wave in the surrounding medium becomes a real wave,
the degrees of freedom exceed the number of boundary
conditions by three. As a result, three of the nine coeK-
cients, e.g. , y~o, y~q, and y~2, are taken to be arbitrary.
Then we examine the flexural modes in the three cases:
[I] (XAO = 1 XA1 = 0 XA2 = 0) [II] (XAO = 0 XA1 =
1, X~z ——0), and [III] (Xxo = 0, Xxz = 0, Xxz = 1).

Figure 13 shows the ratio E versus frequency for the
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FIG. 12. Dispersions of the resonant Bexural phonon modes
in the frequency region q vAiA, ,TA ( ~ ( qvA)~, gA for

R = 100 A. The thick and thin solid lines denote the dis-

persions of the quasiconlned and entirely extended resonant
phonon modes, respectively. The dashed lines in the shaded
region qvc~~. ,TA ( ~ ( qvA~A. ,TA are the dispe»ions of the
con6ned Bexural phonon mode with n = 1.

three cases, where q = 0. Ratio F varies oscillationally
with frequency for all the cases. The peak heights depend
on the cases and are an order of unity. Such oscillations
of ratio I' are found for Gnite longitudinal wave num-
bers qB and the peak heights of ratio E decrease as they
near the bulk LA~1A, dispersion curve. Figure 14 illus-

1.0—

FIG. 14. Dispersions of the resonant Qexural phonon modes
with n = 1 in the frequency region cu ) q vA&A, , z,A

R = 100 A. The thick solid, thin solid, and dashed lines
denote the same cases [I], [II], and [III] as Fig. 13.

trates the dispersions of the three cases, confirming the
disappearance of the dispersions on the way to the bulk-
LA~~~, dispersion curve for cases [II] and [III]. The P
of case [I] is almost lower than unity in this frequency
region; however, the ratio exceeds unity in the vicinity
of the bulk-LAA1~, dispersion curve, where the disper-
sions of the quasicon6ned modes terminate. Thence the
appearance of case [I] near the dispersion curve of the
bulk-LA~1A, waves is due to the transition to the quasi-
confined modes as seen for the resonant torsional modes.

As for the Qexural modes with n & 2, there are the
same two kinds of resonant modes as with n = 1. How-
ever, the dispersions of the resonant Hexural modes shift
to the high-frequency region with increasing n. The Bex-
ural mode with a negative rotational symmetry order —n
is the same as that with a positive order n, except for the
sign of the azimuthal component of displacements. Then
we have the same two kinds of resonant modes for both
cases.

0.5—

D. Density of states

0.0—
I

0.0
I

0.2
I I

0.4 0.6
v (THz)

I

0.8 1.0

FIG. 13. Ratio I' of the Qexural phonon modes versus fre-
quency for R = 100 A. in the region u ) q v&~~, r,~. The thick
solid, thin solid, and dashed lines correspond to cases [I], [II],
and [III] discussed in the text, respectively. The longitudinal
wave number is taken as q = 0.

Finally we investigate the density of states (DOS) of
extended acoustic-phonon modes. Here, we consider a
huge free-standing cylinder of AlAs with radius B, and
length L (L )) B,), surrounding a quantum wire. Spec-
tra of phonon modes are determined by the boundary
conditions on the cylinder surface, ignoring the effects of
cylinder ends. Modish;cations in the spectra due to the
quantum wire will be negligible. Hence we may examine
the DOS of the extended phonon modes based on spec-
tra of phonons in a huge free-standing cylinder of AiAs
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without a quantum wire.
The dispersion relation of the torsional mode yields

&om Eq. (8c),

CO = VTAgg + A,'

LR, ( 1 1) LR,D (d + — +2' kvTA v ) 'U

L~B,
V

(is)

since the torsional mode is solely attributed to a TA wave.
The longitudinal and lateral wave numbers, q and k, are
quantized, and then there is one allowed value of (k, q)
per volume 2 7r /L R, in (k, q) space. The DOS, Dt(u),
of the torsional mode is readily obtained as

for a large B„where V denotes the volume of the system.
The total DOS should coincide with the DOS of the 3D
Debye model given by

(2o)

(14) where

In contrast to the torsional mode, it is hard to express an-
alytically the dispersion relations of the dilatational and
flexural modes, because these modes are coupled modes
of LA and TA waves. Then we introduce a phase veloc-
ity v for these modes, which is determined below, and
assume that the LA and TA waves have the same phase
velocity v. Considering a cylindrical wave, whose poten-
tial functions P, are given by

V 3 (VLA VTA )
Comparing them, the phase velocity v of the dilatational
and flexural modes is given, in terms of LA and TA wave
velocities, by

V 2 (, VLA VTA )

and substituting Eq. (15) into (4), we obtain the follow-
ing dispersion relation for the dilatational and flexural
modes,

n2
u = v q2+k2+

B,

which is qualitatively in good agreement with the numer-
ically obtained data. Equation (16) shows that there is
a finite lowest frequency w (= v n/R, ) for a fiexural
mode with rotational symmetry order n. The DOS of
the dilatational and flexural modes yields

We note here that, although the total DOS is useful
for studies on thermal properties of the system, it is less
important for electron-phonon scattering. Because of the
full axial symmetry of the system, the total angular mo-
mentum of electrons and phonons about the wire axis
has to be conserved for electron scattering via the de-
formation potential, defining the angular momentum
of phonons with rotational symmetry order n to be hn.
This means that only the phonons with certain rotational
symmetry contribute to electron scattering. Therefore,
the DOS of each phonon mode, Dq and D, has signifi-
cance for electron scattering instead of the total DOS.

IV. SUMMARY AND DISCUSSION

IR,D„(~)= ' —0((u —(u„).
271 V

(17)

D((u) = Dt(cu) + ) Di„i((u). (18)

Substituting Eqs. (14) and (17) into (18), the D(w) yields

The DOS of the dilatational and flexural modes is almost
the same as that of the torsional mode (14), but changes
discontinuously from zero to LR, ur /2vr v at ur, due
to the step function in Eq. (17). The jump in the DOS
is attributed to the van Hove singularity at q = k = 0,
where the group velocity becomes zero.

The frequency dependence of each phonon mode is dif-
ferent from that of the bulk phonons in the Debye approx-
imation. This is because the rotational symmetry order
of phonon modes is fixed. Therefore, the w dependence
of the DOS for 3D bulk phonon systems is recovered by
summing the DOS of all the phonon modes. The total
DOS, D(w), is given by

In this paper, we analytically investigated. the resonant
acoustic-phonon modes in a cylindrical GaAs quantum
wire within bulk AlAs, paying special attention to the
displacement in the wire region. The extended acoustic-
phonon modes are the coupled modes of the LA and TA
waves, classified into torsional, dilatational, and. flexural
phonon modes according to the rotational symmetry of
the modes. The displacement in the wire region is sup-
pressed or enhanced in comparison with that assuming
the plain bulk systems without @1Dwires. The enhance-
ment of displacement in the wire region is attributed to
the resonant modes related to the wire dimensions. There
are two kinds of resonant modes: one is the quasicon-
G.ned phonon modes and the other is entirely extended
phonon modes. The quasiconfined phonon modes have
substantially large displacement in the wire region, in
contrast to the entirely extended phonon modes. These
resonant modes have dispersion relations with subband
structures similarly to the confined phonon modes in a
free-standing wire. These results lead to the conclusion
that, in the wire region, the extended phonon modes have
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characters of con6ned phonon modes in a free-standing
wire rather than the usual bulk phonon modes, although
a 3D bulk character was assumed for acoustic phonons
in most studies of electron scattering.

We have shown that the amplitude in the wire of the
extended acoustic-phonon modes is substantially modu-
lated, depending on frequency and the longitudinal wave
vector. Considering the electron-phonon interaction, the
large/small amplitude in the wire will result in enhance-
ment/reduction of the coupling, regardless of the type
of interaction. In addition to the modifications in ampli-
tudes in a wire, the DOS of phonons associated with elec-
tron scattering has diferent frequency dependence from

that of the usual 3D bulk phonons. Thence the phonon
modes peculiar to the QlD wire systems, including the
con6ned phonon modes, are expected to cause further
modifications in electron transport phenomena.
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