
324
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

PAPER

VLSI Implementation of a Scalable Pipeline MMSE MIMO
Detector for a 4 × 4 MIMO-OFDM Receiver

Shingo YOSHIZAWA†a), Member, Hirokazu IKEUCHI†, Nonmember, and Yoshikazu MIYANAGA†, Member

SUMMARY MIMO-OFDM performs signal detection on a subcarrier
basis which requires high speed computation in MIMO detection due to
its large computational cost. Conventional designs in a MIMO detector
increase processing time in proportion to the number of subcarriers and
have difficulty in real-time processing for large numbers of subcarriers. A
complete pipeline MMSE MIMO detector presented in our previous work
can provide high speed computation. However, it tends to be excessive in
a circuit scale for small numbers of subcarriers. We propose a new scal-
able architecture to reduce circuit scale by adjusting the number of iterative
operations according to various types of OFDM system. The proposed de-
tector has reduced circuit area to about 1/2 to 1/7 in the previous design
with providing acceptable latency time.
key words: wireless communications, MIMO-OFDM, MIMO detection,
MMSE

1. Introduction

Multiple-input multiple-output orthogonal frequency mul-
tiplexing (MIMO-OFDM) is effective in enhancing com-
munication capacity or reliability and has become a key
technology in current wireless communications. MIMO-
OFDM is adopted in IEEE802.11n [1] and IEEE802.11ac
[2] (known as standardization of next wireless LAN sys-
tem). In MIMO technology, spatial division multiplex-
ing (SDM) can achieve high data rates by use of multiple
transmit and receive antennas. MIMO transmission of four
streams will become practical use as IEEE802.11n option
supports a 4 × 4 MIMO transmit mode which provides a
maximum 600-Mbps data rate.

Signal detection in a MIMO receiver, called MIMO de-
tection, needs high speed computation due to its large com-
putational cost. Moreover, packet MIMO-OFDM estimates
channel matrices at a preamble and computes inverted ma-
trices in a short period before receiving data symbols. Oth-
erwise, the receiver is forced to have long processing latency
with large memory buffers or give up real-time processing.
Hardware implementation of MIMO detection is one impor-
tant issue in current wireless communication systems. Al-
gorithms for MIMO detection are classified into linear de-
tection [3]–[6] ordered successive interference cancellation
(OSIC) [7], [8], and maximum-likelihood (ML) detection
[9], [10]. They trade off between complexity and MIMO
detection performance.

Manuscript received December 4, 2009.
Manuscript revised July 2, 2010.
†The authors are with the Graduate School of Information

Science and Technology, Hokkaido University, Sapporo-shi, 060-
0814 Japan.

a) E-mail: yosizawa@csm.ist.hokudai.ac.jp
DOI: 10.1587/transfun.E94.A.324

Since OFDM performs MIMO detection on a subcar-
rier basis, its computational cost is proportional to the num-
ber of subcarriers. A MIMO-OFDM receiver requires con-
siderable throughput performance even for linear detection.
We focus on hardware implementation of linear detection.
Recent research has tackled linear detectors in zero-forcing
(ZF) [3], [4] or minimum mean squared error (MMSE) [5],
[6] for 4 × 4 MIMO-OFDM. For the MMSE criterion, QR
decomposition and Sherman-Morrison formula algorithms
have been adopted in a MMSE MIMO detector in [5], [6].
Their detectors suffer from real-time processing for large
numbers of subcarriers because their architectures rely on a
large number of iterative operations. On the other hand, we
have presented a complete pipeline MMSE MIMO detector
based on Strassen’s matrix inversion in [11], [12]. This de-
tector can make use of concurrent and pipeline processing
and has systematic matrix computation suitable for hard-
ware implementation. The processing time of the complete
pipeline detector is 150 times faster than the other detectors
on the condition of 512 subcarriers [12]. However, it has the
drawback in circuit area. It tends to be excessive in a circuit
scale for small numbers of subcarriers.

Note that the number of OFDM subcarriers widely
ranges from 64 to 2048 such as IEEE802.11n/ac and
IEEE802.16e/m wireless systems. The detectors based on
iterative architecture [5], [6] cause the shortage of through-
put performance for large numbers of subcarriers. The de-
tector based on complete pipeline architecture [11] tends to
be excessive in a circuit scale for small numbers of subcarri-
ers. We present a new scalable pipeline MMSE MIMO de-
tector which attains both circuit reduction and real-time pro-
cessing and is effective for various types of OFDM system.
The key point is to adjust the number of iterations according
to OFDM parameters. The acceptable latency time is de-
termined by OFDM parameters such as a signal sampling
rate, a guard interval (GI) length and a subcarrier count.
Proposed scalable pipeline architecture optimizes hardware
structure according to the number of iterative steps. The
scalable pipeline detector changes a matrix operation flow
for each step and realizes circuit reduction, which is based
on dynamically reconfigurable architecture. The VLSI im-
plementation of the scalable pipeline MMSE MIMO detec-
tor and its circuit performance comparison with the conven-
tional detectors are also reported in this paper.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

YOSHIZAWA et al.: VLSI IMPLEMENTATION OF A SCALABLE PIPELINE MMSE MIMO DETECTOR FOR A 4 × 4 MIMO-OFDM RECEIVER
325

2. MIMO Detection and Timing Requirement

For a MIMO-OFDM system with MT transmit antennas, MR

receive antennas, and N data subcarriers, a MIMO channel
for k-th subcarrier is given by H[k] with a MT×MR matrix.
In MIMO detection, a received signal vector y[k,t] for t-th
data symbol is described by

y[k,t] = H[k]s[k,t] + n[k,t], (1)

where s[k,t] and n[k,t] represent a transmitted signal vector
and white Gaussian noise, respectively. H[k] is estimated
from training symbols. The purpose of MIMO detection is
to extract s[k,t] from the received vector. The linear detection
inverts the channel matrix using ZF or MMSE criterion. The
ZF computes the inverse matrix of H−1

[k]. The matrix inver-
sion of the MMSE is computed as

G[k] = (HH
[k]H[k] + σ

2I)−1HH
[k], (2)

where σ2 indicates a noise variance and (·)H denotes a func-
tion of Hermitian transpose. The matrix inversion of (2) is
called preprocessing. The MIMO decoding extracts the ap-
proximate transmit vectors as

ŝ[k,t] = G[k]y[k,t]. (3)

The timing chart of MIMO detection in 4×4 MIMO-OFDM
(i.e., MT=4, and MR=4) is illustrated in Fig. 1. On receiving
the last training symbol, a receiver starts computing MIMO
channel matrices for all subcarriers. The preprocessing can
be executed after computing each MIMO channel matrix.
Since the data symbols follow the training symbols in packet
mode OFDM, the receiver should complete the preprocess-
ing before receiving the data symbols. Otherwise, the re-
ceiver has long processing delay with large memory buffers
or gives up real-time processing. We define acceptable la-
tency time as the sum of FFT duration and GI length, e.g.,
TFFT +TGI , which is used as a measure of real-time process-
ing in this paper. For instance, the IEEE802.11n PHY frame
has parameters of N=108, TFFT=3.2μs, and TGI=0.8 μs.
The acceptable latency time of the preprocessing is 4.0 μs

Fig. 1 Timing chart of MIMO detection.

in this case.

3. Algorithms and Architectures

3.1 Algorithms

The hardware implementation of the preprocessing in (2)
has been discussed in recent research due to its consid-
erable calculation cost. QR decomposition and Sherman-
Morrison formula as matrix inversion lemma are used for
complexity reduction of matrix inversion [5], [6]. In our pre-
vious work, we have adopted Strassen’s algorithm [11]. We
briefly describe algorithms of QR decomposition by modi-
fied Gram-Schmidt and Strassen’s matrix inversion for dis-
cussing VLSI architectures for a MMSE MIMO detector. In
QR decomposition, a matrix A is divided into an orthogonal
Q and a right triangular matrix R as A=QR. The procedure
of the modified Gram-Schmidt for a 4 × 4 square matrix is
summarized below:
- Definition

A = [a1 a2 a3 a4] (4)

Q = [q1 q2 q3 q4] (5)

R = [Ri j] (1 ≤ i ≤ 4, 1 ≤ j ≤ 4) (6)

- Iteration
for i=1 to 4

Rii = ‖a(i)
i ‖2 (7)

qi = a(i)
i /Rii (8)

for j=i+1 to 4

Ri j = qT
i a(i)

j (9)

a(i+1)
j = a(i)

j − qiRi j (10)

end
end.
To compute (2), matrix multiplication of H and inversion of
triangular matrix R are additionally required (See Ref. [14]
for the details). Strassen’s algorithm for matrix inversion
divides a square matrix into equal small matrices [13] and
applies analysis solution. For a 4 × 4 matrix Ω, it is divided
into 2 × 2 four submatrices and inversed, which can be ex-
pressed as

Ω =

(
ω11 ω12

ω21 ω22

)
(11)

Ω−1 =

(
μ −ω−1

11ω12λ
−1

−λ−1ω21ω
−1
11 λ−1

)

=

(
ω′11 ω′12

ω′12 ω′22

)
(12)

λ = ω22 −ω21ω
−1
11ω12 (13)

μ = ω−1
11 + ω

−1
11ω12λ

−1ω21ω
−1
11 . (14)

The common parts of ω−1
11 , ω−1

11ω12, ω21ω
−1
11 , and λ−1 con-

tribute to complexity reduction. The MMSE criterion in (2)

326
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

Fig. 2 Iterative architecture.

Fig. 3 Complete pipeline architecture.

gives a complex conjugate symmetric at non-diagonal com-
ponents for matrix inversion, i.e., ω12=ω

H
21. It enables fur-

ther complexity reduction by ω′12=ω
′H
21. The whole proce-

dure for computing (2) including matrix multiplications is
explained in Sect. 4.

3.2 Architectures

Figures 2 and 3 show iterative and complete pipeline archi-
tectures for implementing the preprocessing in (2). The pre-
processing should be computed for all N subcarriers. Iter-
ative architecture repeats its computation by the number of
subcarriers. Complete pipeline architecture operates a block

Fig. 4 Proposed scalable pipeline architecture.

of subcarriers which goes through all pipeline stages. It-
erative architecture shares arithmetic units in most of the
computations and realizes by a small circuit scale, which
is shown in Fig. 2(a). Complete pipeline architecture has
high throughput performance by increasing the number of
simultaneously operating arithmetic units. It provides high
speed computation and requires a large circuit scale, which
is shown in Fig. 3(a). The throughput performance of com-
plete pipeline architecture is hihger than that of iterative ar-
chitecture. It causes a shorter processing time indicated by
the timing chart in Figs. 2(b) and 3(b). QR decomposition
is implemented by iterative architecture [6]. The modified
Gram-Schmidt updates vectors of qi and a(i+1)

j in (8) and
(10), respectively. Their updating operations can be imple-
mented into shared arithmetic units in iterative architecture.
Conversely, they are not suitable for complete pipeline ar-
chitecture which makes use of concurrent and pipeline pro-
cessing. The modified Gram-Schmidt updates and computes
a vector or an element within a matrix. During this opera-
tion, a detector sets the other vectors and elements to idle
states. Current and pipeline processing induces large mem-
ory buffers for these idle states in this situation. Strassen’s
algorithm is implemented by complete pipeline architecture
[11], which enables concurrent and pipeline processing in
the divided 2 × 2 submatrices shown in (12) and is suitable
for its hardware implementation because of the systematic
2 × 2 matrix operations in (12)–(14).

Iterative architecture and complete pipeline architec-
ture benefit in circuit scale and throughput performance, re-
spectively. However, the following issues should be noticed:

• Processing time of iterative architecture is proportional
to the number of subcarriers. It is difficult to keep the
processing time which is less than the acceptable la-
tency for large numbers of subcarriers.
• Circuit scale of complete pipeline architecture tends to

be excessive for small numbers of subcarriers. If a de-
tector has a long idle time waiting for data symbols af-
ter the preprocessing, it has room to reduce circuit scale
by decreasing throughput performance.

YOSHIZAWA et al.: VLSI IMPLEMENTATION OF A SCALABLE PIPELINE MMSE MIMO DETECTOR FOR A 4 × 4 MIMO-OFDM RECEIVER
327

Table 1 Properties of conventional and proposed architectures.

Architecture Speed Circuit Scale
Iterative [5], [6] Low Small
Complete Pipeline [11] High Large
Scalable Pipeline (Proposed) Mid - High Small - Mid

The number of OFDM subcarriers widely ranges from 64 to
2048 such as IEEE802.11n/ac and IEEE802.16e/m wireless
systems. A MIMO detector should be optimized so as to
attain both circuit reduction and real-time processing. We
propose a new scalable pipeline architecture illustrated in
Fig. 4. This architecture divides the preprocessing by mul-
tiple steps, where the block data of intermediate values at
s-th step is indicated by the feedback of Ps

[1], Ps
[2],..., Ps

[N].
The number of steps is determined so that processing time is
less than acceptable latency time. The processing time can
be estimated from OFDM parameters. A MIMO detector
changes matrix operations by switching data paths for the
steps, which is achieved by dynamically reconfigurable ar-
chitecture. For small numbers of subcarriers, the scalable ar-
chitecture increases the number of steps and provides small
circuit scale. For large numbers of subcarriers, it increases
throughput performance by connecting pipelined matrix op-
eration units and performs the preprocessing in a few steps.
The properties of conventional and proposed architectures
are summarized in Table 1. Their comparison with the cir-
cuit implementations is discussed in Sect. 5. The design of
a MMSE MIMO detector based on the scalable pipeline ar-
chitecture is described in the next section.

4. Scalable Pipeline MMSE MIMO Detector

4.1 Design Procedure

The design procedure of a scalable pipeline MMSE MIMO
detector is described as follows:

(a) Determine the number of computation steps M accord-
ing to OFDM parameters so that the processing time is
approximately equal to the acceptable latency time.

(b) Divide 2 × 2 submatrix operations in Strassen’s algo-
rithm into M steps. The minimum numbers of 2 × 2
matrix operation units (e.g., matrix multiplier and ma-
trix adder) can be determined by this work.

(c) Design a MMSE MIMO detector according to the num-
bers of 2×2 matrix operation units. Dynamically recon-
figurable architecture is introduced to switch different
matrix operation flows.

These steps are explained in Sects. 4.2, 4.3, and 4.4, respec-
tively.

4.2 Number of Steps

Processing time of a scalable pipeline MMSE MIMO detec-
tor is explained by the timing chart in clock cycle unit shown
in Fig. 5. When a MIMO detector has α pipeline stages, a
block of data is delayed for α cycles, which is illustrated in

Fig. 5 Processing time in a scalable MMSE MIMO detector.

Fig. 5(a). Next, we consider processing cycle in preprocess-
ing from the timing chart in Fig. 5(b). From first to (M−1)-th
steps, output data for all N subcarriers are fed into memory
in N+α cycles. At the last step, the output data are directly
used for the MIMO decoding shown in Fig. 1 without mem-
ory feedback. The processing time is given by the product of
the processing cycle and a clock period, which is computed
as

Tc = ((N + α)(M − 1) + α) · (1/Fs), (15)

where Fs donotes operating clock frequency. The accept-
able latency is given by the sum of TFFT and TGI as shown
in Fig. 1. The condition of TC is expressed as

Tc ≤ TFFT + TGI . (16)

For instance, N=108, TFFT=3.2 μs, and TGI=0.8 μs assumes
the OFDM parameters of IEEE802.11n standard with a 40-
MHz channel. When a detector operates at 250-MHz clock
frequency and has 12 pipeline stages,

((108 + 12) · (M − 1) + 12) · 1/(250 × 106)

≤ 3.2 × 10−6 + 0.8 × 10−6 (17)

M ≤ 9.23 (18)

From the above calculation, 9-step computation is appropri-
ate in this case. We treat the cases of 9-step and 2-step com-
putations in the circuit, which are assumed in IEEE802.11n
with a 40-MHz channel and IEEE802.11ac with an 80-MHz

328
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

channel, respectively.

4.3 Strassen’s Algorithm

As explained in Sect. 3, we use Strassen’s algorithm in im-
plementation of a MIMO detector. It divides a 4 × 4 matrix
into four 2×2 submatrices and performs matrix inversion by
analytic solution. The preprocessing in (2) can be expressed
by the following equations:

b11 = h11h11 + h12h∗12 + σ
2I (19)

b12 = h11h∗21 + h12h22 (20)

b22 = h21h∗21 + h22h22 + σ
2I (21)

c1 = b−1
11 (22)

c2 = bH
12c1 (23)

c3 = c2b12 (24)

c4 = b22 − c3 (25)

c5 = c−1
4 (26)

c6 = cH
2 c5 (27)

c7 = c6c2 (28)

c8 = c1 + c7 (29)

g11 = c8h11 − c6h21 (30)

g12 = c8h12 − c6h22 (31)

g21 = −cH
6 h11 + c5h21 (32)

g22 = −cH
6 h12 + c5h22, (33)

where hi j and gi j (i={1,2}, j={1,2}) indicate a 2 × 2 sub-
matrix of H[k] and G[k] with omitting a subcarrier index k.
These computations consist of 2 × 2 matrix operations and
have similarities among the above equations. The divisions
of 9-step and 2-step computations in Strassen’s algorithm
are indicated in Table 2. Equations (19)–(33) are divided
so as to equalize the numbers of matrix operations (multi-
plication, addition/subtraction, and inversion) at each step.
The minimum requirement of 2 × 2 matrix arithmetic units
in circuit design is given by this division.

4.4 Dynamically Reconfigurable Architecture

Figure 6 shows a flowchart of 2 × 2 matrix operations for
the 9-step computation, which is given by two types of op-
eration flow, i.e., “Type A” and “Type B.” These matrix op-
eration flows are used in steps in Table 2. The addition of
elements by σ2 and the Hermitian transpose are omitted be-
cause of their few complexity. The operation flows in “Type
A” and “Type B” are different, however they can share the
same operation units in matrix multiplication and addition.
Dynamically reconfigurable architecture is a reasonable idea
to realize this hardware resource sharing, which is achieved
by changing data paths among matrix operation units. Dy-
namically reconfigurable architecture changes data path pat-
terns among circuit units and their functions by the circuit
units themselves. It provides a high degree of flexibility
in changing circuit specifications and applications [15], [16]

Table 2 Division of Strassen’s algorithm in (19) to (33).

Fig. 6 Flowchart of operations in the 9-step computation.

and hardware cost reduction by sharing common functional
resources [17]. For digital signal processors, the flexibility
enables implementation of various kinds of hardware pro-
cessing in multimedia and wireless applications. This case
reconfigures interconnections and logic functions in proces-
sor and memory units [15], [17]. For dedicated circuits, the
reconfigurability is used for dynamically changing circuit
specifications (e.g., varying FFT size in [16]) by reconfigur-
ing interconnections and logic functions in arithmetic units.
We make use of dynamically reconfigurable architecture for
switching the matrix operation flows in a MIMO detector.
It can minimize the used number of matrix arithmetic units
by resource sharing even for every types of step computa-
tions, which are indicated by the items of “Minimum Re-
quirements” in Table 2.

The circuit structure of a MIMO detector in the 9-step

YOSHIZAWA et al.: VLSI IMPLEMENTATION OF A SCALABLE PIPELINE MMSE MIMO DETECTOR FOR A 4 × 4 MIMO-OFDM RECEIVER
329

Fig. 7 Circuit structure in the 9-step computation.

Fig. 8 Flowchart of operations in the 2-step computation.

computation is illustrated in Fig. 7. The signal “Sel” is used
for switching the operation flows of “Type A” and “Type B.”
The output data moves to external memory and is reused
as the intermediate value at the next step. For instance, the
output data of b11 at the “Step #1” is utilized for the data
input at the “Step #4.” The external memory is assumed to
be shared by the other processing, e.g., MIMO channel esti-
mation and MIMO decoding. The detector has the total 12
pipeline stages when data goes through the matrix inversion
to the matrix addition.

The flowchart of the 2-step computation is illustrated
in Fig. 8. The “Type A” and “Type B” have the same matrix

Fig. 9 Circuit structure in the 2-step computation.

operations marked as “4 × 4 MUL” and “4 × 4 INV HALF.”
It indicates that the 2-step computation can be achieved by
changing data paths between “4 × 4 MUL” and “4 × 4 INV
HALF.” The circuit structure of a MIMO detector in the 2-
step computation is shown in Fig. 9. The detector has max-
imum 15 pipeline stages. The order of operation flows in
“4×4 MUL” and “4×4 INV HALF” can be switched by the
control signal “Sel.”

For 2×2 matrix operation units, we use the same circuit
structure of pipelined arithmetic units presented in our pre-
vious work [11]. In 2 × 2 matrix inversion, we apply direct
computation using

(
λ11 λ12

λ21 λ22

)−1

=
1

λ11λ22 − λ12λ21

(
λ22 −λ12

−λ21 λ11

)
. (34)

5. Implementation Results

The implementation results of the proposed detectors de-
signed by 9-step and 2-step computations and the compari-
son with the conventional detectors are summarized in Ta-
ble 3. The 9-step and 2-step computations operate at clock
frequency of 250 MHz and 160 MHz, respectively. The 24-
bit wordlength in a fixed-point format with dynamic floating
scaling is adopted in both detectors. The data where the pro-
cessing time is less than the acceptable time are meshed in
the table. The detectors based on iterative architecture [5],
[6] satisfy up to the condition of 52 subcarriers assuming
IEEE802.11n standard at a 20-MHz channel. The complete
pipeline detector [11] can provide real-time processing for
all the conditions in subcarriers, however it requires two mil-
lions logic gates. The conditions of 216 and 472 subcarriers
would be suitable for an 80-MHz channel OFDM discussed
in the standardization of IEEE802.11ac, which have been
evaluated in [12]. The 9-step computation is optimized for
the condition of 108 subcarriers (explained in Sect. 4.2) and
has reduced circuit scale by 86% compared with the previ-
ous detector [11]. The 2-step computation can satisfy all the
conditions of subcarriers and has reduced circuit scale by
60%. The proposed scalable pipeline architecture achieves

330
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

Table 3 Circuit performance of MMSE MIMO detectors.

power reduction of 1/11 and 1/4 in the 9-step and 2-step
computation, respectively.

6. Conclusion

We have presented a scalable pipeline MMSE MIMO detec-
tor for a 4 × 4 MIMO-OFDM receiver. The new concept
is to optimize a circuit structure of a detector by adjusting
the number of iteration steps according to various types of
OFDM system. We have proposed scalable pipeline archi-
tecture based on this concept and presented the design of
a MMSE MIMO detector. In the VLSI implementation,
the designed detectors of 9-step and 2-step computations
have attained both circuit reduction and real-time process-
ing on the conditions of subcarriers in IEEE802.11n and
IEEE802.11ac. Other scalable pipeline detectors (e.g., 4-
and 5- step computations) could be designed according to
the proposed architecture, whose implementations will be
presented in our future works.

References

[1] “IEEE P802.11n/D4.00: Draft amendment to wireless LAN media
access control (MAC) and physical layer (PHY) specifications: En-
hancements for higher throughput,” March 2008.

[2] Rolf de V, “802.11ac Usage Models Document,” doc.:IEEE802.11-
09/0161r2, Jan. 2009.

[3] V. Jungnickel, A. Forck, T. Haustein, et al., “1 Gbit/s MIMO-OFDM
transmission experiments,” IEEE Vehicular Technology Conference
(VTC), vol.2, pp.25–28, Sept. 2005.

[4] J. Eilert, D. Wu, and D. Liu, “Efficient complex matrix inversion for
MIMO software defined radio,” IEEE International Symposium on
Circuits and Systems (ISCAS), pp.2610–2613, May 2007.

[5] A. Burg, S. Haene, D. Perels, P. Luethi, N. Felber, and W. Fichtner,
“Algorithm and VLSI architecture for linear MMSE detection in
MIMO-OFDM systems,” IEEE International Symposium on Cir-
cuits and Systems (ISCAS), pp.4102–4105, May 2006.

[6] H.S. Kim, W. Zhu, J. Bhatia, K. Mohammed, A. Shah, and B.
Daneshrad, “A practical, hardware friendly MMSE detector for
MIMO-OFDM-based systems,” EURASIP Journal on Advances in
Signal Processing, vol.2008, Article ID 267460, 2008.

[7] Z. Khan, T. Arslan, J.S. Thompson, and A.T. Erdogan, “Area &
power efficient VLSI architecture for computing pseudo inverse of
channel matrix in a MIMO wireless system,” 19th International Con-
ference on VLSI Design (VLSID), Jan. 2006.

[8] D. Perels, S. Haene, P. Luethi, A. Burg, N. Felber, W. Fichtner, and
H. Bolcskei, “ASIC implementation of a MIMO-OFDM transceiver
for 192 Mbps WLANs,” 31st European Solid-State Circuits Confer-
ence (ESSCIRC), pp.215–218, Sept. 2005.

[9] S. Chen, T. Zhang, and M. Goel, “Relaxed tree search MIMO signal
detection algorithm design and VLSI implementation,” IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), pp.1147–
1150, May 2006.

[10] B. Mennenga, E. Matus, and G. Fettweis, “Vectorization of the
sphere detection algorithm,” IEEE International Symposium on Cir-
cuits and Systems (ISCAS), pp.2806–2809, May 2009.

[11] S. Yoshizawa, Y. Yamauchi, and Y. Miyanaga, “VLSI implementa-
tion of a complete pipeline MMSE detector for a 4×4 MIMO-OFDM
receiver,” IEICE Trans. Fundamentals, vol.E91-A, no.7, pp.1757–
1762, July 2008.

[12] S. Yoshizawa and Y. Miyanaga, “VLSI implementation of a 4 × 4
MIMO-OFDM transceiver with an 80-MHz channel bandwidth,”
IEEE International Symposium on Circuits and Systems (ISCAS),
pp.1743–1746, May 2009.

[13] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math.,
vol.13, no.3, pp.354–356, 1969.

[14] M. Myllyla, J.-M. Hintikka, J.R. Cavallaro, and M. Juntti, “Com-
plexity analysis of MMSE detector architectures for MIMO OFDM
systems,” IEEE International Symposium on Spread Spectrum Tech-
niques and Applications (ISSSTA), pp.12–16, Sydney, Aug. 2004.

[15] J. Becker, T. Pionteck, and M. Glesner, “DReAM: A dynamically
reconfigurable architecture for future mobile communication appli-
cations,” Proc. The Roadmap to Reconfigurable Computing, 10th
International Workshop on Field-Programmable Logic and Applica-
tions, pp.312–321, Aug. 2000.

[16] G. Zhong, F. Xu, and A.N. Willson, “A power-scalable reconfig-
urable FFT/IFFT IC based on a multi-processor ring,” IEEE J. Solid-

YOSHIZAWA et al.: VLSI IMPLEMENTATION OF A SCALABLE PIPELINE MMSE MIMO DETECTOR FOR A 4 × 4 MIMO-OFDM RECEIVER
331

State Circuits, vol.41, no.2, pp.483–495, Feb. 2006.
[17] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi, “Resource shar-

ing and pipelining in coarse-grained reconfigurable architecture for
domain-specific optimization,” Proc. Design, Automation and Test
in Europe (DATE), vol.1, pp.12–17, March 2005.

Shingo Yoshizawa received the B.E., M.E.,
and Ph.D. degrees from Hokkaido University,
Japan in 2001, 2003 and 2005, respectively. He
is an Assistant Processor and currently working
at the Graduate School of Information Science
and Technology, Hokkaido University. His re-
search interests are speech processing, wireless
communication, and VLSI architecture.

Hirokazu Ikeuchi received the B.S. degree
from Hokkaido University, Japan in 2009. He
is currently studying at the Graduate School of
Information Science and Technology, Hokkaido
University. His research interests are wireless
communication and VLSI design.

Yoshikazu Miyanaga received the B.S.,
M.S., and D.Eng. degrees from Hokkaido Uni-
versity, Japan in 1979, 1981, and 1986, respec-
tively. From 1983 to 1987, he was a Research
Associate at the Institute for Electronic Science,
Hokkaido University. From 1987 to 1988, he
was a Lecturer at the Faculty of Engineering of
Hokkaido University. From 1988 to 1997, he
was an Associate Professor there. He is cur-
rently a Professor at the Graduate School of In-
formation Science and Technology, Hokkaido

University. His current research interests are adaptive signal processing,
non-linear signal processing, and parallel-pipelined VLSI systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages false
 /ColorImageFilter /None
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF96fb6c175b664f1a8a8c7528306e8a2d5b9a3002753b50cf306e57277e2e309251683066004f00460046306b3002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

