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ABSTRACT 

Integration of CO2 flux observations with remote sensing technique and ecosystem modeling is expected to 

be useful for estimation of gross primary production (GPP). We focused on the changes in the two main 

parameters for the canopy-scale lightresponse curve—Pmax (maximum GPP at light saturation) and  

(initial slope)—as indicators to represent canopy photosynthetic capacity. We hypothesized that Pmax and  

could be evaluated by using spectral reflectance related to the changes in the levels of canopy nitrogen and 

chlorophyll. We analyzed the relationships between Pmax and , derived from tower-based CO2 flux 

observations, and ground-based spectral vegetation indices (VIs) in a temperate deciduous coniferous 

forest. 

The canopy-scale Pmax and  showed clear seasonal changes accompanying phenological stages. Both 

the variations in Pmax and  were strongly correlated with VIs, especially with the ratio vegetation index 

(RVI) and enhanced vegetation index (EVI), independent of the growth stages. Moreover, day-to-day 

short-term variations of Pmax and  were affected by meteorological conditions such as vapor pressure 
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deficit (VPD) and relative solar radiation which was calculated as the ratio of monitored radiation per 

theoretical maximum radiation. 

Thus, seasonal changes of Pmax and  were effectively assessed by RVI or EVI, and their short-term 

variations were evaluated by the empirical relationships with VPD and relative solar radiation. We propose 

a new simple method for estimating GPP with good precision; by fitting the lightresponse function with 

the evaluated parameters, the estimated GPP reflects 3 types of temporal variation: diurnal, day-to-day, and 

seasonal. 

 

Keywords: GPP, lightresponse curve, maximum photosynthesis (Pmax), initial slope (), spectral 

vegetation index, vapor pressure deficit (VPD), relative solar radiation, eddy covariance 
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1. Introduction 

Estimating the uptake of CO2 by terrestrial ecosystems is an important consideration in the forecasting 

of global warming. The eddy covariance method is used worldwide to measure CO2 flux as a precise 

means for continuous measurement of CO2 exchange. The data have accumulated in recent years, and 

regional comparison studies are being performed (e.g., Falge et al., 2002; Saigusa et al., 2008). To 

estimate CO2 exchange over wide areas, the CO2 flux measurements from distributed points must be 

scaled up to spatially continuous estimates. Remote sensing technique and terrestrial ecosystem 

models should be useful for this purpose. Because satellite remote sensing allows simultaneous 

repetitive observations over wide areas, information can be obtained with extensive temporal and 

spatial coverage. The spectral data from optical remote sensing can be used to evaluate parameters in 

ecological models based on photosynthetic mechanisms. The spectral data should reflect 

physiological characteristics independent of vegetation types or growth stages. 

One of the methods that utilize remote sensing data to estimate GPP is the light use efficiency 

(LUE) model (Monteith, 1972, 1977; Prince and Goward, 1995). The LUE model expresses GPP as 

the product of absorbed photosynthetically active radiation (APAR) and the LUE. APAR is calculated 

by multiplication of observed incident PAR by the fraction of absorbed PAR (FAPAR), which is 

estimated from vegetation indices (VIs) such as the normalized difference vegetation index (NDVI) or 

the enhanced vegetation index (EVI), obtained by remote sensing (e.g., Huete et al., 2002). However, 

the relationship between FAPAR and NDVI shows seasonal hysteresis, being affected by 

phenological stages (Jenkins et al., 2007). On the other hand, although the LUE, the ratio of GPP to 

APAR, is often estimated by using VIs such as photochemical reflectance index (PRI) (Nichol et al., 

2006; Nakaji et al., 2008), there are some problems on the estimation of LUE from VIs in the whole 

time scales. The LUE is affected by light environments such as variations in radiation intensity and 

sky condition (Sims et al. 2005; Nakaji et al. 2007).  
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The phenological development of vegetation strongly affects GPP of deciduous forests (Saigusa 

et al., 2008). Temporal variations of photosynthetic capacity and efficiency at canopy scale have not 

been adequately assessed in many models, even though the evident seasonal changes of those at leaf 

scale are shown (Muraoka and Koizumi, 2005). Therefore, our objective in this study was to assess the 

variations of canopy photosynthetic capacity and efficiency using spectral information and a plant 

physiological approach, to allow a scale-up of tower-based CO2 flux observation data to a CO2 balance 

over wide areas. For this purpose, we focused on the lightresponse function at canopy scale and 

variations of its two main parameters, the maximum GPP under light saturation (Pmax) and the initial 

slope () of lightresponse curve, instead of on LUE and FAPAR. 

A number of physiological studies at foliage scale have pointed out that the maximum 

photosynthetic capacity (Amax) is correlated with leaf nitrogen (N) level (Reich et al., 1995, 1999). 

Furthermore, the correlations between mass-based Amax and mass-based N can be described with one 

general equation independent of plant functional type or biome (Wright et al., 2004). Also, the initial 

slope of the lightresponse curve is related to chlorophyll concentration, which is associated with the 

electron transport rate. Remote sensing studies have proven that foliage N and chlorophyll content are 

evident in the spectral reflectance (e.g., Yoder and Pettigrew-Crosby, 1995). Therefore, we 

hypothesized that Pmax and  could be evaluated by using spectral reflectance as related to changes in 

canopy N and chlorophyll levels. 

However, due to the limit of temporal and spatial resolution of remote sensing, it is difficult to 

detect short-term responses of plants or small physiological changes, such as stomatal conductance. 

Then we analyzed the relationship between day-to-day short-term variations of Pmax and  with daily 

meteorological conditions. We combined our results for both seasonal and short-term variations to 

estimate the canopy-scale Pmax and , and thereby demonstrate and validate a new method for 

estimating GPP by using spectral vegetation indices and the lightresponse function. 
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2. Background and hypothesis 

2.1. Lightresponse curve, Pmax and  

Pmax and  at canopy scale, as at leaf scale, are important parameters of photosynthesis, and they 

can be calculated from CO2 flux measurements (Ruimy et al., 1995). GPP is obtained as the sum of net 

ecosystem production (NEP) and ecosystem respiration (RE): 

 GPP = NEP + RE (1) 

Here, NEP is assumed equal to the negative of net ecosystem CO2 exchange (NEE). GPP has been 

approximated as a function of PAR by the lightresponse curve. Curve-fitting of the lightresponse 

curve by using rectangular hyperbolic functions is generally used as an effective method to gap-fill for 

missing values in NEE (Falge et al., 2001). Also the non-rectangular hyperbolic equation (Thornley, 

1976) is widely applied for gap-filling of NEE (Kosugi et al., 2005; Saigusa et al., 2008), and for 

predicting canopy photosynthesis (e.g., Saito et al., 2009). We compared these equations and selected 

the following non-rectangular hyperbolic equation to estimate GPP because of the best fit to GPP 

among them at this site (Appendix A): 

 
Rd

PPP maxmaxmax 





2

PAR4PARPAR
GPP

2

 (2) 

Here, Pmax (mol CO2 m
–2 s–1) is the maximum GPP at light saturation,  (mol CO2 [mol 

photon]–1) is the initial slope of the curve, and  represents the convexity of the curve. Rd (mol CO2 

m–2 s–1) is daytime respiration. 

2.2 Vegetation indices 

We analyzed the relationships between photosynthetic parameters and several indices (Table 1). 

NDVI, EVI, and the ratio vegetation index (RVI) are indices for green leaf quantity based on 

Table 1 
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differences in reflectance between red and near-infrared bands. Chlorophyll has high absorbance in 

the visible red wavelength region (around 630–690 nm), whereas there is strong reflectance from cell 

walls and intracellular water of plants in the near-infrared region (around 740–900 nm). Thus, an 

increase in the quantity of healthy green leaves is accompanied by a decrease in red reflectance and a 

rise in near-infrared reflectance. RVI is a simple ratio of the reflectance of red and near-infrared bands. 

NDVI is widely used for assessing parameters such as the vegetation cover ratio, leaf area index 

(LAI), and FAPAR (e.g., Sellers et al., 1992; Potter et al., 1993; Myneni et al., 1997); however, 

because it is a normalized index, it has the disadvantage of saturating at high biomass (Goward and 

Huemmrich, 1992). EVI corrects this disadvantage and can indicate the status of vegetation with 

mitigating effects of aerosols and soil by incorporating the reflectance for blue wavelengths (Huete 

et al., 2002). We anticipated that EVI and RVI could detect the canopy photosynthetic capacity as 

indices for N content. 

The photochemical reflectance index (PRI) has been proposed as an optical indicator for detecting 

epoxidation and de-epoxidation changes of xanthophyll related to heat dissipation (Gamon et al., 

1997). This index is calculated from the reflectance on both sides of the green absorbance band (531 

and 570 nm). It also corresponds to the carotenoid:chlorophyll pigment ratio (Sims and Gamon, 2002). 

In this study, we expected that PRI might detect the “daytime depression” phenomenon during foliage 

period as well as autumn color changes (Nakaji et al., 2006). 

The canopy chlorophyll index (CCI) has been proposed as an index for reflecting changes in 

chlorophyll content through the red edge shift (Sims et al., 2006). CCI is calculated by the ratio of the 

first derivatives of reflectance at wavelengths around the red edge (700 and 720 nm). 

2.3 Summary of GPP estimation methods 

Various environmental (stress) factors affect the photosynthetic rate of larch canopy. Diurnal and 

daily changes in GPP are mainly controlled by irradiance, as expressed by the lightresponse curve. 

The photosynthetic capacity Pmax and , which regulate the lightresponse curve, have seasonal trends 

in relation to the seasonality in temperature and LAI. Spectral vegetation indices are expected to 
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reflect these seasonal trends in relation to the changes in canopy N level. Moreover, photosynthetic 

capacity would be affected by daily environmental conditions such as temperature, VPD, and soil 

water. 

Therefore, our goal was to provide a precise estimation of GPP with a combination of 3 types of 

temporal resolution: (1) seasonal variation, by using VIs; (2) short-term variation, by using 

meteorological factors; and (3) diurnal variation, by using the lightresponse function (Fig. 1). 

First, we assessed the seasonality of the parameters using VIs in Process 1. From the relationships 

with the VIs (VI1 and VI2, showing the best correlations with Pmax and , respectively), seasonal 

variations for daily-scale Pmax (Pmax_season) and  (_season) could be empirically described as: 

 Pmax_season = f1(VI1),      _season = f2(VI2) (3) 

In addition to the seasonality of the parameters, we defined ΔPmax and Δ as the day-to-day 

short-term variations in daily Pmax and . These were expressed as differences between the 

approximated original parameters (Pmax and  in Eq. 2) and the estimated seasonal parameters 

(Pmax_season and _season in Eq. 3) as follows: 

 ΔPmax = Pmax – Pmax_season, 

Δ =  – _season (4) 

ΔPmax and Δ were expressed as empirical functions of meteorological factors in Process 2. Then, 

the estimated daily Pmax and  (est_Pmax, est_) were determined as the sums of seasonal and 

short-term variations of parameters. 

Finally in Process 3, GPP was estimated by fitting the daily fluctuating parameters est_Pmax and 

est_, Rd and PAR to the lightresponse function (Eq. 2). When half-hourly PAR data are used, 

half-hourly GPP estimates are obtained. 

Fig. 1 
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3. Methods 

3.1 Study site 

The study site was a temperate deciduous coniferous forest at Tomakomai Flux Research Site (lat. 

4244N, long. 14131E, 125 m above sea level), in the northern part of Japan. About 81 of the 

approximately 100-ha site was dominated by a stand of Japanese larch (Larix kaempferi). The trees 

were about 45 years old, 15 m tall, with mean diameter at breast height (DBH) of 19 cm. Other trees on 

the site included deciduous trees such as birch (Betula ermanii, B. platyphylla) and Japanese elm 

(Ulmus japonica) mixed with evergreen conifer species such as spruce (Picea jezoensis). The forest 

floor was thickly covered with Japanese spurge (Pachysandra terminalis), ferns (Dryopteris 

crassirhizoma), and other species. 

The maximum LAI for the canopy was 5.6 m2 m–2 and for the lower-layer vegetation, 3.6 m2 m–2, 

for a total maximum of 9.2 m2 m–2, as determined by a leaf collection method. The seasonal change of 

LAI was estimated from Beer’s law using an extinction coefficient of 0.58 and a plant area index of 1.4 

m2 m–2 (Hirata et al., 2007). The soil was a highly permeable oligotrophic Regosol of volcanic origin 

(Fujinuma et al., 2001). The mean air temperature was 6.2 °C and mean annual precipitation was 

1043 mm during 2001–2003. 

The flux tower and forest at the site were completely destroyed by a typhoon on 8 September 

2004. 

3.2 Measurement of CO2 flux and micrometeorological parameters 

CO2 flux (Fc) was measured using the eddy covariance technique with a closed-path infrared gas 

analyzer (Li6262; Li-Cor, Lincoln, Nebraska, USA); wind velocity and air temperature were 

measured simultaneously using a three-dimensional sonic anemometer-thermometer (DA-600-3TV; 

Kaijo, Tokyo, Japan) at 27 m on the tower. The sampled air was drawn from an inlet at 27-m height 

and pumped into the gas analyzer. Raw data were recorded at 10 Hz using a data logger (DR-M3; 

TEAC, Tokyo, Japan). CO2 measurements were calibrated once a day by flowing two CO2 standard 
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gases of 320 and 420 ppmv (Hirano et al., 2003). After removal of noise spikes, corrections were 

applied for three-dimensional coordinate rotation, for time lag, and for air density fluctuations, and 

then half-hourly mean values for Fc were calculated. In addition, the rate of change in CO2 storage (Fs) 

below the Fc measurement height was obtained from the vertical profile of CO2 concentrations at eight 

levels. 

Net ecosystem exchange (NEE) was calculated as the sum of Fc and Fs: 

 NEE = Fc + Fs (5) 

Meteorological factors such as global solar radiation, PAR, air temperature, precipitation on the 

flux tower, soil temperature, and soil water content were measured. As we did not monitor diffuse 

solar radiation, for this study we substituted the relative solar radiation (rSR). We defined rSR as the 

ratio of observed irradiance to theoretical irradiance of full sunlight, which was estimated from the 

solar zenith angle at the time, atmospheric turbidity, albedo, and precipitable water vapor (Kondo and 

Miura, 1983). We distinguished clear sky and cloudy conditions in this study by values of rSR ≥ 75% 

or rSR < 75%, respectively. 

3.3 Calculation of photosynthetic parameters 

The data from January 2003 to August 2004 were available for analysis. When the friction velocity 

(u*) was less than 0.3 m s–1, nighttime Fc tended to be underestimated at this site (Hirata et al., 2007), 

so under these conditions the values for NEE were excluded. NEE during nighttime and winter 

snowfall periods was assumed to be equal to RE. The observed RE was regressed using the equation of 

Lloyd and Taylor (1994): 
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Here, REref is the ecosystem respiration rate (mol CO2 m
–2 s–1) at the reference temperature (10 °C), 

E0 is activation energy (J mol–1), R is the gas constant (R = 8.314 J mol–1 K–1), Ts is the soil 

temperature (°C, 0.05 m depth), and T0 and Tk are constants with T0 = 273.15 K and Tk = 227.13 K. 

The two regression parameters, REref and E0, were determined each day with a 91-day moving window, 

considered to reflect the seasonality of RE. Gaps in nighttime RE were filled and daytime RE was 

estimated from the soil temperature by fitting Eq. 6. GPP was then calculated by using Eq. 1. 

GPP was fitted to the lightresponse curve (Eq. 2) with a 3-day (2 previous days included) 

moving window throughout a year, and the daily parameters Pmax (mol CO2 m
–2 s–1),  (mol CO2 

[mol photon]–1), and Rd (mol CO2 m–2 s–1) were determined. Here, the convexity () of the 

lightresponse curve was set at 0.9, following previous studies (Kosugi et al., 2005; Saigusa et al., 

2008; Saito et al., 2009). The Gauss-Newton least-squares method was used in the non-linear 

regression. Although a regression period of approximately 10 days is recommended for use in flux 

gap-filling (Falge et al., 2001; Baldocchi and Wilson, 2001), we used a moving window of 3 days to 

investigate the short-term effects of weather conditions. Because weather conditions showed a 3- or 

4-day cycle variation especially in spring in Japan due to migratory High (e.g., Nemoto et al., 1982). 

The window size of 3 days was sufficiently short to remove seasonal effects and was long enough to 

provide sufficient data points for stable regression analysis.  

Parameter values were excluded from analysis when the number of valid data points were too few 

for regression analysis (<20 for a 3-d period), when convergence was impossible (the coefficient of 

determination [r2] was less than 0.1), when the parameters were out of range (Pmax ≥ 50.0 or ≤ 0.1 

mol CO2 m
–2 s–1;  ≥ 1.0 or ≤ 0.001 mol CO2 [mol photon]–1), or when PAR was too low to reach 

light saturation. 

3.4 Spectral reflectance and vegetation indices 

Upward and downward spectral radiation was observed with two grating spectroradiometers 

(MS-700; EKO Instruments, Tokyo, Japan) mounted on the tower at 40-m height. Spectral radiation 

for 256 wavelength bands ranging from 305 to 1150 nm at about 3.3-nm intervals was measured every 
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minute, and the spectral reflectance of larch canopy was derived from the upward radiation divided by 

the downward radiation. Both spectroradiometers were simultaneously calibrated once a year for the 

radiation level of each band. 

Each VI was calculated from the averaged spectral reflectance at three bands around each 

wavelength in Table 1. We used the data for half-hourly mean values around noon as the 

representative values for each day. If there was rain within the preceding 12 hours, the data were 

excluded from the analysis. Assuming the proposed application of this method for satellite remote 

sensing, we only used the data from under clear sky conditions (rSR > 75%, see Section 3.2). 

3.5 Data set 

In this study, we used the data of CO2 flux, meteorological parameters and spectral reflectance which 

were collected from January 2003 to August 2004, just before the destruction of the tower. In order to 

analyze the seasonal variation of the photosynthetic parameters and VIs, the data from the autumn of 

2003 were added as a continuation after August 2004. We selected 50% of the days at random for 

"training data" to construct the model, and used the rest of the data set as "test data" to examine the 

model validity. 

3.6 Monitoring of phenology 

To compare the seasonal changes in Pmax and  with the actual phenology of the vegetation, we 

visually assessed the phenology by using photographic images from digital cameras mounted on the 

flux tower. 

The Japanese larch has two types of shoots: short-shoots and long-shoots. First, buds of the 

short-shoots break and grow, developing their leaves on the old branches of the previous year, which 

here we call leaf "flush". Subsequently, the long-shoots grow from the tips of the previous year’s 

branches. 
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4. Results and discussion 

4.1 Seasonal variations in Pmax and  

Clear seasonal variations of canopy Pmax and  were observed related to changes in the vegetation 

phenology (Fig. 2). The flush of leaves in the larch forest started at the end of April, about 2 weeks 

after the disappearance of snow, and short-shoot leaves had developed for about 3 weeks. Both Pmax 

and  increased along with the flush of leaves. 

From mid-June to the beginning of August, long-shoots elongated. Pmax and  continued to 

increase and reached their maximum values at the end of June, during the elongation period. Pmax and 

 gradually decreased from August with large daily fluctuations, while temperature and LAI remained 

at their maximum levels. 

The leaf color change started in mid-October and reached peak coloration at the end of October. 

The leaves had fallen within the first 10 days of November. Pmax and  continued to decline, reaching 

minimum values during the period of leaf color change. 

 

4.2 Seasonal variations of vegetation indices (VIs) 

Each VI had a different seasonal pattern, with different times of increase, maximum, and decrease (Fig. 

3). At the time of snow disappearance, NDVI showed a jump up from its minimum level, and EVI and 

RVI rose a little, on the contrary PRI dropped down. NDVI sensitively reflected the condition of the 

ground surface. NDVI, EVI, and RVI increased linearly over 1 month just after the start of flush, 

whereas PRI and CCI increased more gradually over 2 months. Although NDVI maintained maximum 

values over 2 months during summer, EVI and RVI had shorter periods of maximum values, from 

mid-June to July. In early July of 2004, after a few days of heavy rain and low temperatures, LAI 

decreased even though it was still the leaf extension period (Fig. 2). VIs except for NDVI detected this 

Fig. 2 

Fig. 3 



 13

change and decreased at the same time (Fig. 3). NDVI became saturated during summer and did not 

follow the decrease of LAI. 

PRI and CCI peaked in late summer in 2003. Whereas EVI and RVI declined gradually from late 

summer, PRI declined later, in early autumn. PRI would be affected by the decrease of chlorophyll and 

the increase of carotenoid pigments (Sims and Gamon, 2002) and is therefore more sensitive to 

senescence than other VIs. PRI had greater daily fluctuation than the other VIs. In early June,  

decreased during a few sunny days, and the drop was followed only by PRI. The strong solar radiation 

probably caused de-epoxidation of xanthophyll pigments for photoprotection, which was possibly 

detected by PRI (Gamon et al., 1992; Nakaji et al., 2006). PRI showed the unique pattern of declining 

in autumn far below the spring baseline and rising again during winter. 

 

4.3 Relationships of Pmax and  to VIs 

Pmax and  were significantly correlated with VIs, LAI and temperature, and the correlations with VIs 

were higher than with LAI or temperature (Table 2). Pmax was strongly correlated with EVI and RVI (r 

= 0.92 for both). NDVI and Pmax had an exponential relationship, because NDVI saturated during the 

period of maximum Pmax. PRI showed a lower correlation with Pmax because of its different pattern of 

decline in autumn. 

 had highest correlation with RVI (r = 0.81) and next highest with EVI (r = 0.79), and the 

correlation between Pmax and  was relatively high (r = 0.74, data not shown). NDVI, PRI, and CCI 

had lower correlations with , owing to different peak periods and patterns of decline. Variations of 

both  and PRI coincided well only during the period from spring to summer. 

Seasonal variations of Pmax and  at canopy scale have also been readily observed in other 

temperate mixed forest sites, whereas they are not clearly observed in subtropical evergreen 

coniferous forests or evergreen broadleaf forests (Hollinger et al., 1999; Zhang et al., 2006). These 

studies suggested that the changes in temperature or LAI mainly controlled the seasonal changes of 

canopy Pmax and . However, at our site we found that the correlations between LAI or temperature 

Table 2 
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and Pmax and  were not higher than those between VIs and Pmax or . The ratio of LAI to Pmax was 

different depending on the growth stage of the vegetation. It was higher in autumn than in spring, 

because leaves that had changed color, with reduced photosynthetic capacity, were still present on the 

plants in autumn. 

Smith et al. (2002) observed a linear relationship between forest productivity and N concentration 

of canopy leaves independent of vegetation type. Furthermore, canopy N concentration correlates with 

the absorption rate for chlorophyll in the red region (around 680 nm) and blue region (around 490 nm), 

and the reflectance rate in the near-infrared region. This indicates the utility of VIs based on these 

bands, such as EVI, for estimating canopy N content and forest productivity. 

Inoue et al. (2008) investigated the relationship between seasonal changes in Pmax ,  and various 

spectral indices at an irrigated rice field. They report that Pmax is correlated with RVI and other indices 

related to the wavelengths in chlorophyll a and b absorption region, and for , related to the 

wavelengths in blue region (450 nm) and infrared region (1330 nm).   

Therefore, our results, together with those of others, identified RVI and/or EVI as available 

indices to assess photosynthetic parameters more directly, significantly, and effectively than LAI or 

air temperature, because they reflect the changes in canopy N or chlorophyll content. Either RVI or 

EVI can be used for estimating the seasonal variation of Pmax, and here we selected RVI. The same 

analysis was conducted for EVI (Appendix B). We obtained the following empirical equations for the 

relationships between Pmax (mol CO2 m
–2 s–1) and RVI, and  (mol CO2 [mol photon]–1) and RVI, 

from the training data (Fig. 4): 

 Pmax = 3.65 × RVI – 3.35 (7) 

  = 0.005 × RVI – 0.001 (8) 

 

Fig. 4 
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4.4 Short-term variations of Pmax and , and the effects of meteorological factors 

Pmax and  had large short-term variations (ΔPmax and Δ) during photosynthetically active periods 

(herein, Pmax > 20 mol CO2 m
–2 s–1, and  > 0.03 mol CO2 [mol photon]–1). We analyzed the effects of 

four meteorological parameters on ΔPmax and Δ for 3-day periods: daily temperature anomaly 

(ΔT, °C), relative solar radiation (rSR, %), maximum vapor pressure deficit (VPD, kPa), and soil 

water content (SWC, %). We used ΔT instead of daily mean temperature to remove the seasonal trend. 

Here, we defined ΔT as the difference between daily mean temperature and its 14-day running mean. 

We substituted rSR for the ratio of direct to diffuse radiation (Table 3). 

We found a significant negative correlation between ΔPmax and rSR (r = 0.49, P < 0.0001) and 

with VPD (r = 0.77, P < 0.0001; Fig. 5a), and no significant relationship with either ΔT or SWC. 

When VPD was higher than about 1 kPa in summer, many examples of ‘daytime depression’ were 

observed at this site (Wang et al., 2004), because the higher VPD caused lower stomatal conductance 

and lower Pmax. When both VPD and rSR were high on sunny days, photosynthesis became saturated 

in the upper layer of the canopy. Meanwhile, when VPD was low and rSR was low, ΔPmax was high. 

This suggested that on cloudy days diffuse radiation reached more deeply into the canopy and the 

photosynthetic capacity of the entire canopy was enhanced more than on sunny days. Our results agree 

with the diffuse enhancement reported by Gu et al. (2002). Both VPD and rSR had strong synergetic 

effects on ΔPmax. As VPD and rSR are correlated with each other, ΔPmax (mol CO2 m
–2 s–1) can be 

described by the effects of only VPD (kPa) (Fig. 5a) as: 

 ΔPmax = 11.54 ×VPD + 18.69 (9) 

According to previous studies, for European beech forests, CO2 uptake is high at VPD of 0.5-1 

kPa, and CO2 uptake is reduced when VPD becomes higher (Herbst et al., 2002). For Chinese 

evergreen coniferous forests, Pmax reaches its maximum value when VPD is about 1.26 kPa and 

rapidly declines when VPD exceeds 2 kPa (Zhang et al., 2006). The optimum and threshold values of 

VPD probably differ for each vegetation type or canopy structure. 

Table 3 

Fig. 5 
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For Δ, significant correlation was found only with rSR (r = 0.42, P < 0.0001; Fig. 5b), and less 

significant correlations were shown with ΔT and VPD (Table3). After several consecutive sunny days, 

Δ typically dropped suddenly. Exposure under strong direct solar radiation for few days possibly 

inhibited the canopy photosynthesis. In contrast,  was enhanced when rSR was low, that is, when the 

proportion of diffuse radiation was high, similar to previous observations (Hollinger et al., 1994; Gu et 

al., 2002). 

Thus, we verified that both direct irradiance and diffuse radiation affected Δ. We obtained the 

relationship between Δ (mol CO2 [mol photon]–1) and rSR (%) (Fig. 5b) as: 

 Δ = –0.0002 × rSR + 0.0138  (10) 

Although we expected that soil water content would have some effect on Δ, no significant 

correlation was observed. This may be because there was no severe drought stress during growing 

periods at this site during this study. 

4.5 Estimation of Pmax,  and GPP 

To determine Pmax and  using our new approach, we first estimated the seasonal variations (Pmax_season 

and _season) from their respective relationships with RVI (Eqs. (7) and (8)) on sunny days, using linear 

interpolation for other days. 

Next, ΔPmax (mol CO2 m
–2 s–1) and Δ (mol CO2 [mol photon]–1) were evaluated from VPD 

(kPa) and rSR (%) respectively (Eqs. (9) and (10)). Daily estimated Pmax (est_Pmax [mol CO2 m
–2 s–1]) 

was then determined as the sum of Pmax_season and ΔPmax. The same process was used to determine 

est_. 

Here, we define Pmax and  as previously approximated by fitting the lightresponse curve (Eq. 

(2)) as the "original" Pmax and . Pmax_season as determined from RVI was an underestimate compared to 

the original Pmax (slope = 0.72 for Pmax_season vs. original Pmax). After applying the correction (ΔPmax), 

est_Pmax was closer to the original (slope = 0.95 for est_Pmax vs. original Pmax; Table 4). Similarly, Table 4 
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_season was underestimated by RVI compared with the original , and est_  was an improvement after 

applying the Δ correction (slope of comparison increased from 0.66 before the correction to 0.78 

after; Table 4). Thus, the effectiveness of the meteorological correction for both ΔPmax and Δ was 

confirmed. 

Finally, GPP was estimated by fitting est_Pmax and est_ to the lightresponse function at half-hour 

time steps. Diurnal changes of GPP were well expressed in relation to the light intensity (Fig. 6). 

GPP was precisely estimated from the parameters compared with observed GPP at half-hour time 

steps during the growing season in 2003-2004 (Table 5, Fig. 7). The slope of linear regression between 

observations and estimated GPP was 0.96 (R2 = 0.83), and the standard error (SE) for the estimation 

was 4.21 mol CO2 m
–2 s–1. Also when the parameters were estimated using EVI, GPP was well 

estimated (slope = 0.95, R2 = 0.84, SE = 4.23 mol CO2 m
–2 s–1), almost at the same precision as that 

by using RVI. 

The GPP approximated by using the original parameters had a slope of 0.94 (R2 = 0.87) when 

regressed against observed GPP; the SE was 3.67 mol CO2 m
–2 s–1. This is the implied regression 

error from using the lightresponse function. By our method, GPP tended to be about 4% of 

underestimate, and 83% of the half-hourly variations in observed GPP were explained by our model.  

 

5. Conclusions 

We propose a method for estimating GPP based on the lightresponse function that links remote 

sensing techniques and CO2 flux measurement, from a plant physiological standpoint. With this 

method we parameterized Pmax and  as photosynthetic indicators consisting of both seasonal and 

short-term fluctuating components. The seasonal variations of Pmax and  had higher linear 

correlations with those of VIs such as RVI and EVI than with air temperature or LAI. Our results 

indicated that Pmax and  could be directly and adequately determined using either RVI or EVI. The 

Table 5 

Fig. 6 

Fig. 7 
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seasonality of Pmax and  seemed to correspond to the changing phenology of the vegetation, 

presumably reflecting canopy N or chlorophyll content. 

In addition to seasonal patterns, we found that the short-term variations of Pmax and  were 

affected by VPD and the relative solar radiation, and we suggest the necessity of incorporating both 

seasonal and short-term variations into the estimation of Pmax and . Assuming the use of satellite data, 

which are obtained under clear sky conditions, Pmax, , and GPP would be underestimated without 

corrections for the effects of meteorological conditions. 

Large numbers of parameters in models often cause uncertainty in estimated results, and 

ecosystem modeling has been in need of effective parameterization. We believe that the ability to 

generalize the relationships between Pmax, , and RVI and/or EVI will contribute to ecosystem 

modeling. Both RVI and EVI showed strong correlations with Pmax, and similarly with , and the GPP 

estimates from the parameters assessed by RVI or EVI were not very different. Further investigations 

involving different species and vegetation types should help to determine which VI is better to use for 

parameterization. 

In this study, by using parameters of the lightresponse function that fluctuated daily, we 

demonstrated an improvement in providing accurate GPP estimates with high temporal resolution in 

response to diurnal, short-term, and seasonal changes. To further improve this method, we will also 

need additional studies of meteorological effects on the short-term variations in Pmax and  across 

various biomes and under severe conditions. 
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Appendix A 

We compared the RMSE from following three regression equations with the observed GPP: 

1. Michaelis-Menten’s rectangular hyperbolic equation: 

  Rd
P

P

max

max 




PAR

PAR
GPP     (A.1) 

2. Misterlich’s rectangular hyperbola: 

RdeP maxP

max 

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






  





 PAR/

1GPP                        (A.2) 

Eq. A.1 and A.2 are used by Falge et al. (2001). 

3. The non-rectangular hyperbola (Thornley, 1976; Eq. (2)) with  fixed at 0.9. 

 The data set used and the method of calculation were the same as those mentioned in Section 3.3. 

The averaged RMSE for each equation was, respectively, 3.16, 2.87, and 2.84 mol CO2 m
–2 s–1. 

Therefore, we chose the non-rectangular hyperbola, which had the smallest regression errors. With the 

Michaelis-Menten equation, values of regression coefficients often became unrealistic. The 

parameters of the Misterlich equation were highly correlated and comparable to those of the 

non-rectangular hyperbola. Regressions of parameters of the Misterlich equation and the 

non-rectangular hyperbola yielded slopes and intercepts of 1.06 and –0.36 (R2 = 0.99), respectively, 

for Pmax and 1.32 and 0.0 (R2 = 0.95), respectively, for . 
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Appendix B 

We obtained the following empirical equations for the relationships between Pmax (mol CO2 m
–2 

s–1) and EVI, from the training data: 

 Pmax = 70.50 × EVI – 9.03 (B.1) 

We found a significant negative correlation between ΔPmax (estimated by using EVI) and rSR (r = 

0.52, P < 0.0001) and with VPD (r = 0.73, P < 0.0001), and no significant relationship with either 

ΔT  (r = 0.18) or SWC (r = 0.03). ΔPmax (mol CO2 m
–2 s–1) can be described by the effects of only 

VPD (kPa) as: 

 ΔPmax = –11.00 ×VPD + 19.28 (B.2) 
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RVI using training data under clear sky conditions (n = 46).
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Fig. 5.  Relationship between (a) ∆Pmax with VPD (maximum vapor pressure 
deficit for 3-day periods, kPa), n = 106, and (b) ∆ and rSR (relative solar 
radiation, ), n = 127. Solid lines are regression lines.
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Fig. 6. Diurnal changes of estimated GPP and observed GPP at half-hourly time 
steps (from day of year 229-234 in 2004).
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Fig. 7. Relationship between observed 
GPP and GPP estimated using parameters 
derived from RVI at half-hourly time 
steps (for test data; n = 4025). Solid line 
is regression line, and dashed line 
indicates y = x.
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Table 1. Vegetation indices (VIs) used in this study.

R indicates spectral reflectance at wavelength around  nm. Rnir = R857, Rred = R647, Rblue = R464. 

D is the first derivative of reflectance at wavelengths around  nm.

VI Formulation Reference
NDVI (normalized difference vegetation index) (R nir   R red )/(R nir   R red ) Tucker (1979)
EVI (enhanced vegetation index) 2.5[(R nir  - R red )/(R nir  + 6.1R red  - 7.5R blue  + 1.0)]Huete et al. (2002)
RVI (ratio vegetation index, simple ratio) R nir /R red Rouse et al. (1974)
PRI (photochemical reflectance index) (R 531 R 570 )/(R 531 R 570 ) Gamon et al. (1997)
CCI (canopy chlorophyll index) D 720 /D 700 Sims et al. (2006)



Table 2. Correlation coefficients (r) between 
Pmax,  and VIs, LAI and temperature under 
clear sky conditions (n = 88).

P max 
VI

NDVI 0.88*** 0.78***

EVI 0.92*** 0.79***

RVI 0.92*** 0.81***

PRI 0.74*** 0.63***

CCI 0.88*** 0.77***

0.67*** 0.60***

0.75*** 0.59***

Parameter

LAI
Temperature

*** p < 0.0001 (Pearson’s correlation test).



Table 3.  Relationships between ∆Pmax, ∆ and 
four meteorological factors: ∆T (temperature 
anomaly, oC), rSR (relative solar radiation, ), 
VPD (max vapor pressure deficit for 3-day 
periods, kPa), and SWC (soil water content, ). 

*** p<0.0001, * p<0.01; ns: not significant 
(Pearson’s correlation test). 

∆T  ns  *

rSR  ***  ***

VPD  ***  *

SWC  ns  ns

∆P max   ∆ 
(n = 105) (n = 126)

Meteorological 
factor



Table 4.  Relationships between estimated parameters and the original 
parameters (see text). 

Estimated parameters Slope Intercept R 2

P max _season 0.72  (mol CO2 m
2 s1) 0.83

est_P max 0.95  (mol CO2 m
2 s1) 0.88

 _season 0.66 0.009 (mol CO2 [mol photon]1) 0.78
est_ 0.78 0.007 (mol CO2 [mol photon]1) 0.82

Seasonal parameters (Pmax_season, _season) were estimated by using RVI 
and corrected (est_Pmax, est_) using meteorological factors (n = 171 for 
Pmax, and n = 176 for ).



2011/8/29

Table 5.  Regression parameters for comparison by linear regression of GPP 
estimated using three different parameter sets with observed GPP. GPP was 
estimated at half-hourly time steps (n = 4025).

Parameters used Slope R 2 SE                          
(mol CO2 m

2 s1)

Original parameters by light-response curve-fitting 0.94 0.87 3.67

Estimated P max  by RVI and   by RVI 0.96 0.83 4.21

Estimated P max  by EVI and   by RVI 0.95 0.84 4.23


