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Analyses on Kernel-Specific Generalization Ability for Kernel Regressors
with Training Samples
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Kita-14, Nishi-9, Kita-ku, Sapporo, 060-0814, Japan

{takira,miyakosi}@main.ist.hokudai.ac.jp

Abstract— Theoretical analyses on generalization error of a model
space for kernel regressors with respect to training samples are given
in this paper. In general, the distance between an unknown true
function and a model space tends to be small with a larger set of
training samples. However, it is not clarified that a larger set of
training samples achieves a smaller difference at each point of the
unknown true function and the orthogonal projection of it onto the
model space, compared with a smaller set of training samples. In this
paper, we show that the upper bound of the squared difference at each
point of these two functions with a larger set of training samples is
not larger than that with a smaller set of training samples. We also
give some numerical examples to confirm our theoretical result.

Keywords— kernel regressor; reproducing kernel Hilbert space;
generalization error; training samples;

I. INTRODUCTION

Learning based on kernel machines[1], represented by the
support vector machine[2] and the kernel ridge regressor[2],
is widely known as a powerful tool for various fields of
information science such as pattern recognition, regression
estimation, and density estimation. In general, an appropriate
model selection is required in order to obtain a small gen-
eralization error in kernel machines. Although many methods
for model selection, such as the leave-one-out cross-validation,
were proposed, it is important to analyze generalization error
theoretically since it may be useful to improve the performance
of the model selection methods.

Generalization error is usually defined as the distance
between an unknown true function and an estimated one;
and it can be decomposed into two components in kernel
machines. One is the distance between the unknown true
function and an adopted model space, which is the linear
subspace spanned by kernel functions corresponding to points
in a set of training samples. The other is the distance between
the estimated function and the orthogonal projection of the
unknown true function onto the model space. The former one
was not sufficiently investigated so far, while the latter one was
discussed in many articles (see [3], [4] for instance). In our
previous work[5], we investigated the former one and showed
that a kernel corresponding to the smallest reproducing kernel
Hilbert space including an unknown true function gives the
best model space among a class of kernels with an invariant
metric.

In this paper, we theoretically analyze the generalization
error of the model space with respect to training samples.
It is intuitively trivial that a larger set of training samples
achieves a better model space compared with a smaller set of
training samples. However, it is not trivial that a larger set of
training samples achieves a smaller difference at each point
of the unknown true function and the orthogonal projection
of it onto the model space compared with a smaller set of
training samples. We show that the upper bound of the squared
difference at each point of these two functions with a large set
of training samples is not larger than that with a small set of
training samples. We also give some numerical examples to
confirm our theoretical result.

II. MATHEMATICAL PRELIMINARIES FOR THE THEORY OF
REPRODUCING KERNEL HILBERT SPACES

In this section, we prepare some mathematical tools con-
cerned with the theory of reproducing kernel Hilbert spaces[6],
[7].

Definition 1: [6] Let Rn be an n-dimensional real vector
space and let H be a class of functions defined on D ⊂ Rn,
forming a Hilbert space of real-valued functions. The function
K(x, x̃), (x, x̃ ∈ D) is called a reproducing kernel of H, if

1) For every x̃ ∈ D, K(·, x̃) is a function belonging to H.
2) For every x̃ ∈ D and every f(·) ∈ H,

f(x̃) = 〈f(·),K(·, x̃)〉H, (1)

where 〈·, ·〉H denotes the inner product of the Hilbert
space H.

The Hilbert space H that has a reproducing kernel is called
a reproducing kernel Hilbert space (RKHS). The reproducing
property Eq.(1) enables us to treat a value of a function at a
point in D. Note that reproducing kernels are positive definite
[6]:

N∑
i,j=1

cicjK(xi, xj) ≥ 0, (2)

for any N , c1, . . . , cN ∈ R, and x1, . . . ,xN ∈ D. In addition,
K(x, x̃) = K(x̃, x) for any x, x̃ ∈ D is followed[6]. If a
reproducing kernel K(x, x̃) exists, it is unique[6]. Conversely,



every positive definite function K(x, x̃) has the unique cor-
responding RKHS [6].

Next, we introduce the Schatten product [8] that is a
convenient tool to reveal the reproducing property of kernels.

Definition 2: [8] Let H1 and H2 be Hilbert spaces. The
Schatten product of g ∈ H2 and h ∈ H1 is defined by

(g ⊗ h)f = 〈f, h〉H1g, f ∈ H1. (3)

Note that (g⊗h) is a linear operator from H1 onto H2. It is
easy to show that the following relations hold for h, v ∈ H1,
g, u ∈ H2.

(h ⊗ g)∗ = (g ⊗ h), (4)
(h ⊗ g)(u ⊗ v) = 〈u, g〉H2(h ⊗ v), (5)

where the superscript ∗ denotes the adjoint operator.

III. FORMULATION OF LEARNING PROBLEMS

Let {(yi, xi)|i = 1, . . . , `} be a given training data set with
yi ∈ R, xi ∈ Rn, satisfying

yi = f(xi) + ni, (6)

where f(·) denotes the unknown true function and ni denotes
a zero-mean additive noise. The aim of machine learning is
to estimate the unknown true function f(·) by using the given
training data set and statistical properties of noise.

In this paper, we assume that the unknown true function f(·)
belongs to the RKHS HK corresponding to a certain kernel
function K. If f(·) ∈ HK , then Eq.(6) is rewritten as

yi = 〈f(·),K(·,xi)〉HK
+ ni, (7)

on the basis of the reproducing property of kernels. Let
y = [y1, . . . , y`]′ and n = [n1, . . . , n`]′ with the superscript ′

denoting the transposed matrix (or vector), then applying the
Schatten product to Eq.(7) yields

y =

(∑̀
k=1

[e(`)
k ⊗ K(·, xk)]

)
f(·) + n, (8)

where e
(`)
k denotes the k-th vector of the canonical basis of

R`. For a convenience of description, we write

AK,X =

(∑̀
k=1

[e(`)
k ⊗ K(·, xk)]

)
, (9)

where X = {xk | k ∈ {1, . . . , `}}. The operator AK,X is
a linear operator that maps an element in HK onto R` and
Eq.(8) can be written by

y = AK,Xf(·) + n, (10)

which represents the relation between the unknown true func-
tion f(·) and an output vector y. Therefore, a machine learning
problem can be interpreted as an inversion problem of the
linear equation Eq.(10)[9].

IV. KERNEL SPECIFIC GENERALIZATION ABILITY

In general, a learning result by kernel machines is repre-
sented by a linear combination of K(·, xi), which means that
the learning result is an element in R(A∗

K,X) (the range space
of the linear operator A∗

K,X ) since

f̂(·) = A∗
Kα

=

(∑̀
k=1

[K(·, xk) ⊗ e
(`)
k ]

)
α

=
∑̀
k=1

αkK(·, xk) (11)

holds, where α = [α1, . . . , α`]′ denotes an arbitrary vector in
R`. The point at issue of this paper is selection of a model
space, that is, the generalization ability of R(A∗

K,X) which
is independent from criteria of learning machines. In order to
discuss R(A∗

K,X), the orthogonal projector onto R(A∗
K,X) in

HK , written as PK,X , plays an important role.

Lemma 1: [5]

PK,X =
∑̀
i=1

∑̀
j=1

(G+
K,X)i,j [K(·, xi) ⊗ K(·, xj)] , (12)

where GK,X denotes the Gramian matrix of K with X and the
superscript + denotes the Moore-Penrose generalized inverse
matrix[10].

Let || · ||HK
be the induced norm in HK , then a gener-

alization error of R(A∗
K,X) for f(·) ∈ HK can be defined

as
J

(N)
K,X = ||f(·) − PK,Xf(·)||2HK

, (13)

which is called ’norm-based generalization error.’ In [5], we
discussed the norm-based generalization error of a class of
kernels with an invariant metric; and obtained the following
result concerned with a selection of RKHS itself.

Theorem 1: [5] Let K1 and K2 be kernels satisfying the
following properties:
(1) HK1 ⊂ HK2 (nested).
(2) 〈f(·), g(·)〉HK1

= 〈f(·), g(·)〉HK2
for any f(·), g(·) ∈

HK1 (invariant metric).
Then, for any f(·) ∈ HK1 and any set of input vectors X ,

J
(N)
K1,X ≤ J

(N)
K2,X (14)

holds.

This theorem claims that the kernel corresponding to the
smallest RKHS gives the best model among a class of kernels
with an invariant metric whose corresponding RKHS’s include
the unknown true function.

On the other hand in this paper, we discuss the properties of
R(A∗

K,X) with respect to a set of training samples. We show



the following lemmas as preparations.

Lemma 2: [5] For any f(·) ∈ HK and X ,

||PK,Xf(·)||2HK
= f ′G+

K,Xf (15)

holds, where f = [f(x1), . . . , f(x`)]′.

Lemma 3: Let

G =
[

A B
B′ C

]
∈ R(n+m)×(n+m) (16)

be an n.n.d. symmetric matrix with A ∈ Rn×n, C ∈ Rm×m,
and B ∈ Rn×m and let v ∈ R(G). Then,

v′
(

G+ −
[

A+ On,m

Om,n Om,m

])
v ≥ 0 (17)

holds, where Om,n ∈ Rm×n denotes the zero matrix.

Proof: Since G is n.n.d., it is trivial that ZGZ ′ is also
n.n.d. for any matrix Z ∈ Rp×(m+n). Let

Z =
[

In − AA+ On,m

−B′A+ Im

]
,

where In denotes the identity matrix of degree n. Then, using
the facts that In − A+A is a symmetric orthogonal projector
and A+A = AA+ holds for any symmetric matrix A yield
that

ZG′Z

=
[

In − AA+ On,m

−B′A+ Im

] [
A B
B′ C

]
×
[

In − AA+ On,m

−B′A+ Im

]′
=

[
In − AA+ On,m

−B′A+ Im

] [
A B
B′ C

]
×
[

In − AA+ −A+B
Om,n Im

]
=

[
On,n (In − AA+)B

B′(In − A+A) C − B′A+B

]
is also n.n.d.

Since v ∈ R(G), there exist z such that v = Gz. Thus,

v′
(

G+ −
[

A+ On,m

Om,n Om,m

])
v

= z′G

(
G+ −

[
A+ On,m

Om,n Om,m

])
Gz

= z′
([

A B
B′ C

]
−
[

A AA+B
B′A+A B′A+B

])
z

= z′
[

On,n (In − AA+)B
B′(In − A+A) C − B′A+B

]
z ≥ 0

is obtained, which concludes the proof. 2

Let XS = {xi | i ∈ {1, . . . , `S}} and let XL = {xi | i ∈
{1, . . . , `L}} with `S < `L. Note that XS ⊂ XL holds.
It is intuitively trivial that R(A∗

K,XL
) gives a better model

space than R(A∗
K,XS

) since R(A∗
K,XS

) ⊂ R(A∗
K,XL

). Its
theoretical ground is given by the following theorem.

Theorem 2: Let f(·) ∈ HK , then

J
(N)
K,XL

≤ J
(N)
K,XS

(18)

holds.

Proof: From Lemma 2 and the Pythagorean theorem, we
have

J
(N)
K,X

= ||f(·) − PK,Xf(·)||2HK

= ||f(·)||2HK
− ||PK,Xf(·)||2HK

= ||f(·)||2HK
− f ′G+

K,Xf , (19)

where f = [f(x1), . . . , f(x`)]′. Thus,

J
(N)
K,XS

− J
(N)
K,XL

= ||f(·) − PK,XS
f(·)||2HK

−||f(·) − PK,XLf(·)||2HK

= (||f(·)||2HK
− f ′

SG+
K,XS

fS)

−(||f(·)||2HK
− f ′

LG+
K,XL

fL)

= f ′
LG+

K,XL
fL − f ′

SG+
K,XS

fS (20)

is obtained, where

fS = [f(x1), . . . , f(x`S
)]′,

fL = [f(x1), . . . , f(x`L)]′.

Note that

fL ∈ R(AK,XL
) = R(AK,XL

A∗
K,XL

) = R(GK,XL
)

holds since f(·) ∈ HK , fL = AK,XLf(·), and

AK,XL
A∗

K,XL

=

(
`L∑

k=1

[e(`L)
k ⊗ K(·, xk)]

) `L∑
j=1

[e(`L)
j ⊗ K(·, xj)]

∗

=

(
`L∑

k=1

[e(`L)
k ⊗ K(·, xk)]

) `L∑
j=1

[K(·, xj)] ⊗ e
(`L)
j


=

`L∑
k=1

`L∑
j=1

K(xk, xj)(e
(`L)
k ⊗ e

(`L)
j )

=
`L∑

k=1

`L∑
j=1

K(xk, xj)e
(`L)
k (e(`L)

j )′ = GK,XL

hold. Let
E =

[
I`S

O`D,`S

]
∈ R`L×`S , (21)



where `D = `L − `S , then

E′GK,XL
E = GK,XS

.

Thus, applying Lemma 3 to Eq.(20) yields

f ′
LG+

K,XL
fL − f ′

SG+
K,XS

fS

= f ′
LG+

K,XL
fL − f ′

LEG+
K,XS

E′fL

= f ′
LG+

K,XL
fL − f ′

L

[
G+

K,XS
O`S ,`D

O`D,`S
O`D,`D

]
fL

= f ′
L

(
G+

K,XL
−
[

G+
K,XS

O`S ,`D

O`D,`S O`D,`D

])
fL

≥ 0

is obtained, which concludes the proof. 2

As mentioned above, the statement in Theorem 2 is rather
trivial since R(A∗

K,XS
) ⊂ R(A∗

K,XL
). However, it is not

trivial that a larger set of training samples achieves smaller
squared difference at each point x ∈ D of f(·) and PK,Xf(·),
that is, Eq.(18) does not always mean

(f(x) − PK,XL
f(x))2 ≤ (f(x) − PK,XS

f(x))2 (22)

at an arbitrarily fixed point x ∈ D.
In [11], we analyzed the difference of f(·) and PK,Xf(·)

at a point x ∈ D.

Lemma 4: [11] Let f(·) ∈ HK , then

(f(x) − PK,Xf(x))2 ≤ ||f ||2HK
EK,X(x) (23)

holds for any x ∈ D, where

EK,X(x)
= K(x, x)

−
∑̀
i=1

∑̀
j=1

K(x, xj)(G+
K,X)i,jK(x, xi). (24)

Proof: [11] Using the property PK,X = P ∗
K,X , the

reproducing property Eq.(1), the Schwarz’s inequality, and the
Pythagorean theorem, we have

(f(x) − PK,Xf(x))2

= (〈f(·),K(·, x)〉HK
− 〈PK,Xf(·),K(·, x)〉HK

)2

= (〈f(·),K(·, x)〉HK
− 〈f(·), PK,XK(·, x)〉HK

)2

= (〈f(·),K(·, x) − PK,XK(·, x)〉HK
)2

≤ ||f(·)||2HK
||K(·, x) − PK,XK(·, x)||2HK

= ||f(·)||2HK

(
||K(·, x)||2HK

− ||PK,XK(·, x)||2HK

)
= ||f(·)||2HK

EK,X(x),

which concludes the proof. 2

This lemma claims that the upper bound of the squared
difference between f(·) and PK,Xf(·) at a point x ∈ D is

proportional to ||f(·)||2HK
and EK,X(x). Since a kernel K is

fixed in the context of this paper, we define the relative upper
bound of the squared difference of f(·) and PK,Xf(·) at a
point x ∈ D by EK,X(x). Incorporating this lemma, we give
the following theorem which is the main result of this paper.

Theorem 3: For any x ∈ D,

EK,XL
(x) ≤ EK,XS

(x) (25)

holds.

Proof: Let

kL = [K(x, x1), . . . , K(x, x`L)]′

then

kL ∈ R(AK,XL) = R(AK,XLA∗
K,XL

) = R(GK,XL)

since K(x, ·) ∈ HK and kL = AK,XL
K(x, ·) holds for an

arbitrarily fixed x ∈ D. Let

kS = [K(x, x1), . . . , K(x, x`S
)]′,

then kS can be written as

kS = E′kL

with E in Eq.(21). Thus,

EK,XS (x) − EK,XL(x)

=

K(x, x) −
`S∑
i=1

`S∑
j=1

K(x, xj)(G+
K,XS

)i,jK(x, xi)


−

K(x, x) −
`L∑
i=1

`L∑
j=1

K(x, xj)(G+
K,XL

)i,jK(x, xi)


= k′

LG+
K,XL

kL − k′
SG+

K,XS
kS

= k′
LG+

K,XL
kL − k′

LEG+
K,XS

E′kL

= k′
L

(
G+

K,XL
−
[

G+
K,XS

O`S ,`D

O`D,`S
O`D,`D

])
kL

≥ 0

is obtained from Lemma 3, which concludes the proof. 2

According to Theorem 3, it is guaranteed that the upper
bound of the squared difference at each point x ∈ D of f(·)
and PK,XL

f(·) is not greater than that of f(·) and PK,XS
f(·).

Since the range of EK,X(x) depends on x ∈ D, it is
significant to consider the normalized version of it. EK,X(x)
is non-negative since it is the squared norm of K(·, x) −
PK,XK(·, x). Moreover,

∑̀
i=1

∑̀
j=1

K(x, xj)(G+
K,X)i,jK(x, xi)



in Eq.(24) is also non-negative since it is a quadratic form
with the n.n.d. matrix G+

K,X . Therefore, we have

K(x,x) ≥
∑̀
i=1

∑̀
j=1

K(x, xj)(G+
K,X)i,jK(x, xi) ≥ 0. (26)

Note that when K(x, x) = 0, EK,X(x) is necessarily reduced
to 0. When K(x, x) 6= 0, we also have

1 ≥ 1
K(x, x)

∑̀
i=1

∑̀
j=1

K(x, xj)(G+
K,X)i,jK(x, xi) ≥ 0

(27)
from Eq.(26).

Accordingly, we define the normalized point-wise general-
ization error of R(A∗

K,X) at a point x ∈ D by

J
(P )
K,X(x) =


EK,X(x)
K(x,x)

: (K(x, x) 6= 0)

0 : (K(x, x) = 0)
(28)

and it satisfies
0 ≤ J

(P )
K,X(x) ≤ 1 (29)

for any x ∈ D. When J
(P )
K,X(x) is close to 0, the generalization

error at x ∈ D is small; and when J
(P )
K,X(x) is close to 1, the

generalization error at x ∈ D is close to its upper bound. For
J

(P )
K,X(x), we have the following corollary concerned with a

set of training samples.

Corollary 1:

J
(P )
K,XL

(x) ≤ J
(P )
K,XS

(x) (30)

holds for any x ∈ D.

Proof: It is trivial in case of K(x, x) = 0.
When K(x, x) 6= 0, for an arbitrarily fixed x ∈ D,

J
(P )
K,XS

(x) − J
(P )
K,XL

(x)

=
1

K(x,x)
EK,XS

(x) − 1
K(x, x)

EK,XL
(x)

=
1

K(x,x)
(EK,XS (x) − EK,XL(x))

is obtained. Thus, Theorem 3 and the fact that K(x, x) > 0
immediately concludes the proof. 2

We can evaluate J
(P )
K,X(x) at the point which yields the

worst generalization error instead of each point x ∈ D by

J
(WP )
K,X = sup

x∈D
J

(P )
K,X(x). (31)

We have the following corollary for J
(WP )
K,X as the same with

J
(P )
K,X(x).

Corollary 2:
J

(WP )
K,XL

≤ J
(WP )
K,XS

. (32)

Proof: Let

xL = arg sup
x∈D

J
(P )
K,XL

(x).

then Corollary 1 yields

J
(P )
K,XL

(xL) ≤ J
(P )
K,XS

(xL).

On the other hand, it is trivial that

J
(P )
K,XS

(xL) ≤ sup
x∈D

J
(P )
K,XS

(x),

which concludes the proof. 2

In the norm-based generalization error, the norm of the
unknown true function plays a crucial role since

J
(N)
K,X = ||f ||2HK

− f ′G+
K,Xf

as shown in the previous section. Thus, J
(N)
K,X is rather mean-

ingless for evaluation of the generalization ability of R(A∗
K,X)

itself.
On the other hand in EK,X(x), the norm of the unknown

true function appears as a coefficient. Thus, its influence to
the generalization error can be vanished by normalization as
in J

(P )
K,X(x) (and in J

(WP )
K,X ), which enables us to have a

quantitative goodness of R(A∗
K,X) which is in the interval

between the worst case (upper bound) and the best case. This
is an essential value of considering J

(P )
K,X(x) or J

(WP )
K,X .

V. NUMERICAL EXAMPLES

In this section, we confirm the theoretical results in the
previous section by numerical examples for 1-dimensional
function estimation. We adopt the Gaussian kernel given by

K(x, y) = exp
(
− (x − y)2

4

)
, x, y ∈ [0, 16] ∈ R (33)

as a kernel and

f(·) =
100∑
k=1

ciK(·, xi) ∈ HK (34)

as an unknown true function, where xi is randomly generated
from the uniform distribution on [0, 16] written as U(0, 16) and
ci is randomly generated from the standard normal distribution
N(0, 1). Coefficient ci is normalized so that ||f(·)||2HK

= 1.
As a smaller and a larger sets of training samples, we adopt

XS = {xi ∼ U(0, 16) | i ∈ {1, . . . , 10}},
XL = XS ∪ XE

where XE = {xi ∼ U(0, 16) | i ∈ {1, . . . , 5}}. Figure 1
shows f(·), PK,XS

f(·), PK,XL
f(·), and training samples in

which points in XS are denoted by ’×’ and those in XE are
denoted by ’+’.

Figure 2 shows J
(P )
K,XS

and J
(P )
K,XL

with respect to x ∈
[0, 16].
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with respect to x.

According to this result, it is confirmed that the upper bound
of the squared difference at each point in D with a larger set
of training samples is smaller than that with a smaller set
of training samples, which agrees with the theoretical results
obtained in the previous section.

Figure 3 shows the squared difference of f(·) and PK,Xf(·)
with XS and XL.

According to this result, there exist points x ∈ D, where
the squared difference of f(x) and PK,XLf(x) is larger than
that of f(x) and PK,XS

f(x). This is a counter example for
Eq.(22). Thus, our evaluation based on upper bound of the
squared difference seems to be crucial.

VI. CONCLUSIONS

In this paper, we theoretically analyzed the generalization
ability of a model space in kernel machines with respect to
a set of training samples; and showed that a larger set of
training samples achieves a smaller upper bound of the squared
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Fig. 3. Squared difference of f(x) and PK,Xf(x) with XS and XL.

difference of the unknown true function and the orthogonal
projection of it onto the model space compared with a smaller
set of training samples. We also gave numerical examples to
confirm our theoretical results. Applying our result to practical
model selection is one of future works that should be resolved.
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