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The impact of an inhomogeneous arrangement of nodes in space on a network organization cannot be neglected
in most real-world scale-free networks. Here we propose a model for a geographical network with nodes embedded
in a fractal space in which we can tune the network heterogeneity by varying the strength of the spatial embedding.
When the nodes in such networks have power-law distributed intrinsic weights, the networks are scale-free with
the degree distribution exponent decreasing with increasing fractal dimension if the spatial embedding is strong
enough, while the weakly embedded networks are still scale-free but the degree exponent is equal to γ = 2
regardless of the fractal dimension. We show that this phenomenon is related to the transition from a noncompact
to compact phase of the network and that this transition accompanies a drastic change of the network efficiency.
We test our analytically derived predictions on the real-world example of networks describing the soil porous
architecture.
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I. INTRODUCTION

Scale-free organization of networks [1–3] seems to be the
underlying common principle of many complex systems. In
real-world networks such as the Internet, social networks,
or communication networks [4–9], the inhomogeneous ar-
rangement of nodes in space has a strong impact on the
network organization, so the linking rules must include the
dependence on the distances between nodes [10–14]. In
addition to actual Euclidean distances between nodes in real
spaces, it has been also pointed out that the existence of
underlying hidden metric spaces is crucial to understanding
many properties of real-world complex networks, such as
the scale-free property, the strong clustering nature, the self-
similarity, and the navigability of (ultra) small-world networks
[15–19]. However, most of the network models studied so
far considered either randomly distributed nodes in metric
space [20–23] or nodes placed on a lattice [24–28]. The
importance of inhomogeneous spatial positions of nodes was
emphasized in [4,29] where it was shown that the fractal or
self-similar property of node sets is crucial to constrain the
Internet models describing the Internet’s large-scale topology
and its observed scale-free character [30–32] at the router and
autonomous system levels. While preferential attachment [2,3]
seems to be the main underlying mechanism structuring the
Internet, the original form of the preferential attachment [2]
should be altered [4,31,33] to account for the observed spatial
and/or functional heterogeneity of the nodes.

Here we study the structure of networks formed by a
geographical network model in which the nodes with power-
law distributed intrinsic weights (i.e., fitnesses [34–36]) are
embedded in a fractal space. We show analytically that the
networks produced by such a model are scale-free with
the degree exponent influenced by the fractal dimension of
the embedding space if the spatial embedding is strong
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enough. By explicitly deriving the degree and the edge-
length distribution functions, we classify these networks into
noncompact phase with infinite average degree and average
edge length and compact phase with finite average degree and
average edge length, separated by an intermediate phase
characterized by finite average degree and infinite average
edge length. It is also shown that the transition between
these phases accompanies a drastic change of the network
efficiency. Finally, we use our findings in the analysis of the
networks describing the soil porous architecture as an example.

II. MODEL

An inhomogeneous distribution of nodes is realized by
placing nodes homogeneously in a fractal space SD with the
fractal dimension D. If D is noninteger, a homogeneous node
distribution in SD implies an inhomogeneous arrangement of
nodes in a space Sd with the Euclidean (integer) dimension
d (>D) embedding SD . This situation can be easily understood
by considering a highly inhomogeneous distribution of nodes
in the incipient infinite cluster of a percolation system at the
percolation threshold though the node set takes a homogeneous
fractal structure with a noninteger dimension, as shown by
nodes in Fig. 1 where D = 1.89 and d = 2. The fractal space
SD is assumed to be large but finite with linear size L. In
our analytical arguments we assume furthermore that the
space SD is isotropic from every point in SD to eliminate
irrelevant boundary effects. The number of nodes is then given
by N = ρ�

∫ L

0 lD−1 dl, where ρ is the density of nodes and
� is the surface area of the D-dimensional unit sphere (the
D-dimensional total solid angle), that is, � = 2πD/2/�(D/2)
with the gamma function �(x).

Each node has a real and continuous fitness x randomly
assigned according to the probability distribution function
s(x). If a node pair (i-j ) satisfies

F (xi,xj )

Rm
ij

> �, (1)
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FIG. 1. (Color online) Geographical network on a fractal node
set. Nodes are located on sites in the largest cluster of a two-
dimensional site-percolation system at the percolation threshold
pc = 0.593. The node set takes a fractal structure with the fractal
dimension D = 1.89 and is embedded in a two-dimensional space
(S2). The inhomogeneous layout of nodes is regarded as a uniform
node distribution in S1.89 of linear size L. Although the fractal
space reflecting the node arrangement in this figure is not isotropic,
we assume in analytical treatments that SD is isotropic from every
point in SD . Parameters to form the network are α = 2.0, m = 3.0,
and xmin = 1.0. The threshold � is chosen to realize 〈k〉 = 4.0.

then these two nodes are connected by an edge, where Rij is
the Euclidean distance between the nodes i and j , m (�0)
is a real parameter quantifying the strength of the spatial
embedding (namely, the strength of the geographical effect), �
is a threshold value, and F (x,y) is a function of two fitnesses.
If m = 0, we have a conventional threshold model which
provides a scale-free network for a variety of combinations
of forms of F (x,y) and s(x) [34,35]. If F (x,y) is chosen to
be constant and m = 1, our network model is reduced to the
model proposed by [21]. Here we concentrate on the case of

F (x,y) = xy (2)

and

s(x) = s0x
−α, (3)

where x (and y) are in the range of [xmin,∞) and α > 1. From
the normalization condition of s(x), we have

s0 = (α − 1)xα−1
min . (4)

The network shown in Fig. 1 is formed by this rule with α =
2.0, m = 3.0, and xmin = 1.0. It should be noted that the fractal

space SD of this example is not isotropic from every point in
SD because the isotropic condition cannot be satisfied in a
finite-size numerical realization.

Similar geographical network models have been studied un-
der the assumption that nodes are homogeneously distributed
in metric spaces [15–19,22,23], while here we investigate
how the inhomogeneity (fractality) of spatial distribution of
nodes affects the properties of the network. Another important
difference from most of previous work is the introduction of
the parameter m. Preceding studies [15–19,23] fixed the value
of m as m = D, so that the fitness x is just the expected degree
of the node. This choice of m is surely quite reasonable because
the degree is straightforwardly reflected by the fitness. It is,
however, not obvious how important the fitness is for obtaining
edges from other nodes if the fitness is defined as an intrinsic
attractiveness of a node independently of the degree. In an
acquaintance network, for example, a very attractive person
(large fitness) living in a depopulated area has sometimes only
a few friends (like large fitness nodes in the top-left peninsula
in Fig. 1), while a less-attractive person (small fitness) in a
densely populated city may have a lot of acquaintances. Since
our purpose is to elucidate how a network embedded in a
fractal space changes its statistical or structural properties by
varying the strength of the geographical effect, we introduce
the additional parameter m controlling the relative importance
of the geographical effect against the role of the fitness. This
additional degree of freedom m has been considered by [22]
as well.

III. DEGREE DISTRIBUTION FUNCTION

First, we calculate the degree distribution function of the
network formed by the above geographical algorithm. Let
ki(l)dl be the number of nodes connected to the node i and
included in a thin spherical shell of the radius l (width dl)
centered at the position of the node i. Since the distance
between the node i and a node in the shell is l, the connectivity
condition Eq. (1) tells us that nodes with xj > �lm/xi can
connect to the node i. Thus, the number of connected nodes
ki(l)dl in an average sense is

ki(l)dl = n(l)dl ·
∫ ∞

�lm/xi

s(x) dx, (5)

where n(l)dl = ρ�lD−1dl is the number of nodes in this
spherical shell. In this expression we assume that �lm/xi >

xmin, which is equivalent to l > lmin(xi) where

lmin(xi) =
(xminxi

�

)1/m

. (6)

All nodes within distance lmin(xi) from the node i must be
connected to i. Thus, using Eq. (4) we have

ki(l) =
{

ρ�
(

xmin
�

)α−1
xα−1

i lD−1−m(α−1), l > lmin(xi),

ρ�lD−1, l � lmin(xi).
(7)

Integrating ki(l) with respect to l over (0,L] we obtain the total
number of nodes connected to the node i, or the degree ki of
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the node i given by

ki = ρ�xα−1
min LD−m(α−1)

[D − m(α − 1)]�α−1
xα−1

i

+ ρ�x
D/m
min

�D/m

[
1

D
− 1

D − m(α − 1)

]
x

D/m

i . (8)

It should be noted that geometrical coefficients in two terms of
Eq. (8) coming from the volume integration are not very mean-
ingful for realistic systems because of our artificial isotropic
conditions. In the case of D − m(α − 1) > 0, the first term
of Eq. (8) dominates the second term when L is sufficiently
large and we have ki ∝ xα−1

i . The degree distribution function
P (k) calculated from the relation |P (k)dk| = |s(x)dx| is then
proportional to k−2 independently of m, α, and D. If D −
m(α − 1) < 0, however, the second term of Eq. (8) becomes
much larger than the first term. The relation ki ∝ x

D/m

i in this
case leads to P (k) ∝ k−m(α−1)/D−1. Just at D − m(α − 1) = 0,
the first and second terms of Eq. (8) evenly contribute to ki .
However, these two terms are both proportional to xα−1

i , and
lead P (k) ∝ k−2. Therefore, the degree distribution function
of the present geographical network model is given by

(9a)
P (k) ∝

{
k−2, m � mc0,

k−m(α−1)/D−1, m > mc0, (9b)

where

mc0 = D

α − 1
. (10)

The distribution function P (k) obeys power-law forms in both
cases of m � mc0 and m > mc0, and the degree exponent γ is

γ =
⎧⎨
⎩

2, m � mc0,

m

D
(α − 1) + 1, m > mc0.

(11)

The geographical inhomogeneity of the node distribution does
not affect the degree distribution of the network when the
geographical effect is weak (small m), while γ depends on D

when this effect is strong (large m).
Let us consider the above results from a viewpoint of

previous work on similar network models with uniformly
distributed nodes. First, we note that the condition m > mc0 is
always satisfied if m = D and α > 2 as assumed in [15–19].
The degree ki of the node i with the fitness xi is then given
by ki ∝ x

D/m

i ∝ xi . This is consistent with the argument in
[15,23] where the degree is essentially equivalent to the fitness
by setting m as m = D. In this case the degree exponent γ must
be identical to the exponent α of the fitness distribution, which
can be confirmed by Eq. (11). The gravity model with the
Pareto distribution of fitnesses studied by Masuda et al. [22]
is the same as our model except for the uniform distribution
of nodes in Euclidean space. In this model the exponent m is
independent of the spatial dimension as treated in this paper.
They calculated ki and P (k) only for m > mc0 and obtained
the same results as Eqs. (8) and (11) with the integer dimension
d instead of D.

In the derivation of P (k), we assumed that the system
size L is always larger than lmin(xi) for any xi because we
are interested in the thermodynamic case (L → ∞). This is,
however, not obvious, because xi [and then lmin(xi)] can also

diverge in the thermodynamic limit under a constant density ρ.
Let us consider carefully this condition L > lmin(xi). In a
finite system with N = ρ�LD/D nodes, the fitness x is
truncated at a finite value. The maximum fitness xmax is given
by N

∫ ∞
xmax

s(x) dx = 1. Using the fitness distribution Eq. (3)
with Eq. (4), the quantity xmax is given by

xmax = N1/(α−1)xmin. (12)

Thus, the length lmin(xi) can be as large as lmin(xmax), where

lmin(xmax) =
[

(ρ�)1/(α−1)LD/(α−1)x2
min

�D1/(α−1)

]1/m

. (13)

From the above expression, the condition lmin(xmax) < L is
equivalent to � > �0, where

�0 =
(

ρ�

D

) 1
α−1

x2
minL

D
α−1 −m. (14)

If m > mc0, the quantity �0 goes to zero in the thermo-
dynamic limit and any finite � satisfies � > �0, namely,
lmin(xmax) < L. Thus, the degree distribution function P (k) is
given by Eq. (9b) in the thermodynamic limit with m > mc0.
On the contrary, if m < mc0, � is always less than �0

because �0 diverges as L → ∞. In this case there must
be nodes satisfying lmin(xi) > L for which xi > �Lm/xmin.
Since the condition xi > �Lm/xmin implies that any node in
the whole system can connect to the node i, the degree of
such a node is N − 1 independent of xi . Thus, these nodes
give an additional δ-functional contribution δ(k − N + 1) to
the degree distribution P (k) given by Eq. (9a) for nodes
with xi < �Lm/xmin. Let us estimate the magnitude of this
δ-functional contribution. It is proportional to the number of
nodes n0 having xi > �Lm/xmin. The quantity n0 is given by
N

∫ ∞
�Lm/xmin

s(x) dx and can be written as

n0 = N

(
L

ξ

)−m(α−1)

, (15)

where ξ is the node-pair distance defined by

ξ = lmin(xmin) =
(

x2
min

�

)1/m

, (16)

below which the two nodes are connected independently of the
fitness. The properly normalized δ-functional part of P (k) is
then presented by (L/ξ )−m(α−1)δ(k − N + 1). Since m(α − 1)
is always positive, the δ-functional contribution vanishes in the
thermodynamic limit. In the case of m = mc0, �0 defined by
Eq. (14) is finite independently of L, which implies that � can
be either larger or smaller than �0 even in the thermodynamic
limit. If � is larger than �0, Eq. (9) providing P (k) ∝ k−2 at
m = mc0 is valid. For � � �0, the δ-functional correction to
P (k) should be considered. The magnitude n0 of this correction
is, however, infinitesimal because n0 = N (L/ξ )−D goes to
zero for L → ∞. Therefore, Eq. (9) is valid both for the cases
of m � mc0 and m > mc0 in an infinite system. For a finite L,
however, � can be chosen to be less than �0 independently of
m and the δ-functional contribution remains finite. Thus, the
degree distribution function of a finite system with � < �0

must have the δ-functional correction term, that is,

P (k) = p0k
−γ +

(
L

ξ

)−m(α−1)

δ(k − N + 1) (17)
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for both m � mc0 and m > mc0. Here p0 is a normalization
constant and the exponent γ is given by Eq. (11). It should be
noted that Eq. (17) holds for a finite but large L because the
first term of Eq. (17) is valid in the large L limit.

The quantity �0 is a characteristic value of � peculiar
to a finite system with a fixed density ρ. There are two
other characteristic values of � for a finite L. One is �min

below which every node can connect to all other N − 1 nodes.
Network constructed under � < �min becomes the complete
graph. Obviously, �min is given by

�min = x2
min

Lm
. (18)

Another characteristic � is �max above which no node can
connect to any other nodes. Network with � > �max is a set
of isolated nodes. We have

�max = x2
max

�lm
, (19)

where �l = (ρ�/D)−1/D is the minimum edge length. Using
Eq. (12), �max is written as

�max =
(

ρ�

D

) 2
α−1 + m

D

x2
minL

2D
α−1 . (20)

In a finite system we always assume that � satisfies the con-
dition �min � � � �max leading to nontrivial networks. It is
not necessary to consider this condition in an infinite system
because �min and �max vanishes and diverges, respectively, in
the thermodynamic limit.

IV. RELATION BETWEEN 〈k〉 AND �

From Eq. (9) it is clear that the average degree 〈k〉 diverges
for m � mc0 because of γ = 2 and it remains finite for m >

mc0 in the thermodynamic limit. The average degree 〈k〉 in a
finite system is, however, always finite and depends on �. A
large � restricts a connection of a node pair and leads a small
〈k〉. It is important to know the relation between � and 〈k〉 for
a finite but large system. We calculate the average degree by

〈k〉 =
∫ xmax

xmin

kis(x) dx, (21)

instead of 〈k〉 = ∫
kP (k)dk, using the derived expression (not

asymptotic form) of ki for a finite system.
Let us consider Eq. (21) separately for � < �0 and for � �

�0. In the case of � < �0, the length lmin(xi) can be larger
than L, which implies �Lm/xmin < xmax. Thus, the integral of
Eq. (21) is separated into two regions

〈k〉 =
∫ �Lm/xmin

xmin

k(x)s(x) dx + (N − 1)
∫ xmax

�Lm/xmin

s(x) dx,

(22)

where k(x) is given by Eq. (8) regarding xi as a continuous
variable x. The coefficient N − 1 in the second term comes
from the fact that nodes satisfying xi > �Lm/xmin connect to
all N − 1 nodes. Using Eq. (8) and approximating

∫ xmax

�Lm/xmin
dx

by
∫ ∞
�Lm/xmin

dx, we have

〈k〉 = Xρ

(
x2

min

�

)α−1

LD−m(α−1) ln

(
Y�Lm

xmin2

)

+Zρ

(
x2

min

�

)D/m

, (23)

where

X = �(α − 1)

D − m(α − 1)
, (24)

Y = exp

{
d − 2m(α − 1)

(α − 1)[d − m(α − 1)]

}
, (25)

Z = �m2(α − 1)2

D[D − m(α − 1)]2
. (26)

It should be again emphasized that these geometrical quantities
X, Y , and Z resulting from the volume integration depend
strongly on the boundary conditions and are not very mean-
ingful. We can evaluate the asymptotic behavior of 〈k〉 for
large L by using Eq. (23). In the case of m < mc0, the first
term of Eq. (23) obviously dominates the second term. Then,
ignoring unimportant geographical coefficient, 〈k〉 behaves
asymptotically as

〈k〉 ∼ �1−α(ln � + c). (27)

where c is a constant depending on the boundary condition. On
the other hand, a careful treatment is required for m > mc0. It
seems that the second term of Eq. (23) dominates the first term
for m > mc0 in the thermodynamic limit. However, we should
note that � must be infinitesimal to satisfy the condition � <

�0 in this calculation because �0 for L → ∞ goes to zero for
m > mc0. So, it is not obvious which term is dominating in
Eq. (23). In order to find the dominant term, we evaluate
the lower bounds of these terms by replacing � by �0 and
using Eq. (14). Then, the lower bounds of the first and the
second terms are proportional to ln[Y (ρ�/D)1/(α−1)LD/(α−1)]
and L

[1− D
m(α−1) ], respectively. This suggests that the second term

dominates the first term for large L because the exponent
1 − D

m(α−1) is positive for m > mc0. We have then

〈k〉 ∼ �−D/m (28)

for � < �0 and m > mc0. At m = mc0, both terms in Eq. (23)
should be considered.

Next, we treat the case of � � �0. Here lmin(xi) is always
less than L, and the degree ki is given by Eq. (8) for any xi in
the range of xmin � xi � xmax. The average degree 〈k〉 is then
simply presented by

〈k〉 =
∫ xmax

xmin

k(x)s(x) dx

= ρX

α − 1

(
x2

min

�

)α−1

LD−m(α−1) ln
(
WLD

)

− ρZ[D − m(α − 1)]

(
x2

min

�

)D/m (
WLD

) D
m(α−1) −1

+ ρZ[D − m(α − 1)]

(
x2

min

�

)D/m

, (29)
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where W = ρ�/D and we used Eq. (8) for k(x) and
Eq. (12). For m > mc0, it is easy to understand that the third
term dominates other two terms for large L. So we have

〈k〉 ∼ �−D/m. (30)

In the case of m < mc0, the infinitely large � must be
considered when we find the dominant term of Eq. (29),
because � is larger than �0 and �0 diverges for m < mc0

in the thermodynamic limit. As in the case of � < �0 and
m > mc0, replacing � in Eq. (29) by �0, the L dependence
of the upper bounds of these terms points to the dominant
term. Since the upper bounds of the first, second, and third
terms are proportional to ln(ρ�LD/D), L0, and L

D[1− 1
m(α−1) ],

respectively, the first term dominates the second and third
terms because of m < mc0. Therefore, the average degree 〈k〉
is asymptotically given by

〈k〉 ∼ �1−α. (31)

This relation differs from Eq. (27) by a logarithmic correction.
In summary, the relation between � and 〈k〉 is given by

〈k〉 ∼
{

�1−α(ln � + c), m < mc0,

�−D/m, m > mc0

(32)

for � < �0 and

〈k〉 ∼
{

�1−α, m < mc0,

�−D/m, m > mc0

(33)

for � � �0. At m = mc0, 〈k〉 is related to � through Eq. (23)
for � < �0 and through Eq. (29) for � � �0, because every
term contributes equally to 〈k〉 even in the thermodynamic
limit. A similar result to Eq. (33) has been obtained by [23]
where the nodes were uniformly distributed in a d-dimensional
space with the L-max norm and m is fixed at m = D(= d).
The asymptotic L dependence of 〈k〉 for a fixed � can be also
evaluated from Eqs. (23) and (29). In the case of m < mc0

and enough large L (then, � < �0), the dominant first term
of Eq. (23) gives 〈k〉 ∝ LD−m(α−1) ln L. For m > mc0 (and
then � > �0), we have 〈k〉 ∝ L0. These L dependences are
consistent with those calculated by 〈k〉 = ∫ N−1

1 kP (k) dk by
using Eqs. (17) and (9) for m < mc0 and m > mc0, respectively,
and taking into account the L dependence of p0 in Eq. (17).

V. EDGE-LENGTH DISTRIBUTION FUNCTION

In this section, we derive the edge-length distribution
function R(l) of our geographical networks embedded in a
fractal space. To this end, we regard ki(l) given by Eq. (7) as a
continuous function k(x,l) of the fitness x and the edge length l.
The average number of edges, k(l)dl, of length [l,l + dl] from
a given node is obtained by averaging k(x,l) over the fitness
x, that is,

k(l) =
∫ xmax

xmin

s(x)k(x,l) dx. (34)

Equation (7) expresses the forms of ki(l) by separating two
cases l > lmin(xi) and l � lmin(xi) for a fixed xi . Corresponding
to this classification, k(x,l) in Eq. (34) for a fixed l has different

forms for xmin � x < �lm/xmin and �lm/xmin � x � xmax,
respectively. Thus, the integral of Eq. (34) is calculated as

k(l) = ρ�
(xmin

�

)α−1
lD−1−m(α−1)

∫ xl

xmin

s(x)xα−1 dx

+ ρ�lD−1
∫ ∞

xl

s(x) dx, (35)

where xl = �lm/xmin. Here l is assumed to be larger than ξ

(namely xmin < xl) as argued in [22] and the upper cutoff of
the integral is, as an approximation, extended to infinity. Using
Eqs. (3), (4), (7), and (16), k(l) is expressed by

k(l) = ρ�lD−1

(
l

ξ

)−m(α−1) [
1 + m(α − 1) ln

(
l

ξ

)]
.

(36)

The probability distribution function R(l) is given by

R(l) = k(l)∫
L

k(l′)dl′
, (37)

where the integration in the denominator is done over the
whole range of l. Neglecting the normalization constant, the
edge-length distribution is

R(l) ∝ lD−1

(
l

ξ

)−m(α−1) [
1 + m(α − 1) ln

(
l

ξ

)]
.

(38)

We should remark that R(l) for m � mc0 goes to infinity
as l → ∞. Since the length l does not exceed the size L

in a finite system, the distribution R(l) is actually truncated
at l = L. In the thermodynamic limit, however, we must
consider the infinitesimal normalization constant coming from
the denominator of Eq. (37).

In the case of l � ξ (namely xmin � xl), k(x,l) in Eq. (34) is
given by Eq. (7) for any x in the integration range [xmin,xmax].
Thus, k(l) is given by ρ�lD−1

∫ ∞
xmin

s(x)dx, namely

k(l) = ρ�lD−1 (39)

and then

R(l) ∝ lD−1. (40)

It should be noted that the distribution R(l) depends on the
fractal dimension D independently of m while the degree
distribution P (k) does not depend on D for m � mc0 (weak
geographical effect region).

Two expressions Eqs. (38) and (40) of R(l) for l > ξ and
l � ξ must coincide at l = ξ . This condition concludes that the
proportionality coefficients for Eqs. (38) and (40) are identical.
We can derive the common coefficient C for an infinite system
from the normalization condition of R(l) given by

1 = C

∫ ξ

0
lD−1dl

+C

∫ ∞

ξ

lD−1

(
l

ξ

)−β [
1 + β ln

(
l

ξ

)]
dl, (41)
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where β = m(α − 1). When m > mc0, this equation provides
a finite coefficient expressed by

C = D

ξD

(
1 − mc0

m

)2
, (42)

while C is infinitesimal for m � mc0 as mentioned above.
It should be noted that the coefficient C does not depend
on the boundary condition because the boundary-condition
dependent factors in the numerator and the denominator in
Eq. (37) are canceled out.

From the above argument, we can immediately derive the
probability g(l) of two nodes with distance l to be connected.
This probability is given by the ratio of the number of
connected nodes k(l)dl to n(l)dl nodes located at distances
[l,l + dl] from a given node, namely g(l) = k(l)/n(l). Since
n(l) = ρ�lD−1 as mentioned below Eq. (5) and k(l) is given
by Eq. (36) or (39) for l > ξ or l � ξ , respectively, we have

g(l) =
⎧⎨
⎩

(
l
ξ

)−m(α−1) [
1 + m(α − 1) ln

(
l
ξ

)]
, l > ξ,

1, l � ξ.

(43)

This expression can be alternatively derived directly from the
meaning of g(l),

g(l) =
∫ ∞

xmin

s(x)dx

∫
xy/lm>�

s(y)dy. (44)

Considering that two nodes are always connected if the fitness
of one node exceeds xl(= �lm/xmin), we can separate the
above integration into two parts as

g(l) =
∫ ∞

xl

s(x)dx +
∫ xl

xmin

s(x)dx

∫ ∞

�lm/x

s(y)dy (45)

for xl > xmin (l > ξ ). For xl � xmin, the integral range of the
second integral in Eq. (44) is extended over the whole region of
y, then g(l) = ∫ ∞

xmin

∫ ∞
xmin

s(x)s(y)dxdy. These equations again
lead Eq. (43) if we use Eq. (3). We should note that the
probability g(l) given by Eq. (43) does not depends on the
fractal dimension D for any value of m.

VI. NUMERICAL CONFIRMATIONS

In this section the above analytical results are numeri-
cally verified. First, we confirm the behavior of the degree
distribution function P (k) for geographical networks on the
Sierpinski node set (Sierpinski geographical networks). Nodes
are located on vertices of the Sierpinski gasket with the fractal
dimension D = ln 3/ ln 2 ≈ 1.585 and connected by edges
according to the condition Eq. (1) with Eqs. (2) and (3). In
our numerical calculations in this work, the lower cut-off xmin

is set to be unity. A typical network on the sixth generation
Sierpinski gasket (N = 366) is depicted in Fig. 2. There exist
nodes (hubs) possessing a large number of edges. Numerically
calculated degree distribution functions P (k) for two networks
with different m and α are presented in Fig. 3. The scale-free
property of networks formed by our algorithm is clearly
shown in this figure. The scale-free exponents γ calculated
numerically for many Sierpinski geographical networks with
different combinations of α and m are plotted in Fig. 4 as a

FIG. 2. Typical Sierpinski geographical network. Nodes are
located on vertices of the Sierpinski gasket in the sixth generation
(N = 366). Parameters to form the network are α = 2.0 and m = 3.0.
The threshold � is chosen to satisfy 〈k〉 = 10.0.

function of m(α − 1)/D. In Fig. 4 values of γ for networks
with nodes distributed homogeneously in two-dimensional
Euclidean space (2D-geographical networks) are also plotted.
We should remark that our theoretical arguments are valid
for a geographical network with homogeneously distributed
nodes which is a special case with the Euclidean dimension
d instead of the fractal dimension D. In fact, Eq. (11) with D =
d reproduces the results by [15–19,22,23] as mentioned in
Sec. III. We see that all numerical results in Fig. 4 collapse onto
the theoretical line given by Eq. (11). These results strongly
support the theoretical predictions on P (k) presented in
Sec. III.

FIG. 3. (Color online) Degree distribution of Sierpinski ge-
ographical networks in the ninth generation (N = 9,843). The
threshold � is chosen to satisfy 〈k〉 = 10.0. Parameters α and m

are set as (a) α = 2.0 and m = 4.0 and (b) α = 3.0 and m = 1.0.
Thick dashed lines through dots indicate the slopes γ predicted by
Eq. (11). Thin dashed line in (a) represents the slope calculated by
using the Euclidean dimension d = 2 instead of the fractal dimension
D = 1.585.
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FIG. 4. (Color online) Degree exponent γ as a function of
m(α − 1)/D. Solid line shows the theoretical prediction Eq. (11).
Filled circles and squares represent numerically obtained γ for
Sierpinski geographical networks (ninth generation) and 2D-
geographical networks (N = 1000) with several combinations of α

and m. Values of γ are evaluated by the least-squares fit.

Next, we confirm numerically the relation between 〈k〉 and
� presented by Eqs. (32) and (33). Since the � dependence
of 〈k〉 is complicated as classified into four cases depending
on values of m and �, we checked this relation for 2D-
geographical networks to avoid additional complications due
to the noninteger dimension D. It is necessary to evaluate �0

defined by Eq. (14) to distinguish the four regions with respect
to m and �. In addition, � must satisfy the condition �min �
� � �max, where �min and �max are given by Eqs. (18)
and (20), respectively. Rewriting Eqs. (14) and (20) by �0 =
N1/(α−1)x2

minL
−m and �max = N [2D+m(α−1)]/[D(α−1)]x2

minL
−m,

we can estimate �0 and �max without treating the boundary-
condition dependent geometrical factor ρ�/D. Figures 5(a)
and 5(b) show numerically calculated 〈k〉 as a function of � for
m < mc0. In these calculations, the exponent m characterizing
the strength of the geographical effect are chosen to be 1.0, and
N = 1000 nodes are distributed in a square of size L = 100.0.
The fitness x is allocated to each node according to the proba-
bility distribution function s(x) given by Eq. (3) with α = 1.5.
The square system has the periodic boundary conditions in the
x and y directions. Since mc0 = 4.0, �0 = 104, �min = 0.01,
and �max = 3.2 × 1011 from these parameters, the conditions
�min � � < �0 � �max and �min � �0 < � � �max are
satisfied for Figs. 5(a) and 5(b), respectively, and m < mc0 for
both figures. Numerically calculated 〈k〉s are well described by
solid lines representing Eqs. (32) and (33), where the constant
c in Eq. (32) and prefactors are suitably chosen. Results for
m > mc0 are presented in Figs. 5(c) and 5(d) which show the
〈k〉-� relation for � < �0 and � > �0, respectively. As in the
cases of Figs. 5(a) and 5(b), nodes are distributed in a square
of size L = 100.0. Parameters α and m are chosen as α = 2.0
and m = 3.0 so that the condition m > mc0(= 2.0) is satisfied.
In order to realize the condition �min � � < �0 � �max in
Fig. 5(c), we treated a large network with N = 100 000, which
has �min = 10−6, �max = 3.2 × 1011, and �0 = 0.1. On the

FIG. 5. Relation between the average degree 〈k〉 and the threshold
value � for (a) m < mc0 and � < �0, (b) m < mc0 and � > �0,
(c) m > mc0 and � < �0, and (d) m > mc0 and � > �0. Dots rep-
resent results calculated numerically for 2D-geographical networks.
Details of parameters and conditions are given in the text. Solid
curves show the theoretical predictions given by Eqs. (32) and (33).
Dashed line in (a) indicates the slope given by Eq. (32) without the
logarithmic term.

contrary, the number of nodes for Fig. 5(d) is N = 1000,
in which �min � �0 < � � �max is satisfied with �min =
10−6, �max = 3.2 × 104, and �0 = 0.001. Similarly to
Figs. 5(a) and 4(b), numerical results agree well with the
theoretical results shown by solid lines.

The behavior of the edge-length distribution function R(l) is
also examined. If we employ Sierpinski geographical networks
to compute R(l), the distance l between nodes becomes a
discrete variable, which makes it difficult to compare R(l)
to the analytically obtained result with continuous l. Thus
we calculate numerically R(l) for 2D-geographical networks
again. Results (dots) shown in Fig. 6 are calculated in
the condition of m > mc0, for which R(l) can be properly
normalized even in the thermodynamic limit. Solid and dashed
curves represent the theoretical prediction given by Eqs. (38)
and (40) with the common prefactor presented by Eq. (42).
It should be emphasized that there is no fitting parameter to
obtain the theoretical curve. Numerical results agree quite well
with the theoretical prediction. The peak structure and the
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FIG. 6. (Color online) Edge-length distribution function R(l) for
2D-geographical networks in squares of size L = 10.0. In order to
obtain the numerical results (dots), we employ α = 2.0 (mc0 = 2.0),
m = 3.0, and N = 1000. The threshold value � is chosen as � =
125.2 so that 〈k〉 becomes equal to 10.0. The results are averaged over
1000 realizations. Solid and dashed lines represent the theoretical
results given by Eqs. (38) and (40) with the common prefactor
presented by Eq. (42). The inset shows the same result in a logarithmic
scale. The length ξ (= 0.20) defined by Eq. (16) is indicated by the
arrow.

tail profile slightly deviating from a power law (see the inset
of Fig. 6) result from the logarithmic term of Eq. (38). The
reason of the slight deviation between numerical results and
the theoretical line for l � 0.05 (see the inset) is due to a finite
�l defined below Eq. (19).

Finally, we address the small-world and fractal property of
our geographical networks. For m = 0, a network belongs to
the threshold model [34,35], in which the network structure
depends only on the fitness x regardless of spatial positions of
nodes. In this case, the node-pair (topological) distance in a
connected graph is bounded by 2 independently of the network
size N , because the node with the largest fitness connects to
all other nodes. This implies that the network is “smaller”
than a ultra-small-world network (diameter∝ ln ln N ). In the
opposite limit, that is, m → ∞, with a finite 〈k〉, nodes are
connected only to neighboring nodes. Thus, the network must
take a fractal structure with the same fractal dimension D as
that of the node set [37]. It is plausible that a network with a
finite m exhibits an intermediate morphology between these
limiting structures. Figure 7 shows the small-world and fractal
properties of Sierpinski geographical networks with α = 2.0
and 〈k〉 = 4.0. Since the exclusive relation between fractality
and small worldness does not depend on how we characterize
networks [38,39], we employ two methods to study the
structural feature of networks depending on diameters of
networks. For networks with small diameters (small m), the
diameter dmax of the largest singly connected graph (cluster)
is calculated as a function of the number of nodes Nmax in the
cluster (cluster-growing method), as shown in Fig. 7(a). The
diameter dmax is almost constant for m close to zero, and seems
to become proportional to ln ln Nmax or ln Nmax as increasing
m. Further increasing m, the Nmax dependence of dmax becomes

FIG. 7. (Color online) Small-world and fractal properties of
Sierpinski geographical networks with α = 2.0 and 〈k〉 = 4.0.
(a) Upper two panels represent the diameter of the largest connected
cluster in Sierpinski geographical networks in the third to eighth
generations with one-generation increments as a function of the
number of nodes in the cluster. Different symbols indicate results
for different values of m. The value of mc0 = D/(α − 1) is 1.585.
Results are averaged over 10 000 (third generation) to 200 (eighth
generation) samples depending on the generation. (b) Lower panel
shows the number of subgraphs covering minimally the largest
cluster in eighth-generation Sierpinski geographical networks as a
function of the diameter of subgraphs. Results are averaged over
200 samples. To achieve the minimum covering, we employed the
compact-box-burning algorithm [40]. Dashed line represents the
slope of the fractal dimension D = ln 3/ ln 2.

faster than a logarithmic form. For networks formed by m �
mc0 = ln 3/ ln 2 with relatively large diameters, we compute
the number of subgraphs (Nsub) covering the largest cluster
as a function of the subgraph diameter dsub (box-covering
method). When m is large enough compared to mc0, the
subgraph number Nsub seems to be proportional to d

−Dnet
sub ,

which implies that the network is fractal with the fractal
dimension Dnet [37]. Such a power-law dependence has been
also observed in geographical networks formed by uniformly
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distributed nodes with the L-max norm [23]. It is interesting
that the network fractal dimension Dnet is not the same with the
fractal dimension D of the Sierpinski node set for intermediate
values of m (>mc0) though Dnet approaches to D as increasing
m to infinity. In conclusion, the geographical network changes
its structure from a constant-diameter network to ultra-small-
world, small-world, and finally to fractal network as increasing
the strength of the geographical effect m. However, these
numerical results do not present the transition (or crossover
in a finite system) values of m giving these structural changes.
Furthermore, we need to study the small-world and fractal
properties of geographical networks by taking into account
the percolation transition caused by varying the threshold value
� [39].

VII. COMPACTNESS AND EFFICIENCY

From the functional forms of P (k) and R(l), we can imme-
diately find the convergence property of the average degree 〈k〉
and the average edge length 〈l〉 in the thermodynamic limit.
As argued at the end of Sec. IV, the quantity 〈k〉 for m � mc0

diverges as LD−m(α−1) ln L and it converges for m > mc0. On
the other hand, the convergence of 〈l〉 is governed by Eq. (38)
describing R(l) in the asymptotic l regime. From Eq. (38),
the average 〈l〉 diverges for m � mc1 and remains finite for
m > mc1, where

mc1 = D + 1

α − 1
. (46)

The behavior of 〈k〉 and 〈l〉 suggests that the impact of
the geographical effect can be classified into three regions.
For 0 � m � mc0, both quantities 〈k〉 and 〈l〉 diverge in the
thermodynamic limit. Since a node can connect with a huge
number of nodes far away, we call this region the noncompact
phase. In the same sense, the region of m > mc1 is termed the
compact phase where both quantities 〈k〉 and 〈l〉 remain finite
and a node connects with only a small number of nodes in its
vicinity. In the intermediate phase, that is, mc0 < m � mc1,
the average degree converges but 〈l〉 diverges. These regions
are summarize in Table I.

Let us consider the relation between the compactness of a
network and the geographical efficiency e defined by

e = 2

N (N − 1)

∑
i>j

1

rij

, (47)

where rij is the minimum value of Euclidean distances along
any possible network paths connecting the node i to j , that is,

rij = min
1�k1,k2,...,km�N

m=1,2,...

(lik1 + lk1k2 + · · · + lkmj ), (48)

TABLE I. Three phases of geographical networks embedded in
a fractal space.

Phase Region of m 〈k〉 〈l〉
Noncompact m � mc0 infinite infinite
Intermediate mc0 < m � mc1 finite infinite
Compact m > mc1 finite finite

where lij is the Euclidean length of the edge (i-j ) if the
edge exists and infinity otherwise. This quantity is a natural
extension of the global efficiency E defined by [41]

E = 2

N (N − 1)

∑
i>j

1

dij

, (49)

where dij is the shortest network distance between two nodes
i and j . Both quantities e and E characterize the efficiency
of the information exchange or the flow in the network. If the
efficiency is governed mainly by the Euclidean distance along
the path rather than the number of steps, the geographical
efficiency e is more meaningful than E, and vice versa.

We calculated numerically these quantities and examined
how the compactness is related to the efficiencies e and E.
Solid lines in Fig. 8 represent the efficiencies for Sierpinski
geographical networks in three different generations (having
the same linear size L = 1.0), while dashed lines show those
for 2D-geographical networks with different numbers of nodes
in squares of size L = 10.0. In order to eliminate the L and
N dependence of the maximum and minimum values of the
efficiencies, we plot the rescaled quantities ẽ and Ẽ defined by
ẽ = (e − ea)/(eb − ea) and Ẽ = (E − Ea)/(Eb − Ea), where
ea (Ea) and eb (Eb) are e(E) at m/mc0 = 10−2 and 102,
respectively. The rescaled geographical (global) efficiency ẽ

(Ẽ) rapidly increases (decreases) near m = mc0 as increasing
m. (We see that ẽ forms a small hump near m/mc0 ∼ 1 and
exceeds unity when approaching the thermodynamic limit
for Sierpinski geographical networks. The rescaled efficiency
larger than unity is allowed because the rescaling factor is
not the maximum value of the efficiency.) From the fact
that enlarging the system the slope near m = mc0 becomes
steeper and the point at the intersection of ẽ and Ẽ approaches
m = mc0, the efficiencies e and E in the thermodynamic
limit are supposed to show step-like forms at m = mc0. This
behavior can be interpreted as follows. In the noncompact

FIG. 8. (Color online) Rescaled geographical and global efficien-
cies as a function of m/mc0 for Sierpinski (solid lines) and 2D-
(dashed lines) geographical networks. For both network systems, we
employ α = 2.0 and � giving 〈k〉 = 10.0, and all results are averaged
over 1000 realizations. Numbers of nodes in Sierpinski geographical
networks in the fifth, sixth, and seventh generations are 123, 336, and
1,095, respectively.
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FIG. 9. 2D x-ray CT image of a soil structure with network edges
connecting pores (black patches) according to Eq. (1) with m = 5
and � = 0.01. From [42].

phase (m < mc0), existing short-cut edge (in the topological
sense) connects a starting node and a target node by a
small number of edges with going back-and-forth around the
target node. This back-and-forth motion, however, requires
an extra Euclidean distance and leads the low geographical
efficiency. On the other hand, in the compact phase, the
network structure resembles the structure of a regular lattice (or
regular Sierpinski gasket). Although we need lots of edges to
connect two distant nodes, the total Euclidean length along the
path can be minimized as the geodetic distance between two
nodes. Thus, the geographical efficiency e becomes large in
this region. For m � mc0, the shortest Euclidean path often
coincides with the shortest topological path though rij is
typically smaller than that for m < mc0 but dij is larger than
that for m < mc0. The above consideration supports that the
global efficiency E measuring the number of edges to connect

FIG. 10. (Color online) Pore-size distribution obtained from the
image analysis of the soil structure shown in Fig. 9. Dashed line
shows the power-law fit s(x) ∼ x−α to the distribution with α = 1.6.

FIG. 11. (Color online) Number of boxes required to cover the
soil-pore image shown in Fig. 9 as a function of the box size. The
slope obtained by the least-squares fit (dashed line) indicates that
the fractal dimension of the soil-pore structure is 1.32.

nodes is large for m < mc0 and small for m > mc0. It should
be noted that the abrupt change in e or E occurs at m = mc0

but not at m = mc1 though the transition point mc1 is related
to the edge length. Since e and E behave oppositely, it is
crucial to clarify which efficiency is more relevant to a given
problem by considering how strongly the cost of the flow is
influenced by the Euclidean distance. It is also interesting that
both efficiencies e and E are relatively high in the network at
m = mc0 at which the competition between order and disorder
in the geometrical sense is balanced.

VIII. EXAMPLE

We will demonstrate the above described approach using
soil-pore networks as an example of a real-world spatially
embedded network.

Two approaches to build complex network models of soil-
pore organization have recently been developed [42–44]. Here
we will concentrate on the networks presented in [42] formed
by geographical threshold algorithm as described in Sec. II.
We consider a set of N pores representing the nodes of the
network. The nodes of the network are located at the centers of
the pores and the edges between nodes are drawn according to
Eq. (1) with Eqs. (2) and (3), where in this case the continuous
fitness variable x is the size of the pore. Pore sizes and their
relative positions of actual soil specimens are obtained from the
image analysis of 2D soil X-CT scans [42]. The edges between
pores do not have any physical meaning in this network model.
However, characterizing a soil by using the network concept
provides a new method to understand properties of soils and
gives a novel description of the soil pore structure.

An example of the soil-pore network overlain on the 2D
soil porous structure image is presented in Fig. 9 (from
[42]). The pore-size distribution of the soil sample shown in
Fig. 9 is analyzed to be of the form s(x) ∼ x−α with α = 1.6
(Fig. 10). The fractal dimension D = 1.32 of the soil-pore
structure is also determined using box-counting method as
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FIG. 12. (Color online) Degree distributions for three soil-pore
networks formed by (a) m = 1, (b) m = 3, and (c) m = 5. Dashed
lines through dots represent the power-law fits with the slopes
indicated beside the lines. γth in each panel gives the degree exponent
predicted by Eq. (11) with D = 1.32 and α = 1.6.

shown in Fig. 11. Our theory predicts that the soil-pore network
has a power-law degree distribution function and the degree
exponent γ depends on m above mc0 = 2.2. Figure 12 shows
the degree distributions for three networks based on soil image
data constructed with different values of the parameter m

(m = 1, 3, and 5). In Fig. 12 the power-law fits (dashed lines)
and calculated exponents of the degree distributions are shown
together with theoretically predicted scale-free exponents from
Eq. (11). The results clearly demonstrate the agreement of the
empirically obtained scale-free exponents and the theoretically
predicted ones. This also shows how the fractality of pore

spatial distribution is reflected in the network organization.
Using networks we get an independent way to measure
spatial (fractal) structure of the soil. By measuring the scaling
exponent γ of the degree distribution for any m > mc0 and the
exponent α of the pore-size distribution, the fractal dimension
D can be determined. A possible further application of this
network model might help to understand the self-organization
of the soil-microbe complex [45] and the relation between the
biological function and the soil-pore structure which changes
between the more open (to enhance the rate of oxygen supply)
and the more closed one (to protect the soil biological function)
depending on the microbial activity.

IX. CONCLUSIONS

We have proposed a geographical scale-free network model
with the nodes embedded in a fractal space and analytically
and numerically studied several network properties. The fractal
dimension D of the embedding space was found to influence
the scale-free exponent as γ = m(α − 1)/D + 1 only if the
spatial embedding is strong enough (i.e., when m > mc0)
otherwise γ = 2. The analyses of the average degree and
average edge length revealed that this type of network can
exist either in the noncompact, compact, or intermediate phase
depending on the importance of the spatial arrangement of
nodes. We derived the edge-length distribution functions for
our network model and showed that it has a peak-like structure
similar to the profile of the shortest-path-distance distribution
observed in a large-scale structure of the Internet [31,46]. It is
interesting to apply our approach to modeling the Internet
at the autonomous systems level considering the observed
long-tailed distribution of autonomous systems sizes [47].
The measured degree distribution exponent of the Internet is
slightly larger than γ = 2 (γ = 2.1–2.2) [31,32] and seems to
be decreasing with time [32]. In our network model this would
be an indication of the evolution of the Internet toward the
noncompact phase (m → mc0).

We hope that our work will help in advancing the under-
standing of the complex systems in which the heterogeneity of
intrinsic properties and the spatial arrangement of the elements
play an important role.
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[12] M. Barthélemy, Europhys. Lett. 63, 915 (2003).
[13] M. Kaiser and C. C. Hilgetag, Phys. Rev. E 69, 036103

(2004).
[14] R. Xulvi-Brunet and I. M. Sokolov, Phys. Rev. E 75, 046117

(2007).
[15] M. A. Serrano, D. Krioukov, and M. Boguñá, Phys. Rev. Lett.
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M. Boguñá, Phys. Rev. E 82, 036106 (2010).
[20] J. Dall and M. Christensen, Phys. Rev. E 66, 016121 (2002).
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