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Quantum information science addresses how uniquely quantum
mechanical phenomena such as superposition and entanglement
can enhance communication, information processing and preci-
sion measurement. Photons are appealing for their low noise,
light-speed transmission and ease of manipulation using conven-
tional optical components . However, the lack of highly efficient
optical Kerr nonlinearities at single photon level was a major ob-
stacle. In a breakthrough, Knill, Laflamme and Milburn (KLM)
showed that such an efficient nonlinearity can be achieved using
only linear optical elements, auxiliary photons, and measurement
[(2001) Nature 409:46–52]. They proposed a heralded controlled-
NOT (CNOT) gate for scalable quantum computation using a pho-
tonic quantum circuit to combine two such nonlinear elements.
Here we experimentally demonstrate a KLM CNOT gate. We de-
veloped a stable architecture to realize the required four-photon
network of nested multiple interferometers based on a displaced-
Sagnac interferometer and several partially polarizing beamsplit-
ters. This result confirms the first step in the original KLM ‘recipe’
for all-optical quantum computation, and should be useful for on-
demand entanglement generation and purification. Optical quan-
tum circuits combining giant optical nonlinearities may find wide
applications in quantum information processing, communication
and sensing.

term | term | term

Several physical systems are being pursued for quantum com-
puting [1]—promising candidates include trapped ions, neutral

atoms, nuclear spins, quantum dots, superconductor and photons—
while photons are indispensable for quantum communication [2, 3]
and are particularly promising for quantum metrology [4, 5]. In ad-
dition to low-noise quantum systems (typically two-level ‘qubits’)
quantum information protocols require a means to interact qubits to
generate entanglement. The canonical example is the CNOT gate,
which flips the state of the polarisation of the ‘target’ photon condi-
tional on the ‘control’ photon being horizontally polarized (the logi-
cal ‘1’ state). The gate is capable of generating maximally entangled
two-qubit states, which together with one-qubit rotations provide a
universal set of logic gates for quantum computation.

The low noise properties of single photon qubits are a result of
their negligible interaction with the environment, however, the fact
that they do not readily interact with one-another is problematic for
the realization of a CNOT or other entangling interaction. Conse-
quently it was widely believed that matter systems, such as an atom
or atom-like system [6], or an ensemble of such systems [7], would
be required to realize such efficient optical nonlinearities. Indeed the
first proposals for using linear optics to benchmark quantum algo-
rithms require exponentially large physical resources [8, 9].

In 2001, KLM made the surprising discovery that a scalable
quantum computer could be built from only linear optical networks,
and single photon sources and detectors [10]. In fact, it was even sur-
prising to KLM themselves, as they had initially intended to proove
the opposite. The KLM ‘recipe’ consists of two parts: an optical cir-

cuit for a CNOT gate using linear optics, single photon sources [11],
and photon number resolving detectors [12]; and a scheme [13, 14]
for increasing the success probability of this CNOT gate (P = 1/16)
arbitrarily close to unity, where the probabilistic CNOT gates gener-
ate the entangled states used as a resource for the implementation of
controlled unitary operation based on quantum teleportation [15, 16].

Fig. 1. The KLM nonlinear sign-shift (NS) gate. (A) If the NS gate succeeds it is
heralded; indicated conceptually by the light globe. (B) The original KLM NS gate
is heralded by detection of a photon at the upper detector and no photon at the
lower detector. Gray indicates the surface of the BS from which a sign change oc-
curs upon reflection.(C) A simplified KLM NS gate for which the heralding signal
is detection of one photon.
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This discovery opened the door to linear optics quantum computa-
tion and has spurred world-wide theoretical and experimental efforts
to realize such devices [17], as well as new quantum communica-
tion schemes [2] and optical quantum metrology [5]. Inspired by the
KLM approach, a number of quantum logic gates using heralded pho-
tons and event post-selection have been proposed and demonstrated
[18, 19, 20, 21, 22, 23, 24, 25]. Furthermore, optical quantum circuits
combining these gates have been demonstrated [26, 27, 28, 29, 30].
In this context, photonic quantum information processing using lin-
ear optics and post-selection is one of the promising candidates in the
quest for practical quantum information processing [17].

Knill-Laflamme-Milburn C-NOT gate
Interestingly, none of these gates realized so far [18, 19, 20, 21, 22,
23, 24, 25] actually used the original KLM proposal of a simple mea-
surement induced nonlinearity: either the gates are not heralded (the
resultant output photons themselves have to be measured and de-
stroyed) or rely on additional entanglement effects; as we explain
below, the KLM scheme is based on a direct implementation of the
non-linear sign-shift (NS) gate that relies on the interaction with a
single auxiliary photon at a beam splitter. It is thus based on the
efficient optical nonlinearity induced by single photon sources and
detectors. While a measurement induced nonlinearity has been veri-
fied by a conditional phase shift for one specific input [20], the com-
plete function of a NS gate for arbitrary inputs has not been demon-
srated. Moreover, it is an important remaining challenge to combine
the non-linearities into a network such as the KLM-CNOT gate, since
this requires a more reliable control of optical coherence than a non-
linearity acting on a single beam, especially since non-linearities tend
to couple modes to produce additional and often unexpected noise
patterns. Specifically, it is a difficult task to implement the nested in-
terferometers needed to perform the multiple classical and quantum
interferences that form the elements of the quantum gate operation,
which has prevented the realization of the KLM-CNOT gate.

The key element in the KLM CNOT gate is the nondeterministic
nonlinear sign-shift (NS) gate (Fig. 1A), which operates as follows:
When a superposition of the vacuum state|0⟩, one photon state|1⟩
and two photon state|2⟩ is input into the NS gate, the gate flips the
sign (or phase) of the probability amplitude of the|2⟩ component:
|ψ⟩ = α |0⟩ + β |1⟩ + γ |2⟩ → |ψ′⟩ = α |0⟩ + β |1⟩ − γ |2⟩. Note
that this operation is nondeterministic—it succeeds with probability
of P = 1/4—however, the gate always gives a signal (photon detec-
tion) when the operation is successful.

The nonlinear sign shift gate
A CNOT gate can be constructed from two NS gates as shown
schematically in Fig. 2A [10]. Here the control and target qubits are
encoded in optical mode or path (‘dual-rail encoding’), with a photon
in the top mode representing a logical 0 and in the bottom a logical 1.
The target modes are combined at a 1/2 reflectivity BS (BS3), interact
with the control 1 mode via the central Mach-Zehnder interferome-
ter (MZ), and are combined again at a 1/2 reflectivity BS (BS4) to
form another MZ with the two target modes, whose relative phase
is balanced such that, in the absence of a control photon, the output
state of the target photon is the same as the input state. The goal is
to impart aπ phase shift in the upper path of the target MZ, condi-
tional on the control photon being in the 1 state such that the NOT
operation will be implemented on the target qubit. When the control
input is 1, quantum interference [31] between the control and target
photon occurs at BS1:|1⟩C1

|1⟩T0
→ |2⟩C1

|0⟩T0
− |0⟩C1

|2⟩T0
. In

this case the NS gates each impart aπ phase shift to these two photon
components:|2⟩C1/T0

→ −|2⟩C1/T0
. At BS2 the reverse quantum

interference process occurs, separating the photons into theC1 and

Fig. 2. The KLM CNOT gate. (A) The gate is constructed of two NS gates;
the output is accepted only if the correct heralding signal is observed for each
NS gate. Gray indicates the surface of the BS from which a sign change occurs
upon reflection. (B) The KLM CNOT gate with simplified NS gate. (C) The same
circuit as (B) but using polarization encoding and PPBSs. (D) The stable optical
quantum circuit used here to implement the KLM CNOT gate using PPBSs and
a displaced Sagnac architecture. The target MZ, formed by BS11 and BS12 in
Fig. 2B, can be conveniently incorporated into the state preparation and mea-
surement, corresponding to a change of basis, as described in the caption to
Fig. 3. The blue line indicates optical paths for vertically polarized components,
and the red line indicates optical paths for horizontally polarized components.

T0 modes, while preserving the phase shift that was implemented by
the NS gates. In this way the requiredπ phase shift is applied to the
upper path of the target MZ, and so CNOT operation is realized.

An NS gate can be realized using an optical circuit consisting
of three beam splitters, one auxiliary single photon, and two photon
number resolving detectors (Fig. 1B) [10]. The NS gate is success-
ful, i.e. |ψ⟩ → |ψ′⟩, when one photon is detected at the upper detec-
tor and no photons at the lower detector. This outcome occurs with
probability 1/4 and so the success probability of the CNOT gate is
(1/4)2 = 1/16.
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The key to NS gate operation is multi-photon quantum interfer-
ence, which can be understood by considering the simplified NS gate
shown in Fig. 1C [32]. The probability amplitude for one photon to
be detected at the output detector (which is the success signal) can
be calculated by summing up the amplitudes of the indistinguishable
processes leading to this result: For the|0⟩ input only reflection of
the auxiliary photon contributes and the amplitude is simply given by√

R, whereR is the reflectivity of the beamsplitter. For the|1⟩ in-
put the total probability amplitude1 − 2R is given by the sum of the
probability amplitudes for two photons to be reflected (−R) and two
photons to be transmitted (1− R). Finally for the|2⟩ input the prob-
ability amplitude is

√
R(3R−2). This shows that nonlinear sign flip

of the |2⟩ term, required for NS gate operation, is possible for any
R < 2/3, however, the amplitudes of the|0⟩, |1⟩ and |2⟩ compo-
nents are also modified by the operation, which is not desired. In the
original NS gate (Fig. 1B), the path interferometer is used to balance
these amplitudes. To preserve these amplitudes in the case where the
simplified NS gates are used small losses (0.24 for R=0.23 in Fig.
1C) should be deliberately introduced in the output using BS9 and
BS10 in Fig. 2B [32], at the cost of reducing the success probabil-
ity slightly (from 0.25 to 0.23), but with the benefit of removing the
need for the interferometer in the NS gates. Even with this simplifica-
tion significant technical difficulties remain: nested interferometers,
two auxiliary photons, and several classical and quantum interference
conditions.

Experimental implementation of the KLM C-NOT gate
We designed the inherently stable architecture shown in Fig. 2D
to implement the KLM CNOT gate of Fig. 2B, using polarization
to encode photonic qubits. This design takes advantage of two re-
cent photonic quantum circuit techniques: partially polarizing beam
splitters [23, 26] (PPBSs), which results in the circuit shown in Fig.
2C, and the displaced-Sagnac architecture [26, 5], which results in
the circuit shown in Fig. 2D. The PPBSs have a different reflec-
tivity R and transmissivityT for horizontalH and verticalV po-
larizations. We used three kinds of PPBSs: PPBS1 (RH = 50%,
RV = 100%), PPBS2 (RH = 23%, RV = 100%), and PPBS3
(TH = 76%, TV = 100%). The control (C) and target (T ) photons
are first incident on PPBS1 (first PPBS1 in Fig. 2C) where two-
photon quantum interference transfers pairs ofH-polarized photons
to the same output port by photon bunching. The outputs are then
routed to PPBS2 (two PPBS2s in Fig. 2C), where quantum interfer-
ences of theH components with two auxiliary horizontally polarized
photons induce the effective nonlinearity. The photons then return
to PPBS1 (second PPBS1 in Fig. 2C) where a final quantum in-
terference reverses the initial operation of PPBS1, separating pairs
of H-polarized photons into separate outputs. The PPBS3 at each
of the outputs (PPBS3s in Fig. 2C) balance the output polarization
components. To characterize the operation of the gate, the output
modes Cout and Tout were detected by the photon counters (DC and
DT) with polarization analyzers. Note that all the four polarization
modes of the control and target photons pass through all the optical
components inside the interferometer so that the path difference be-
tween those four polarization modes are robust to drifts or vibrations
of these optical components.

We used four photons generated via type-I spontaneous paramet-
ric down-conversion. The pump laser pulses (76 MHz at 390 nm,
200mW) pass through a beta-barium borate crystal (1.5 mm) twice
to generate two pairs of photons. One pair was used as theC andT
qubits, and the other as the auxiliary photonsA1 andA2. We first
checked the quality of quantum interference [31] between aC/T
photon and an auxiliary photon at PPBS2. For example, to test the
interference betweenC andA1, we detected photonsT andA2 just
after the photon source to herald photonsC andA1, respectively, and
measured the simultaneous single photon detection counts between
detectorsDC andDA1 while scanning the arrival time of theC pho-

ton. Note that the reflectivity of PPBS2 for horizontal polarization is
23% and thus the visibility for perfect interference isVth = 54%,
rather than 100% in the case of a 50% reflectivity BS. The visibility
Vexp of the observed dips are48 ± 4% and49 ± 3% (with bandpass
filters of center wavelength 780nm and FWHM 2nm), corresponding
to relative visibilities ofVr ≡ Vexp/Vth = 89% and91%. To test
the performance of our CNOT gate circuit, we used coincidence mea-
surements between the four threshold detectors atDA1, DA2, DC
andDT rather than using photon number discriminating detectors
for DA1 andDA2 and loss detection at PPBS3s because we needed
to analyze the polarization state of the output to confirm correct op-
eration. We performed this polarization analysis using a half-wave
plate (HWP) or quarter-wave plate (QWP) together with a polarizing
beam splitter (PBS).

Experimental results
We first checked the ‘logical basis’ operation of the CNOT gate by
preparingC andT in the four combinations of|0⟩ and|1⟩ (theZZ
basis states) and measured the probability of detecting theseZZ

Fig. 3. Experimental demonstration of a KLM CNOT gate. Left: ideal opera-
tion. Right: fourfold coincidence count rates (per 5000 s) detected at DC, DT ,
DA1 and DA2. (A) For control qubit, |0Z⟩ = |V ⟩, |1Z⟩ = |H⟩; for target

qubit, |0Z⟩ = 1/
√

2(|V ⟩ + |H⟩), |1Z⟩ = 1/
√

2(|V ⟩ − |H⟩). ‘10’ indi-

cates C = 1 and T = 0. (B) For control qubit, |0X⟩ = 1/
√

2(|V ⟩ + |H⟩),

|1X⟩ = 1/
√

2(|V ⟩ − |H⟩); for target qubit, |0X⟩ = |V ⟩, |1X⟩ = |H⟩. (C)

For control qubit, |0Y ⟩ = 1/
√

2(|V ⟩ + i|H⟩), |1Y ⟩ = 1/
√

2(|V ⟩ − i|H⟩);

for target qubit, |0Y ⟩ = 1/
√

2(|V ⟩ − i|H⟩), |1Y ⟩ = 1/
√

2(|V ⟩ + i|H⟩).
The events in which two pairs of photons are simultaneously incident to the an-
cillary inputs and no photons are incident to the signal inputs are subtracted, as
confirmed by a reference experiment without input photons

Footline Author PNAS Issue Date Volume Issue Number 3



states in the output for each input state, to generate the ‘truth table’
shown in Fig. 3A. The experimental data show the expected CNOT
operation,i.e. theT photon’s state is flipped only when theC qubit
is 1. The (classical) fidelity of this processFZZ→ZZ , defined as the
ratio of transmitted photon pairs in the correct output state to the total
number of transmitted photon pairs, is0.87 ± 0.01.

Because almost all the errors conserve horizontal/vertical polar-
ization, the process fidelityFP of the quantum coherent gate opera-
tion can be determined from the fidelities obtained from only three
sets of orthogonal input- and output states (see Appendix),

FP = (FZZ→ZZ + FXX→XX + FXZ→Y Y − 1)/2. [1 ]

The measurement result of the input-output probabilities in the XX
basis are shown in Fig. 3B, where the basis states are{|0X⟩ ≡
1/

√
2(|0⟩ + |1⟩), |1X⟩ ≡ 1/

√
2(|0⟩ − |1⟩)}; the fidelity is

FXX→XX = 0.88±0.02. To obtainFXZ→Y Y , we detected theY Y
basis output fromXZ basis inputs, as shown in Fig. 3C. The Y basis
states are{|0Y ⟩ ≡ 1/

√
2(|0⟩ + i|1⟩), |1Y ⟩ ≡ 1/

√
2(|0⟩ − i|1⟩)}.

The fidelity isFXZ→Y Y = 0.81 ± 0.02. Using eq.(1), we find a
process fidelity ofFP = 0.78.

A more intuitive measure of how all other possible gate opera-
tions (input and output states) perform is given by the average gate
fidelity F , which is defined as the fidelity of the output state averaged
over all possible input states. This measure of the gate performance
is related to the process fidelity by [33]

F = (dFp + 1)/(d + 1) [2 ]

whered is the dimension of the Hilbert space (d = 4 for a 2 qubit
gate). Based on eq.(1) and (2), our results show that the average gate
fidelity of our experimental quantum CNOT gate isF = 0.82±0.01.

Discussion
The data presented above confirm the realization of the CNOT gate
proposed by KLM, which is an optical circuit combining a pair of
efficient nonlinear elements induced by measurement. This confirms
the first step in the KLM ‘recipe’ for all-optical quantum computation
and illustrates how efficient nonlinearities induced by measurement
can be utilized for quantum information science; such measurement-
induced optical nonlinearities could also be an alternative to nonlin-
ear media used for quantum non-demolition detectors [35] or pho-
tonic pulse shaping [36]. By emulating fundamental nonlinear pro-
cesses, such measurement-induced optical nonlinearities can also im-
prove our understanding of the quantum dynamics in nonlinear me-
dia. Conversely, future technical progress may permit the replace-
ment of these effective optical non-linearities in the network by ap-
proaches based on nonlinearities in material systems such as atoms
[6], solid state devices [37], hybrid systems [38], or optical fiber Kerr
nonlinearities [39]. In this context, our demonstration provides a first
example of an experimental test for quantum networks based on non-
linear optical elements and may serve as a reference point for com-
parisons with future networks using other optical nonlinearities. In
particular, the present results may be useful as a starting point for a
more general analysis of quantum error propagation in non-linear op-
tical networks. Our device will be useful for conventional and clus-
ter state approaches to quantum computing [34], as well as quan-
tum communication [2] and optical quantum metrology [5]. It could
be implemented using an integrated waveguide architecture [25], in
which case a dual-rail encoding could conveniently be used.

In the present tests of the performance of CNOT gate operation,
we used threshold detectors to monitor the output state. For applica-
tions in which the output state cannot be monitored, high-efficiency
number-resolving photon detectors [12] could be used atDA1 and
DA2 to generate the heralding signals. We also used spontaneous
parametric fluorescence as single photon sources. Note that alterna-
tive approaches that do not follow the KLM recipe as closely can
be useful for scalable linear optics quantum information processing

[17]. For all these approaches, further progress in on-demand single
photon sources and practical photon resolving detectors will be cru-
cial to ensure reliable operation.

Appendix: Derivation of the process fidelity

The PPBSs used to realize the KLM CNOT gate preserve the horizon-
tal/vertical polarization with high fidelity. In the quantum CNOT op-
eration, these polarizations correspond to theZX-basis of the qubits.
In the data shown in Fig. 3, this means that the number of flips ob-
served for the control qubit in 3A and for the target qubit in 3B are
negligibly small, i.e. 0 error event and only 1 error event respectively
over 943 total events. We can therefore describe the errors of the
quantum gate in terms of dephasing between theZX-eigenstates. In
terms of the operator expansion of errors, we can define the correct
operationÛgate and three possible phase flip errors as

Ûgate = |V V ⟩⟨V V | + |V H⟩⟨V H| + |HV ⟩⟨HV | − |HH⟩⟨HH|,
ÛT = |V V ⟩⟨V V | − |V H⟩⟨V H| + |HV ⟩⟨HV | + |HH⟩⟨HH|,
ÛC = |V V ⟩⟨V V | + |V H⟩⟨V H| − |HV ⟩⟨HV | + |HH⟩⟨HH|,

ÛCT = |V V ⟩⟨V V | − |V H⟩⟨V H| − |HV ⟩⟨HV | − |HH⟩⟨HH|. [3 ]

The operation of the gate can then be written as

E(ρin) =
X

n,m

χnmÛnρinÛm [4 ]

wheren, m ∈ {gate, T, C, CT} andχnm define the process matrix
of the noisy quantum process.

Each of our experimentally observed truth table operationsi → j

is correctly performed bŷUgate and one other operation̂Un. There-
fore, the fidelitiesFi→j can be given by the sums of the probability
Fp = χgate,gate for the correct operation̂Ugate and the probabilities
ηn = χnn for the errorsÛn as follows.

FZZ→ZZ = Fp + ηT

FXX→XX = Fp + ηC

FXZ→Y Y = Fp + ηCT [5 ]

Note that these relations between the diagonal elements of the pro-
cess matrix and the experimentally observed fidelities can also be
derived from eq. (4) using the formal definition of the experimen-
tal fidelities. In this case the fidelities are determined by the sums
over the correct outcomes|(j)l⟩ in E(|(i)k⟩⟨(i)k|), averaged over
all inputs|(i)k⟩,

Fi→j =
X

l,k

⟨(j)l|E(|(i)k⟩⟨(i)k|)|(j)l⟩/4)

=
X

n,m

χnm(
X

l,k

⟨(j)l|Û†
n|(i)k⟩⟨(i)k|Ûm|(j)l⟩/4). [6 ]

Herek, l ∈ {1, 2, 3, 4}, and(i)k denotes thek th state of thei ba-
sis states. For example,|(i)1⟩ = |V V ⟩, |(i)2⟩ = |V H⟩, |(i)3⟩ =
|HV ⟩, |(i)4⟩ = |HH⟩ for i = ZX. The sums over initial statesk
and final statesl are one forn = m = 0 and for a single other error,
n = m = n(ij). All remaining sums are zero, confirming the results
in eq.(5).

Since the diagonal elements of the process matrix correspond to
the probabilities of the orthogonal basis operations, their sum is nor-
malized to one, so that

P

n χnn = Fp + ηT + ηC + ηCT = 1. It
follows that the sum of all three experimentally determined fidelities
is FZZ→ZZ + FXX→XX + FXZ→Y Y = 2Fp + 1. Therefore, the
process fidelity of our KLM CNOT gate is given by

Fp = (FZZ→ZZ + FXX→XX + FXZ→Y Y − 1)/2 = 0.78. [7 ]
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This clearly exceeds the thresholdFp ≥ 0.5 for the gate to produce
entanglement — a key quantum operation of the gate. The fidelity of
the output states of the gate, averaged over all input states is related
to the process fidelity

F = (dFp + 1)/(d + 1) = 0.82 [8 ]

whered is the dimension of the Hilbert space (d=4 for a two qubit
gate).
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