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A Probabilistic Method to Construct an Optimal Ice Chronology for Ice Cores

Benedicte Lemicux-Dudon, ! Parrenin Frederic,

1
2

Abstract: Accurate ice chronologies are needed for the in-
terpretation of paleoclimate reconstructions inferred from
ice cores. Several methods are used to provide chronolog-
ical information: identification of dated horizons along
the cores, synchronization to other dated paleoclimatic
records, counting of annual layers or modelling of the
ice flow. These methods are relevant for different parts
of the core and enable to reach various levels of accu-
racy. We present a probabilistic approach based on in-
verse techniques which aims at building an optimal ice
core chronology by using all the available chronological
information. It consists in identifying the accumulation
rate and the thinning function along the core 1) which are
as close as possible to the flow model simulations and 2)
so that the corresponding ice chronology is as close as
possible to independent dating information. This proba-
bilistic approach enables to evaluate confidence intervals
on the optimal age scale as well as on the accumulation
and the thinning estimates. We test the new method on the
EPICA Dome C ice core. The necessary prior accumu-
lation rate and thinning function as well as a set of dated
horizons are provided by a previous work aiming at the
EDC3 age scale reconstruction. We further discuss the
sensitivity of the obtained optimal solution with respect
to the necessary prior information. This probabilistic ap-
proach could be used in the future to build a common and
optimal chronology for several ice cores simultaneously.

Key words: Inverse Methods, Ice Core Chronology,

Paleo-climate.

1 Introduction

Deep ice cores extracted from Antarctica or Green-
land recorded a wide range of past climatic events [8, 9].
Physico-chemical measurements on the core material
provide many types of record. For instance the past tem-
perature changes are inferred from ice isotopes and the
past atmospheric composition is deduced from the anal-
ysis of trapped air bubbles. These records are valuable
archives to understand past climatic mechanisms at hand
on Earth. To achieve such a goal, accurate ice core
chronologies (e.g. a depth-age relationship) are neces-
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sary.

For that purpose, one may distinguish the accuracy on
“absolute ages” attached to specific events from the ac-
curacy on “event durations”. Both types of accuracy are
required and they are of course strongly linked but one
must keep in mind that an accurate age scale in event du-
ration may misjudge the timing of some events and vice
versa. For instance, dating methods providing a precise
estimate of event duration may induce an age scale with
cumulative errors with depth. On the other hand, some
other methods providing an age scale with a good ac-
curacy on absolute ages may imply some distortions on
short time intervals.

The currently used methods aiming at ice core dating
may fall into four groups: (1) the wiggle matching on
other dated time series, (2) the use of dated horizons, (3)
the counting of annual layers and (4) the ice flow mod-
elling. We hereafter bring details on each group on the
basis of examples.

In the first group one can mention the orbital tuning
which consists in the comparison of ice core records to
insolation variations [7]. It can apply to the whole core
as long as the stratigraphy is preserved [1]. The accuracy
in terms of event duration as well as in terms of absolute
age is limited because the orbital tuning procedure relies
on the assumption of a constant phase between climate
(recorded in ice cores) and insolation. One advantage
is however that the achieved accuracy does not dimin-
ish with depth (assuming steady underlying mechanisms)
and it is therefore the currently most precise method to
date the bottom of deep ice cores. In this first group, one
can also mention the comparison of ice core records to
paleoclimatic archives dated with radiochronologic tech-
niques as for instance the U-Th dated speleothems [21].
On the contrary, this later technique is rather relevant for
recent periods where radiometric methods apply.

In the second group, one can mention volcanic hori-
zons which provide very accurate age markers in terms
of absolute age. This is the case for the last millennium
[20], but beyond that limit, accurate absolute ages are as-
sociated to very few eruptions [12].

The third group refers to layer-counted chronologies
which rely on the recognition of seasonal variations in
various records. The new GICCO05 chronology for Green-
land [18] uses an improved multi-parameters counting

— 233 —



approach, and currently extends back to around 42 kyr
BP with a maximum counting error of 4 to 7% during the
last glacial period. If this technique is very accurate for
estimating the event durations the error on absolute ages
however increases with depth.

The last group consists in dating the cores with ice flow
modelling. This later method is based on the estimate of
S (z), the snow accumulation rate at the deposition time
on the ice-sheet surface (expressed in cm of pure ice per
year) as well as on the estimate of 7" (z), the so-called
thinning function which is the ratio of a layer thickness
at depth z to its initial thickness at the surface. It enables
to determine y (z) the age of the ice, by depth-integrating
the number of annual layers per meter from the surface to

the depth z:
_DE) .,
z 1
2= [ s ”

where D (z) is the relative density with respect to pure
ice. The parameter D (z) is usually well-known be-
cause it is measured with high precision along the drilled
ice core '. The accumulation rate S (z) is generally
inferred from a sedimentation model which uses tem-
perature reconstructions obtained from isotopic analysis
of the ice [14]. Finally, the thinning function 7'(z) is
usually estimated by local flow description [14]. How-
ever, some poorly known parameters of the flow mod-
els within which is incorporated the accumulation model
(e.g. basal conditions like the sliding or the melting at
the ice/bedrock interface) makes the modelling exercise
less accurate with increasing depth and the simplified de-
scription most often fails to reproduce the flow behavior
all along the core (especially near the bedrock).

To put together all these different chronological infor-
mation, Parrenin et al. [15] developed an inverse ap-
proach which has been used to construct age scales for
the East Antarctic and the Greenland ice cores [4, 16,
14, 17]. This inverse approach is solved by a Monte
Carlo sampling method (see Mosegaard and Tarantola
[11] or Tarantola [19]) which optimally identifies the
poorly known parameters of the flow models by the use
of data constraint (e.g. dated horizons).

The previous method however suffers from a strong
restriction precisely because the involved flow models,
apart from their poorly-known parameters are supposed
to be perfect. In other words, the modelling uncertain-
ties due to undescribed or unknown physical mechanisms
are not considered (e.g. changes of ice mechanical prop-
erties, uncertainty in lateral boundary conditions....etc.).
One consequence is that even after appropriate tuning, the
model is sometimes unable to capture complex flow be-
havior and to reproduce the observations, especially for
basal ice where the flow becomes more irregular and the
model approximations less applicable [1, 13]. Another
impact of the above mentioned restriction concerns the
confidence intervals on the optimized age scale. They
cannot be properly estimated because the sources of un-

certainties which are linked to the model imperfections
are neglected.

The EDC3 age scale may be taken as an illustration. It
was partially built with the above described inverse ap-
proach [13] but because of the depicted restriction, the
Monte Carlo optimized age scale could not fit all the
available age markers. A subset of them was therefore
subjectively chosen for constraining the flow parameters
[13] and an a posteriori correction was finally applied on
a portion of the optimized age scale to circumvent the
problem [1, 13]. At last, the EDC3 age scale confidence
intervals were only roughly estimated on the basis of the
quality of the surrounding age markers.

The current methodological article describes a rigorous
method which enables to derive an optimal ice chronol-
ogy without any a posteriori corrections and where the
poorly-known physical mechanisms are statistically con-
sidered by the mean of correction functions. The aim is
to identify the best corrections on the accumulation rate
and on the thinning function which are on one hand con-
sistent with the flow model simulations and on the other
hand which induce an age scale and flow entities in best
agreement with independent observations. This method
moreover enables to rigorously estimate the confidence
intervals on the optimized chronology.

In section 2, we describe this new method. Section 3 is
devoted to validate the method with experiments on the
EPICA DOME C core (hereafter EDC). We construct an
optimal age scale by integrating the same elements used
for building the EDC3 age scale (i.e. flow model simu-
lation and age markers) and we estimate the associated
confidence intervals. We then test the sensitivity of the
method with respect to the prior information which is
necessary to run the method and finally we discuss the
results after the application section.

2 Method

The accumulation rate S and the thinning function 7',
are key entities of flow models because they enable to
calculate the ice chronology with equation (1). Several
modelling works targeting a particular drilling site al-
ready allowed to estimate these flow entities [14, 5]. Tak-
ing the EDC3 age scale as illustration, we underlined in
the introduction that these estimates may fail to repro-
duce some flow irregularities and are at the root of in-
accurate ice age reconstructions, mainly because some
physical mechanisms are not described in the flow mod-
els. This study does not propose itself to enrich the flow
description in order to improve these estimations but it
is rather a pragmatic approach that aims by the use of
data constraints, at identifying the best perturbations on
already estimated accumulation rates and thinning func-
tions. The searched perturbations are hereafter called
correction functions and designated by X . They have the
vocation to encompass all sources of modelling uncer-
tainties. In other words, they can either account for errors

1D () is quickly increasing from around 0.35 for light snow at surface to around 1 at 200 m.
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on physical parameters that are already included in the
flow modelling or also account for errors due to omitted
physical mechanisms.

Inverse techniques provide the rigorous framework to
identify X. In the current study, we opt for a Bayesian ap-
proach [19, 11, 6]. We further decide to use the Maximum
Likelihood [19] as eptimality criterion which we investi-
gate by the mean of a variational technique [6] rather than
by the use of a Monte Carlo method [10, 19, 11] 2. The
Bayes theorem [19, 11, 6] enables to operate a conjunc-
tion of the statistical information brought by: 1) the prior
knowledge on X which is provided by the flow modelling
and (2) some independent observations * named Y and
their adequacy with the predictions operated by the ob-
servation model h (X). The cost function J (X) is finally
derived from the model and data probability conjunction
on which is applied the optimality criterion. At last, the
J cost function is optimized and provides X = X the
“optimal” perturbations on 7" and S.

In the next sections, we first define precisely what are
the searched correction functions and second we give all
the elements to build the .J cost function.

2.1 Correction functions
Let us designate by S* and 7", the necessary first
guesses on the accumulation rate and on the thinning
function which are provided by direct or already opti-
mized flow model simulations. X may be split into two
correction functions v and 3 which target S for the for-

mer and 7' for the latter:

X = (a, ,53)"" (2)

The « (z) and 3 (z) correction functions are chosen as
multiplicative factors:

o BYE

a(z) = S0z (3)
b .

Bla) = = ((;)) )

It must be emphasized that both must be strictly pos-
itive. This positive constraint is prescribed by the Eule-
rian formulation of the age model (1) where neither the
thinning function nor the sedimentation rate can be neg-
ative or zero, at the risk of producing a discontinuity.
Such non-negative physical entities are called Jeftrey’s
variables (see Mosegaard and Tarantola [11] or Tarantola
[19]) and it is worth mentioning that they cannot admit
every type of error probability distribution function (pdf
hereafter). The normal pdfis for instance not appropriate.

In the next sections, we will encounter o and /3 prior
guesses, (# measurements and finally o and 3 optimal es-
timates. They all refer to the same physical entities (the
correction functions) which are Jeffiey s variables. We
decide hereafter to describe their error statistics with the

>The reason being the size of X.
‘Dated horizons....

lognormal pdf and this hypothesis is referred to as HI1.
This choice relies on the wide use of the lognormal pdf
when handling positive variables but also essentially on
the property attached to the above variable change:

X=X (5)

If the X error statistics is lognormal then the X error
statistic is normal [11, 19]. In the framework of the Max-
imum Likehood criterion and because of the assumption
H1, such property justifies to develop the problem and
optimize the .J cost function with respect to X:

X = (rfi,;';’)"r = (Iney, In ,3)";‘ (6)

X is hereafter called the control variable or equiva-
lently the correction function in the control space. The
above described strategy will lead us to the well-known
least-squares structure for the .J cost function. At last, the
ice age may now be expressed with respect to X:

o * D(z')exp @ (2') exp B (2) <)
0= [ ey O

2.2 Discretized problem

The numerical treatment requires discretized depths
which are designated by z; with index i running from 1
to n, the size of the grid. To each ice layer lying between
z;—1 and z; are associated the above physical entities:

e its thickness dz; = z; — z;_1.

e its relative density D; (with respect to pure ice),

o the first guess values S? and 77,

e the related searched correction functions «v; and /3;,
e the related searched flow entities S; and T,

e the corresponding control variable components &;
and [3;,

The discretization of the equation (7) leads to:

P

D, exp a; exp Bi
Xp (2p) = Z — a4z (3)
i=1 S'i T?
where , is the ice age of the p*"* discrete depth z,, and
involves the corrected flow entities 7" and S by the mean
of their respective correction functions exp a and exp 3

(6).

— 235 —



2.3 Cost function .J

The J function makes a trade-off between the prior
knowledge and the data constraint. We describe in the
next sections the elements of this trade-off: 1) the prior
information on X which is embodied first by a prior
guess or background vector X" and second by the back-
ground error covariance matrix B, 2) the observation
model /i (X') which enables to predict the observations Y.
The very classical assumption referred to as H2 is made
hereafter. It consists of no error correlation between the
background and the observations. In this case, the cost
function precisely splits in two terms [19]:

J (&) = J°% (%) + J® (%) 9)

The first term .J°** measures the distance between the
observations Y and the model predictions h (X') while
the second term .J® measures the distance between the
searched and the prior correction functions X and X,
Let us now detail the hypothesis and information neces-
sary to derive the J” and .J° terms.

2.3.1 Background term .J"

The X vector is a part of the so-called hackground infor-
mation which may be derived on the basis of the follow-
ing rough statements. The background term aims during
the optimization process at constraining 7" and S to re-
main "not too far from” 7% and S?. In other words, .J®
aims at maintaining the X vector "not too far from” 1
(see equations (3) and (4)) and this can be summarized
with the above equation:

Xt =1 (10)

The true flow entities s* and t' and their associated
true correction function =* are unknowns. One obviously
makes an error assuming that S®, 7% and X* are ade-
quate estimates *. This error is the hackground error and
we must now determine its nature.

The X vector being nothing else than a prior guess for
X, on the basis of assumption H1 we apply the variable
change of equation (5) to X? and z*. It introduces X"
and 2! from which one can reformulate the background
choice (10) and define the background error in the control
space & :

Xt = 0 (11)
& = Xv=g (12)

During the optimization process, the data constraint
may drive away the X value from the background vector

4Flow models are imperfect.

choice (11) which therefore induces the so-called back-
ground deviation. The J term accounts for the cost of
such background deviation by the mean of the B matrix
which weighs each devitation component according to
the confidence * attached to the background choice (11).

Jb (%) = % (;E - X")T B-1 (;i.- - X”) (13)

The B matrix is defined with the B = E[(e%)(e")7]
statistics ®. This statistical analysis may be performed for
instance on more complex flow modelling 7. This impor-
tant work is however not in the scope of this study which
purpose is essentially to describe and test this new dating
method.

We therefore confine us to a very preliminary shaping
on which will rely the numerical experiments shown in
section 3. It requires to detail the block structure of the
B matrix which relies on the two components €}, and &

8 of the background error (12):

Ba Ba,{i

where B, and Bj are the auto-covariance matrices re-
lated to €, for the former and to €’ for the latter, while
B is the cross-covariance matrix between ), and .
On this basis, we assume first uncorrelated €%, and €’ un-
certainties which is hereafter referred to as assumption
H3. The consequence is a null B,s sub-matrix. This
assumption is justified taking account of Parrenin et al.
[14], who show that the total thinning function is only
weakly sensitive to accumulation changes. This latter as-
sumption greatly simplifies the .J”(#) expression which
can split into two independent terms:

Jb (&) = Jb (&) + I8 (5) (14)

where, when taking account of (11), Jf;(d) and Jf;(ﬁ)
are given by:

Ji (@) = %a-TB;'& (15)
o T s =
J5(B) = 5;#3};1;3 (16)

The shaping secondly consists to set independently the
standard deviations (hereafter std) and the correlations:

IB”]U' = [Jg], [”2] ; [pi;]-ij a7

J

’B-’(j]:'j = [Ug] i [JS]J [’Ob“] ij (18)

3The B matrix is priorly involved in the gaussian pdf which measures the prior probability for Xto equate & and from which with the Bayes theorem,

is derived the J® term,
S E[.] is the expeeted value.

7One can mention the models that take account of: the anisotropy of the poly-crystalline ice, the horizontal shear for ice divide configurations,
accumulation events not driven by water vapor amount dependence to temperature...
8¢b and ¢ 5’3 arc the background errors on cach X components which is to say &* and 3.

— 236 —



where o, and o} are the std vectors and p¥, and pl; are
the correlation matrices related to B, and By . The pre-
cise std and correlation settings will be defined in section
3

2.3.2  Observation term .J°

Our experiments involve two types of observation des-
ignated as age markers and correction markers. We re-
fer to them as the assimilated observation set. We call
age markers any measurement enabling to associate an
ice age to a given ice layer along the core. Correction
markers are specific data enabling to infer corrections on
the thinning function. They are estimated from the com-
parison of observed and modelled Adepth which is the
distance along the core separating concomitant gas and
ice event *. The Adepth can be estimated as the product
of the thinning function 7' (z) by the codie (z) which is
the initial thickness of the snow-firn column measured in
meters of ice equivalent. In the bottom part of the core,
we assume that the disagreements between the modelled
and the observed Adepth are due to errors on the thin-
ning function rather than on the codie. This is a strong
assumption hereafter referred to as HS.

In the next two paragraphs, we describe the observa-
tion components of the cost function. Because of the as-
sumption (referred to as H6) of no error correlation be-
tween age markers and correction markers, J°” reduces
to a sum of two distinct terms .J“ and .J¢, related to age
markers for the former and to correction markers for the
latter:

J{)bs —Jja -}—J('I (19)

The H6 hypothesis is rather strong; in a more in-depth
study, a careful examination of the origin of each data
should be carried.

Age markers In order to detail the entities involved
in the J* term, we describe the age markers by a set
of n, triplets (z¢,y¢, o) with ¢ running from 1 to n,
and where z{ is the depth for which the age y{ is ob-
served with the o std. The J* term measures the dis-
tance between the observation vector y* and h" (z), the
age marker observation operator '°. Assuming normally
distributed age marker errors, .JJ* can be written as fol-
lows:

J () = % (y* — h® (&))" R (y* —h* (%)) (20)

where R is the age observation error covariance ma-
trix which is defined on one hand with the % std vector

and on the other hand with the p® correlation matrix '':

[Ral;; = [0°]; [0%]; [0%]; (21)

The i" component of h® () is given by the following
equation:

P
m; —1

” exp vj exp BJ ~
r’i‘.? (.‘T.) = E Tf’—sf.’Djdkj {22)
j=1 g
exp Qe exp f -
a i i -
+ A T m? d"—-?n.’:

mE=me
i i

The m index selects the z,,» depth which is the clos-
est upper grid point to z¢ (the depth axis being oriented
toward the bedrock). Equation (23) involves a sum which
runs from index 1 to index m¢ — 1 and where the j'" term
is the contribution of the j** ice layer to the h? value.
The last term operates a linear interpolation between the
depths z,,0 —1 and zp,« through the A{ factor:

4{.1 _— Z; Q 1
i ny —
Xo =2 ML (23)

Zmt—1 " Zm¢

Correction markers The thinning correction markers
are depicted by the set of n,. triplets (zf, yf, of) with ¢
running from 1 to n,. and where y¢ is the observed thin-
ning correction for the z¢ depth with an std estimate of
of. A correction marker being nothing else than the mea-
surement for a specific depth of the thinning correction, it
is also a Jeffrey’s variable and on the basis of assumption
H1 we apply the variable change of equation (5):

¥; = In(yy) (24)

where ¢ is the transformed it" correction marker and
has normally distributed errors. In this context, the cor-
rection markers induce a cost function term given by
equation:

T@) =5 G- @) R - b @) (9)

where h° (%) and R, are the observation operator
and error covariance matrix associated to the correction

markers. The i*" component of h¢ operator is:

h§(B) =Y~ 8ims B (26)
j=1

where, §; ; is the Kronecker symbol (which equals 1
when i = j and zero otherwise) and the m¢ index is such
that z,,¢ is the closest upper grid point to z{. Here again,
R. can be written in terms of the p¢ correlation matrix
and the o std vector:

’RC]U = [o°]; [gc]j [pc}ij (27

YAt a given depth the gas trapped in the bubbles is younger than the surrounding ice.

'The h operator cnables to predict ¥ measurements.

""No crror correlations being provided, the p® matrix is therefore the identity.
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2.3.3 Generalized observation operator and covari-
ance matrix

In order to simplify the developments of section 2.4, we
now define the generalized observation operator h(Z):

[ he@E) 0
h(z) = ( 0 he () ) (28)

According to H6, we also define R the generalized
observation error covariance matrix which is diagonal-

block:
R, 0
R= ( r g ) (29)

At last, H (7) = S—ﬁ designates the tangent linear op-
erator of the generalized observation operator.

2.4 Optimal solution and confidence intervals

The optimization of the cost function is performed
with the mlqn3 minimizer developed by Gilbert and
Lemarechal [3] which is based on a limited memory
quasi-newton algorithm [2]. Let us designate & the op-
timized control variable. Assuming that the /() opera-
tor is only weakly non-linear (hypothesis H7), the con-
fidence intervals on Z can be estimated by the posterior
error covariance matrix P [19] where H is the tangent
linear operator estimated at the optimum 2:

2 A e 5 - -1
Px~(A"RH+B7) (30)
Let us write:
e | = x(). the optimized ice chronology,

e V', the related tangent linear operator calculated
at the optimal point z.

We now assume (hypothesis H8) that a normal pdf cor-
rectly approximates the uncertainties on y and we define:

Q = VxPVx" (31)

where the @ matrix is an approximation of the poste-
rior error covariance matrix associated to the optimized
ice chronology. The matrix diagonal elements conse-
quently provide the confidence intervals on y (see ap-
pendix 5).

3 Applications: the EDC ice core

In this section we present numerical experiments on
the EDC core, in order to test the new dating method.
The first experiment consists in: 1) building an optimal
age scale for the EDC core with the same elements used
by Parrenin et al. [13] but in a more rigorous way 2) cal-
culating the associated uncertainty. The two next experi-
ments enable to investigate the sensitivity of the optimal
age scale, the correction functions and the related confi-
dence intervals to the shaping of the B matrix.

3.1 Standard experiment: EDC age scale construction
In order to construct an optimal age scale for the EDC
core, we assimilate the whole set of age markers de-
scribed in table 1 of Parrenin et al. [13], particularly the
age markers of the core bottom which could not be re-
spected with the Monte Carlo method (see introduction).
We moreover use the optimized flow model simulations
of Parrenin et al. [14] which provide us the prior guesses
S® and T?. No correction markers are used for the current
experiment.

The age marker std which are required to determine
the R* matrix are also taken from table 1 of Parrenin et
al. [13]. No correlation between age observation errors
were reported in [13] and we adopt this assumption. The
R® matrix is therefore diagonal. This can be a strong as-
sumption in particular for age markers derived from an
orbital tuning procedure like for instance the %0 data
(O4 1sotope) which are used to derive the EDC3 age scale
[13, 1]. The constant phase usually assumed in the tuning
procedure may be wrong and therefore lead to a system-
atic bias.

As already detailed in section 2.3.1, a proper shaping
of the B, and B3 matrices would require a detailed statis-
tical analysis. In this preliminary study we only propose
some simplistic covariance modelling which are to a cer-
tain extend arbitrary and which we address in the next
paragraph.

We first of all define the B, covariances as functions
of age differences while the Bj covariances are set as
functions of depth differences. This separation is due to
the distinct dependence of S” and T either on age or on
depth. Changes in the accumulation rate are not linked
to the drilling depth but more naturally to the paleocli-
mate change through time whereas the thinning of an ice
layer observed today along the core is more intrinsicly a
mechanical state attached to the depth of the layer.

Let us secondly focus on the specific B,, settings. The
error variance on & is assumed to be constant through
time and for that purpose we set each o2 vector com-
ponents to 0.17. We do not expect the discrepancy be-
tween the “true” and the modelled accumulation to get
worse in the past. We can however expect the model to
better estimate the accumulation rates of the inter-glacial
stages because the sedimentation model is derived from
a present-day spatial parameterization linking the mean
annual temperature with the ice deuterium content. We
ignore this point in this preliminary study. In addition,
the correlation matrix p? is defined as a gaussian func-
tion of x* with L”, a correlation length parameter in time
unit which is set to 9 kyr (1 kyr= 1000 years):

2
, L%~
[pa)i; = exp—3 (TJ (32)
o

Let us at last detail the B settings. Referring to the /3
error variance, its shape is chosen taking into account the
two forward model characteristics: 1) the longer the ice
particle trajectories, the greater the error of the forward
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model is, 2) when dealing with a 1D flow model and
depending on the amount of basal melting, the thinning
function may become artificially very close to zero near
the base; the potential result is a largely over-estimated
ice age. In the light of this comment, one can control the
magnitude of the error variance with the growth of the ice
age and one candidate for the a‘; vector components can
therefore be a growing function of the inverse of 77, the
total thinning experienced by the ice layer between z;_;
and z;:

bO i
T4 1z
b A Az
beli== 2. =8 (33)
H =t T
where H is the total ice thickness and JE‘U a parame-
ter which is set to 0.425. The related correlation profile
is here again chosen as a gaussian function depicted with
the corresponding correlation length parameter Lf§ set to
150 m:

[+

1{zi—z;
bl _ _AE %
[p_;;]_j\j = exp—3 ( 7 ) (34)

Background variance

Depth (m)

Figure 1: Depth profiles for the background variances
([e5):)? (black dashed line) and ([o5];)? (black solid
line).

These settings serve our numerical experiments. They
induce a reversal of trend around 1000 m which is illus-

trated on Figure 1 with the o, and o7 depth profiles. Be-

low 1000 m because o'f.; > b, the J function is more

sensitive to a 7" deviation from its background 7" than to
an S deviation from its background S® while above 1000
m, the opposite configuration takes place. As a result, if
corrections are necessary they will rather affect & below
1000 m and /7 above.

The optimization of the cost function leads to the so-
lution displayed on figure 2. On the top panel of the fig-
ure is plotted Yy — x”. the age difference between the op-
timized and the background age scale (black line) with
the assimilated set of age markers and their uncertainty
(black circles with error bars). The bottom panel operates
azoom in the depth interval lying between 2700 and 3255
m where the disagreement between the two ice chronolo-
gies is blazing. On this panel is directly compared the

behavior of the two age scales with x” in grey dashed
line and y in black solid line. Moreover, the uncertainty
on the y optimized age scale is shown with a semi dashed
red line on both panels.

3.2 Sensitivity experiment through covariance length
changes

In order to investigate the sensitivity of the solution
to the shaping of the error covariance matrices, we mod-
ify the Bj covariances by reducing the Ljs value from
150 to 50 m (this affects the .J” terms and their weighing
factors). We do not modify the other settings. The 15
sensitivity experiment operates on the set of observations
described above in the standard experiment whereas the
2nd gensitivity experiment assimilates also thinning cor-
rection markers (see section 2.3.2). The aim of this lat-
ter experiment is to study how the /3 thinning correction
and its confidence intervals behave in the neighborhood
of 3 measurements. For that purpose, we use the Adepth
data discrepancies of table 2 in Dreyfus et al. [1] and we
stick to the assumption H5 made in section 2.3.2. The
observed Adepth are deduced from warming or cooling
events which are simultaneously recorded in the gas bub-
bles (greenhouse gases) and in the ice phase (through wa-
ter isotope of ice which is a proxy of the temperature).
Here again, we assume no correlation between correction
marker errors. The R matrix is therefore diagonal. This
may be a strong assumption if for instance the hypothe-
sis of concomitant variations of the greenhouse and the
temperature, reveals itself to be wrong.

In order to describe the results of the 15! sensitivity
experiment, we designate by xr,—150 and X ,—50 the
two age scale solutions. Figure 3 compares their behav-
ior. The set of age markers are still plotted as black cir-
cles with error bars. As for the standard experiment, we
show on the top panel the two resulting age differences
X1.=150 — X" (black dashed line) and X 1, ,—50 — x” (grey
solid line). The bottom panel operates a zoom below
2700 m and directly shows X1 ,—150 and Xz ,—s0. On
both panels are plotted the calculated uncertainties asso-
ciated to each age scale, in red dashed line for X1 ,—150
and in yellow solid line for x 7, ,—50.

Figure 4 displays the result of the 2" sensitivity ex-
periment. The top and bottom panels show the /3 thin-
ning correction function respectively for Lz = 150 and
Lz = 50 m. The black squares with error bars are the
thinning correction markers, the black line is the thinning
correction function solution while the dashed black lines
are the confidence intervals.

4 Discussion

On the two panels of figure 2, one can see how the op-
timized chronology does captures the necessary change
of slope in order to respect the age markers. The gen-
eral trend of the uncertainty on y is a growth (errors cu-
mulate) on which are superimposed several drops local-
ized in the neighborhood of age markers. These drops
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markedly occur where the age marker uncertainty is be-
low the uncertainty attached to the background age scale.
This behavior can be observed for instance, between 2000
and 2700 m where 6 ages markers are assimilated with a
4 kyr uncertainty (see table 1 in Parrenin et al. [13]).
This illustrates the expected spreading of the information
brought by observations in their neighborhood. Further
on, in area with high density of observations, the esti-
mated age scale uncertainty is more or less steady but
below the mean level of the related age marker uncertain-
ties '%: this feature can be clearly observed below 2700
m.

On the top panel of figure 3, the comparison of the
XrL.=150 and Y1 ,—50 solutions shows a slight sensitiv-
ity of the age scales to Lg changes (in the investigated
range). A smaller covariance length however leads to
a chronology with smoother curvatures in the neighbor-
hood of age markers. This feature can be observed on the
two solutions X, ,—150 and X, ,—s50, for the dated hori-
zons lying at 1265.10, 1838.09 and 2620.23 m depth. It
is meanwhile clear on both panels, that the uncertainty
on the optimized age scale is strongly sensitive to Lg
changes. One can expect that higher covariance lengths
result in lower age scale uncertainty. This is however a lit-
tle more complex because of two opposite driving forces.
A greater covariance length: 1) causes the errors to cu-
mulate faster with depth but 2) induces a wider diffusion
of the information brought by an age marker. The latter
statement is exclusively true when the age marker is in the
scope of action of the covariance length. An illustration
of this point can be observed below and above 2300 m.
Below 2300 m, the uncertainty on X, ,—150 is first higher
than the one related to 7 ,—50 but then turns smaller
downwards. Below 2300 m moreover, the depth interval
separating two successive age markers is too large com-
pared to the magnitude of the covariance length: the er-
ror accretion dominates and the uncertainty on the age
solution is higher for Ls = 150 m '*. Above 2300 m,
this depth interval becomes sufficiently small compared
to the magnitude of the covariance length: the spreading
of data information dominates and the uncertainty on the
age solution is lower for Lz = 150 m. This interpreta-
tion may be slightly blurred because in this experiment
two covariance lengths operate at the same time: Lj and
L. But above 2700 m the impact of the B, covariances
can be neglected regarding the respective magnitudes of’
1) o, and 05 std, 2) L, and Lz converted in age units '4,
Moreover the depth interval lying above 2700 m, char-
acterized itself by uncertainties on age markers that are
far below the uncertainty attached to the background age
scale which ensures a strong inflexion of the uncertainty
curve.

On figure 4, the expected behavior for the /3 solution
and its confidence intervals '* can be seen. At each cor-

rection marker depth, the uncertainty drops and the con-
fidence intervals converge very close to the value of the
uncertainty attached to the correction marker. The com-
parison of the two panels of figure 4 shows the impact
of Lg changes: the larger the covariance length the fur-
ther the uncertainty information brought by the correc-
tion marker data diffuses. One comment is necessary in
order to explain the non smooth behavior of the solution
at some particular depth, despite we do take into account
correlations for the background errors. A detailed analy-
sis shows that this behavior is observed when age marker
constraint conflicts with a correction marker constraint,
the former constraint requiring for instance an older ice
age while the latter constraint pushes toward the oppo-
site: this is precisely the case for the correction marker
which is at 2785.75 m depth and the three age markers
which are successively at 2789.58, 2799.36 and 2812.69
m depths (see tables 1 and 2 of Dreyfus et al. [13] and
table 1 of Parrenin et al. [13]).

5 Conclusion

This paper detailed the technical frame of a new prag-
matic inverse approach which optimally estimates the ice
chronology of a given ice core. This inverse approach is
new because it takes into account the ice flow model un-
certainties. These latter cannot be ignored in the context
of the simplified flow models currently used for inverse
dating purpose, unless to enrich the flow models in or-
der that they better describe the flow irregularities. The
model uncertainty is introduced in a pragmatic way by
the mean of correction functions targetting the total thin-
ning function and the accumulation rate, two entities pre-
viously calculated with direct or already optimized dating
simulations and which serve the purpose of prior guesses
(or background) for the new inverse approach. A cost
function is derived in a Bayesian framework which de-
scribes in a probabilistic way, the competition between
the distance to the background knowledge and the dis-
tance to a set of observations. The optimization of the
cost function enables to identify these correction func-
tions and provides new estimates of the thinning function
and the accumulation rate. Finally, these new flow enti-
ties lead to an optimal estimate of the ice age scale. In
the Bayesian framework, the calculation of the solution
confidence intervals can be performed under certain hy-
pothesis.

We successfully applied this new dating method to
construct the age scale of the EDC core with the use of
the official set of age markers [13]. No a posteriori cor-
rection in the core bottom was needed: the new method
enables in particular to respect the constraint of the 'O
age markers which was not the case for the dating simu-
lation optimized with a Monte Carlo technique. Besides,

2 - . -
121f some error correlations would have been taken into account between age markers, the observed uncertainty drop would not occur so markedly.

3More precisely, this comment holds above 500 m and below 2300 m.

" Around 2700 m, L5 becomes 2 (8) times larger than L, for Lz = 50 (150) m while the o5 std is 6 times larger than the o, std.
15The confidence intervals are absolute uncertainties. Their are however not symmetric with respect to the solution because they are caleulated by the
mean of the estimated relative uncertainty attached to the posterior lognormal error distribution.
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the confidence interval associated to the new ice age scale
behaves as expected: it increases with the distance to the
nearest age marker.

Preliminary sensitivity tests confirm the well-known
impact of the background error covariance matrices on
the solution and especially on the estimated confidence
interval: the larger the correlation lengths the further the
information brought by a given observation propagates.
One important task to do in future works is to shape
with relevant physical information those background er-
ror matrices. A traditional but time consuming approach
is to perform statistics on the outputs provided by some
more complex flow modelling (full stokes or higher order
models). Another approach would consist in working on
small time intervals carefully chosen with a large num-
ber of observations and searching the most unfavorable
shapes for the background error matrices which would
however still respect the data set.

Some of the assimilated observations (i.e. data used to
constrain the model) reveal our intent in a very close fu-
ture, to inverse at the same time on the ice and on the
gas age scale (correction markers are more rigorously
Adepth markers which are straightforwardly related to
the close-off depth and %O are gas rather than ice age
markers). Here again, the idea is to use a prior guess
for the codie and to calculate an optimal correction func-
tion in best agreement with the data and the background
knowledge. Moreover, the ability of the method to as-
similate large set of observations brings the perspective
to inverse chronologies of several cores simultancously
by using ice and gas stratigraphic links. This method will
certainly provide a tool to the paleo-community, enabling
to construct a common and optimal age scale for deep ice
cores of Greenland and Antarctica.
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Appendix A : Confidence intervals on the op-
timal ice age

Let us call X, the model parameter vector to be identi-
fied in the framework of an inverse problem. Let us sup-
pose we solve the problem with a variational approach
with the minimization of .J, the cost function of the prob-
lem. Let us call g, an additionnal observation model de-
fined as an operator that maps the model space M into
the observation space D:

g: M—=D (35)
zy=g(x)

Let us suppose that both M and D are linear spaces.
If X = ' is the true but unknown optimal solution and

if X = & is the estimated solution, one can define ¢, the
analysis error as (assuming it to be normally distributed):
€z =a' — & (36)

with the associated P error covariance matrix:

P = <ee > (37)

The true but unknown observation model can therefore
be written as:

y' =g (z") (38)

while the estimated model is:

J=9(2) (39)

The error made when estimating the true observation
model to be y = ¢ () is given by €,

& = ¥ -9 (40)
= g(z') —g(&)

Let us suppose that ¢, = z' — & is small enough to
write:

g(:ﬁ_‘_f-l-')_g(il) :éT5x+0(||f,rH) (41)

where G7 s the tangent linear operator calculated at
X =
dy
GT = [=|x=3
[ x=2

Equation (41) may be re-written using ¢, which is a
randon function:

(42)

€y = C}TE.L‘ + o (“61”) (43}

Further on, assuming that €, is normally distributed,
one can calculate (), the error covariance matrix which
measures the error made on y' estimate:

Q = <ty > (44)
= <Gee,"GT >
= Gcee 6T

= GPGT
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Figure 2: Standard experiment: ice chronology of the EDC core and its confidence interval calculated with the new dating
method. The top panel covers the whole chronology while the bottom panel operates a zoom between 2700 m and the core
bottom. The ages are measured in kyr (1000 years). The age difference between the new and the background chronology
is shown in solid black line on the top panel while the bottom panel directly shows the new and the background age scales
using the same color code (related Y-axis on the left); on both panels, in red dashed line is plotted the related estimated
age scale uncertainty (related Y-axis on the right) as well as the assimilated age markers in black circles with error bars.
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Figure 3: 15 sensitivity experiment: EDC ice chronologies and their related uncertainties calculated with two covariance
lengths Lz = 150 and Lz = 50 m. The top panel covers the whole chronology while the bottom panel operates a zoom
between 2700 m and the core bottom. The ages are measured in kyr (1000 years). The age differences between the new
and the background chronologies are shown on the top panel, for both covariance length Lz = 150 m (black dashed
line) and Lz = 50 m (grey solid line) while the bottom panel directly shows both age scales using the same color code
(related Y-axis on the left); on both panels, in red dashed line and yellow solid line are plotted the estimated age scale
uncertainties respectively for L = 150 and Lz = 50 m (related Y-axis on the right) while black circles with error bars
are the assimilated age markers.
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Figure 4: 274 sensitivity experiment: thinning function correction calculated for two covariance lengths Lz = 150 and
Lg = 50 m. On the top panel, Lg = 150 m while on the bottom panel Lz = 50 m. The squared markers with error
bars are the thinning correction observations (the correction markers) and their uncertainty. The black solid line is the
estimated thinning correction function while the black dotted lines are the related confidence intervals.
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