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A Probabilistic Method to Construct an Optimal Ice Chronology for Ice Cores 

Bcnedicte Lcrnicux-Dudon, 1 Parrcnin Frederic, 1 Eric Blayo 2 

1 LGGE CNRS, BP 96, F-38401 Sailll-Mortin d'He,-es Cede.'C, France,lemiellx@/gge.obs.lljfgrenoblejr 

2 UK. BP 53. F-38041 Grelloble Cede.r, France 

Abstract: Accurate icc chronologies arc needed for Ihe in~ 
terpretation of paleoclimate reconstructions inferred from 
icc cores. Several methods arc used to provide chronolog­
ical infonnution: identification of dated horizons along 
thc cores, synchronization to other dated paleoclimatic 
records, counting of annual layers or modelling of thc 
icc flow. These methods arc relevant for different pariS 
of the core and enable to reach various levels of accu­
racy. We present a probabilistic approach based on in­
verse techniques which aims at building an optimal ice 
core chronology by using all thc available chronological 
information. It consists in identifying the accumulation 
rate and the thinning function along the core 1) which arc 
as close as possible to the Row model simulations and 2) 
so that the corresponding icc chronology is as close as 
possible to independent dating infonnation. This proba­
bilisr.ic approach enables to evaluate confidence intervals 
on the optimal age scale as wel1 as on the accumulation 
and the thinning estimates. We test the new method on the 
EPICA Dome C ice core. The necessary prior accumu­
lation rate and thinning function as well as a set of dated 
horizons arc provided by a previous work aiming at the 
EDC3 age scale reconstruction. We further discuss the 
scnsitivity of the obtaincd optimal solution with rcspcct 
to the nccessary prior information. This probabilistic ap­
proach cou ld be used in the futurc to build a common and 
optimal chronology for several icc corcs simultaneously. 

Key words: Inverse Methods, Icc Core Chronology, 
Paleo-climatc. 

J Introduction 

Deep icc cores extracted from Antarctica or Grcen­
land recorded a wide range of past cl imatic events [8, 9]. 
Physico-chcmical measurements on the core matcrial 
provide many types of record. For instance the past tem­
perature changes are inferred from ice isotopes and the 
past atmospheric composition is deduced from the anal­
ysis of trapped air bubbles. These records arc valuable 
archives to understand past climatic mechanisms at hand 
on Earth. To achieve such a goal , accurate icc core 
chronologies (c.g. a dcpth-age relationship) arc neces-

sary. 

For that purpose, one may distinguish the accuracy on 
"absolute ages" attached to specific events from the ac­
curacy on "event durations". Both types of accuracy arc 
required and they arc of course strongly linked but onc 
must keep in mind that an accurate age scale in event du­
ration may misj udge thc timing of some events and vice 
versa. For instance, dating mcthods providing a precise 
estimate of event duration may induce an age scale with 
cumulative errors with dcpth. On the other hand, some 
other methods providing an age scale with a good ac­
curacy on absolute ages may imply some distortions on 
short time intervals. 

The currently used methods aiming at icc core dating 
may fall into four groups: (I) the wiggle matching on 
other dated time series, (2) the use of dated horizons, (3) 
the counting of annual layers and (4) the icc Row mod­
elling. We hereafter bring dctails on each group on thc 
basis of examples. 

In the fi rst group one can mention the orbital tuning 
which consists in the comparison of icc core records to 
insolation variations [7]. It can apply 10 the whole core 
as long as the stratigraphy is preserved [I]. The accuracy 
in terms of event duration as well as in terms of absolute 
age is limited because the orbital luning procedure relics 
on the assumption of a constant phase between climate 
(recorded in icc cores) and insolation. One advantage 
is however that the achieved accuracy docs not dimin­
ish with depth (assuming steady underlying mechanisms) 
and it is therefore the currently most precise method \0 

date the bottom of deep ice cores. In this first group, onc 
can also mention the comparison of ice core records to 
paleoclimatic archives dated with radiochronologic tech­
niques as for instance the U-Th dated speleothems [21]. 
On the contrary, this later technique is rather relevant for 
recent periods where rad iometric methods apply. 

In the second group, one can mention volcanic hori­
zons which provide very accurate age markers in terms 
of absolute age. This is the case for the last millennium 
[20], but beyond that limit, accurate absolute ages are as­
sociated to very few eruptions [12]. 

The third group refers to layer-counted chronologies 
which rely on the recognition of seasonal variat ions in 
various records. The ncw GICC05 chronology for Green­
land [18J uses an improved multi-parameters counting 
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approach, and currently extends back to around 42 kyr 
BP with a maximum counting error 01'4 to 7% during the 
last glacial pcriod. If this techn ique is vcry accurate for 
estimating the event durations the error on absolute ages 
however increases with depth. 

The last group consists in dating the cores with icc flow 
modelling. This latcr mcthod is bascd on the estimate of 
S (z). the snow accumulation rate at the deposition time 
on the icc-sheet surface (expressed in cm of pure icc per 
year) as weB as on the estimate of T (z). the so-called 
thinning function which is the ratio of a layer thickness 
at depth z to its initial thickness at the surface. It enables 
to determine X (z) thc age of the icc, by depth-integrating 
the number ofantlUallayers per meter from the surface to 
the depth z: 

r D (z' ) , 
X (z) ~ Jo S (z' )T (z ,)dz (1) 

where D (z) is the relative density with respect to pure 
ICC. The paramctcr D (z) is usually well-known be­
cause it is measured with high precision along the drilled 
icc core I. The accumulation rate S (z) is generally 
inferred from a sedimentation model which uses tem­
perature reconstructions obtained from isotopic analysis 
of the icc [14]. Finally, the thinning function T (z) is 
usually estimated by local flow description [1 4]. How­
ever, some poorly known parameters of the flow mod­
els within which is incorporated the accumulation model 
(e.g. basal conditions li kc the sliding or the melting at 
the icclbcdrock interface) makcs the modelling exercise 
less accurate with incrcasing dcpth and thc simplified dc­
scription most oftcn fails to rcproduce the flow bchavior 
all along thc core (especially ncar the bedrock). 

To put together all these different chronological infor­
mation, Parrenin et al. (15] developed an inverse ap­
proach which has been uscd to construct age scales for 
the East Antarctic and the Greenland ice cores [4, 16, 
14, 17]. This inverse approach is solved by a Monte 
Carlo sampling method (sec Mosegaard and Tarantola 
[II] or Tarantola [19]) which optimally identifies the 
poorly known parameters of the flow models by the usc 
of data constraint (e.g. dated horizons). 

The previous method however suffers from a strong 
restriction precisely because the involved flow models, 
apart from their poorly-known parameters arc supposed 
to be pcrfect. In other words, the modelling uncertain­
ties due to undescribed or unknown physical mechanisms 
arc not considered (e.g. changes of icc mechanical prop­
erties, uncertainty in lateral boundary conditions, ... etc.). 
One consequence is that even after appropriate tuning. the 
model is sometimes unable to capture complex flow be­
havior and to reproduce the observations, especially for 
basal icc where the flow becomes more irregular and the 
model approximations less applicable [I , 13]. Another 
impact of the above mentioned restriction concems the 
confidence intervals on the optimized agc scale. They 
cannot be properly estimated because thc sources of un-

certainties which arc linked to the model imperfections 
are neglected. 

The EDC3 age sealc may be taken as an illustration. It 
was partially built with the abovc described inverse ap­
proach [13] but because of the depicted restriction, the 
Monte Carlo optimized age scale could not fit all the 
available age markers. A subset of them was therefore 
subject ively chosen for constraining the flow parameters 
[13] and an a posteriori correction was finally applied on 
a portion of the optimized age scale to circumvent the 
problem [1, 13J. At last, the EDC3 age scale confidence 
intervals were only roughly estimated on the basis of the 
quality of the surrounding age markers. 

The current methodological article describes a rigorous 
method which enables 10 derive an optimal ice chronol­
ogy without any a posteriori corrections and where the 
poorly-known physical mechanisms arc statistically con­
sidcred by the mcan of correction functions. The aim is 
to idemify the best corrcetions on the accumulation rate 
and on the thinning function which are on one hand con­
sistent with the flow modcl sim ulations and on the other 
hand which induce an age scale and flow entities in best 
agreement with independent observations. This method 
moreover enables to rigorously estimate the confidence 
intervals on the optimized chronology. 

In section 2, we describe this new method. Section 3 is 
devoted to validate the method with experiments on the 
EPICA DOME C core (hereafter EDC). We construct an 
optimal age scale by integrating Ihe same clements used 
for building the EDC3 age scale (Lc. flow model simu­
lation and age markers) and we estimate Ihe associated 
confidence intervals. We then test the sensitivity of the 
method with respect to the prior information which is 
necessary to run the mcthod and finally we discuss the 
results after the application section. 

2 Method 

The accumulation rate S and the thinning function T, 
are key entities of flow models because they enable to 
calculate the icc chronology with equation (I). Several 
modelling works targeting a particular drilling site al­
ready allowed to estimate these flow entities [14, 5]. Tak­
ing the EDC3 age scale as illustration. we underlined in 
the introduction that these estimates may fail to repro­
duce some flow irregularities and arc at the root of in­
accurate icc age reconstructions, mainly bccause some 
physical mechanisms arc not described in the flow mod­
els. This slUdy docs not propose itself to enrich the flow 
description in order to improve these estimations but it 
is rather a pragmatic approach that aims by the usc of 
data constraints, at identifying the best perturbations on 
already estimated accumulation rates and thinning func­
tions. The searched perturbations are hereafter called 
correction/unctions and designated by X. They have the 
vocation to encompass all sources of modelling uncer­
tainties. In other words, they can either account for errors 

10 (z) is quickly increasing from around 0.35 for lighl snow al surface 10 around 1 at 200 m. 
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on physico I parameters that arc already ineluded in the 
flow modelling or also account for errors due to omitted 
physical mechanisms. 

Inverse techniques provide the rigorous framework to 
idcntify X. In the current study, we opt fora Bayesian ap­
proach [19, 11,6]. Wc further decide to usc the Maximllm 
Likelihood [19] as optimality criteriOIl which wc investi­
gate by the mean ofa variational technique [6] rather than 
by the use ofa Monte Carlo method (10, 19, II] 2. The 
Bayes theorem [19, 11 , 6] enables to operate a conjunc­
tion of the statistical information brought by: I) the prior 
knowledge on X which is provided by the flow modelling 
and (2) somc independent observations 3 named Y and 
their adequacy with the predictions operated by the ob­
sen'atiOl1model It (X ). The cos/ jillle/ioll J (X ) is finally 
derivcd from the model and data probability conjunction 
on which is applied the optimality criterion. At last , the 
J cost function is optimized and provides X = X the 
"optimal" perturbations on T and S. 

[n the next sections, we first definc precisely what arc 
the searched correction functions and second we give all 
the clemenls to build the J cost function. 

2.1 Correct ion functions 
Let us designate by 5" and T b, the necessary first 

guesses on the accumulation rate and on the thinning 
function which arc provided by direct or already opti­
mized flow model simulations. X may bc split into two 
correction functions a and /3 which targct Sb for the for­
mcr and T b for the latter: 

x ~ (a , (3)7' (2) 

The a (z) and /3 (z) correction functions are chosen as 
multiplicative factors: 

a (z) 
S' (z) 

(3) ~ 

S (z) 

(3 (z) 
T ' (z) 

(4) ~ 

T (z) 

[t must be emphasized that both must be strictly pos­
itive. This positive eonSlTaint is prescribed by the Eule­
rian formulation of the age model ( 1) where neither the 
thinning function nor the sedimentation rate can be neg­
ative or zero, at the risk of producing a discontinuity. 
Such non-negative physical entities arc called Jeffrey's 
variables (see Mosegaard and Tarantola [II] or Tarantola 
[19]) and it is worth mentioning that they cannot admit 
every type of crror probability dist ribution function (pdf 
hereafter). The nomlal pdfis for instanec not appropriate. 

[n the next sections, wc will encounter 0" and /3 prior 
guesses, /3 measurcments and finally a and /3 optimal es­
timates. They all refer to the same physical cntities (the 
correction functions) which are Jeffrey 's variables. We 
decide hereafter to describe their error statistics with the 

2Thc reason being the s ize of X . 
JD:ucd horizons, ... 

logllormal pdf and this hypothesis is referred to as HI . 
This choice relies on the wide usc of the lognormal pdf 
when handling positivc variables but also essentia!ly on 
the propeny atlached to the above variable change: 

X = lnX (5) 

If the X error statistics is lognormal then the X error 
statistic is norlllal (II , 19]. In the framework of the Max­
imum Likehood criterion and because of the assumption 
HI , such propeny justifies to develop the problem and 
optimize the J cost function with respect to X: 

-:. - - T T X = (0", /3) = (In a, In (3) (6) 

X is hercafter ca!led the control variable or equiva­
lently the correction function in the cOllfrol space. The 
above described strategy will lead us to the we!l-known 
least-squares structure for the J cost function. At last, the 
icc age may now be expressed with respect to X: 

( ) = t D(zl ) exp &(zl ) exp ~(zl ) d I (7) 
X z 10 Sb(z' )T b(Z' ) Z 

2.2 Discrctizcd problem 
The numerical treatment requires discretized depths 

which are designated by z. with index i running from 1 
to n, the size of the grid. To each ice layer lying between 
Zi_ l and Zi arc associated the above physical entities: 

• its thickness dz; = Zj - Zi_l, 

• its relative density Di (with respcct to pure icc), 

• the first guess values Sf and Tib, 

• the related searched correction functions a '; and /3. , 

• the related searched flow entities S, and Ti • 

• the c~)ffesponding control variable components 0 ; 
and /3;, 

The discretization of the equation (7) leads to: 

(8) 

where Xp is the ice age of the p th discrete depth zp and 
involves the corrected flow entities T and S by the mean 
of their respective correction functions exp o and exp ~ 
(6). 
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2.3 Cost function J 
The J function makcs a trade-off between the prior 

knowledge and Ihe dala conSlraint. We describe in Ihc 
next sections the elements oflhis trade-off: I) Ihe prior 
informalion on X which is embodied first by a prior 
guess or background veelor X b and second by the hack­
ground error covariallce malrix B, 2) the observation 
modcl h (X) which enables 10 predict the observations Y. 
The very classical assumption referred to as H 2 is made 
hereafter. [t consists of no error correlation between the 
background and the observations. In this case, the cost 
function precisely splits in two terms [!9J: 

J (x) ~ J"" (x) + Jb (x) (9) 

The first term Jobs measures the distance between the 
observations Y and the model predictions h (X) while 
the second term J b measures the distance between the 
searched and the prior correction functions X and X b. 
Let us now detail the hypothesis and information neces­
sary to derive the Jb and J ol>$ tenns. 

2.3.1 Background term JI> 

The X b vector is a pan of the so-called backgroulldinfor­
mation which may be derived on the basis of the follow­
ing rough statements. The background term aims during 
the optimization process at constraining T and 5 to re­
main "not 100 far from" T I> and 51>. In other words, JI> 
aims at maintaining the X vector "not too far from" ! 
(sec equations (3) an<l (4» and this can be summarized 
with the above equation: 

X b = 1 ( 10) 

The true flow entities Sl. and t l and their associated 
true correction function xt arc unknowns. One obviously 
makes an error assuming thaI 5b• T b and Xl> arc ade­
quate estimates 4 . This error is the background error and 
we must now detennine its nature. 

The X b vector being nothing else than a prior guess for 
X, on the basis of assumption H I we apply the variable 
change of equation (5) to X b and Xl .• It introduces X b 
and xt from which one can reformulate the background 
choice (10) and define the background errol' in the cOl/lrol 
space i b : 

(II) 

(12) 

During the optimization process, the data constraint 
may drive away the X value from the background vector 

4Flow models arc imperfcct. 

choice (II) which therefore induces the so-called back­
groulld devialion. The Jb term accounts for the cost of 
such backglVulld deviation by the mean of the B matrix 
which weighs each devitation component according to 
the confidence 5 attached to the background choice (II). 

Jb(X)= ~(X_Xbf' B- l(X _ XI» (13) 

The B matrix is defined with the B = E[(C»(ib)T] 
statistics 6. This statistical analysis may be performed for 
instance on more complex flow modelling 7 . This impor­
tant work is however not in the scope of this study which 
purpose is essentially to describe and test this new dating 
method. 

We therefore confine us to a very preliminary shaping 
on which will rely the numerical experiments shown in 
section 3. It requires to detail the block structure of the 
B matrix which relics on the two components i~ and i~ 
8 of the background error (12): 

B.p ) 
B. 

where BCt and B{3 are the auto-covariance matrices re­
latcd to i~ for the former and to f~ for the latter, while 

B(JI fj is the cross-covariance matrix between i~ and it. 
On this basis, we assume first uncorrelated i~ and it un­
certainties whieh is hereafter referred to as assumption 
lB. The consequence is a null B(JIfj sub-matrix. This 
assumption is justified taking account of Parrenin et a!. 
[14], who show thm the tolal thinning function is only 
weak ly sensitive to accumulation changes. This latter as­
sumption greatly simplifies the Jb(x) expression which 
can split into two independent terms: 

(14) 

where, when taking account of (11), J~ (a) and J$(P) 
arc given by: 

(15) 

(16) 

The shaping secondly consists to sct independently the 
standard deviations (hereafter Sfd) and the correlations: 

[B.lii ~ ["~l. ["~li [p~l;i 

[Bp!;i ~ ["~L ["~li [p~lij 

(17) 

(18) 

$Thc B matrix is priorly involved in Ihc gaussian pdfwhich mcasures Ihc prior probabililY for X to cquatc.i and from which wilh Ihe Bayes Iheorclll. 
is derived the Jb teml. 

6 E[.] is Ihe cXpci:lcd value. 
' 0ne can mention Ihe models Ihal lake aeeounl of: Ihe aniSOlropy or Ihe poly-crySlatline icc, Ihe hori7.ontal shear for icc divide eonflgmlllions, 

llCcumlllalion e,"cnls not driven by water \"llpor amounl dependcnce to temperatuR' ... 
Al~ and l~ aR' Ihe background errors on each Xb components which is 10 say (ib and iJb . 
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where at and at arc the sId vee/on' and p~ and pt arc 
the corre/aliol/matrices related to Bo and B{J . The pre­
cise Sid and correlation settings will be defined in section 
3. 

2.3.2 Obsen 'at ion term J OO8 

Our experiments involve two types of observation des­
ignated as age markers and correctioll markers. We rc­
fer to them as the assimifaled obSC' "I'aliOI1 sct . We call 
age markers any measurement enabling to associate an 
icc age to a given ice layer along the core. Correction 
markers arc specific data enabling to infer corrections on 
the thinning function. They arc estimated from the com­
parison of observed and modelled b.depth which is the 
distance along the core separating concomitant gas and 
icc event 9. The b.depth can be estimated as the product 
of the th inning function T (z) by the eodie (z) which is 
the initial thickness of the snow-fim column measured in 
meters of icc equivalent. In the bottom pan of the core, 
we assume that the disagreements between the modelled 
and the observed b.depth arc due to errors on the thin­
ning function rather than on the eo<lie. This is a strong 
assumption hereafter referred to as " 5. 

In the next two paragraphs, we describe the observa­
tion components of the cost function. Because of the as­
sumption (referred to as H6) of no error correlation be­
tween age markers and correction markers, J Q'" reduces 
to a sum of two distinct terms J <' and J C, related to age 
markers for the fo rmer and to correction markers for the 
laner: 

( 19) 

Tbe H6 hypothesis is rather strong; in a more in-depth 
study, a careful examination of the origin of each data 
shou ld be carried. 

Age markers In order to detail the entities involved 
in the J<' term, we describe the age markers by a set 
of no triplets (z?, yi , af) with i running from 1 to na 
and where zi is the depth for which the age yi is ob­
served with the eri std. The Ja term measures the dis­
tance between the observation vector ya and lIa (i), the 
age marker obsen'al;OI1 operator 10. Assuming normally 
distributed age marker errors, Ja can be written as fol­
lows: 

J " (i) = ~ (ya - h" (i){ R~] (y" - h" (i)) (20) 

where R:' is the age observation error covariallce m(/­

Irix which is dcfined on one hand with the era std vector 
and on the other hand with the pa correlation matrix II: 

(21) 

The i lk component of ha (x) is given by the following 
equation: 

(22) 

The mj index selects the zm~ depth which is the clos­
est upper grid point to zi (the depth axis being oriented 
toward the bedrock). Equation (23) involves a sum which 
runs from index 1 to index 'mi - 1 and whcre the /"h term 
is the contribution of the yth icc layer to the hi value. 
The last tenn operates a linear interpolation between the 
depths zm,'_] and zm;' through the >.; facto r: 

z't-Z"'~-] >'i = --'----'''--'­
Z"'~_l - zm~ 

(23) 

Correction markers The th inning correction markers 
are depicted by the SCI of llc triplets (zf, yi, aj) with i 
nmning from 1 to llc and where yi is the observed thin­
ning correction for the zf depth with an std estimate of 
af. A correction marker being nothing else than the mea­
surement for a specific depth of the thinning correction, it 
is also a Jeffrey's variable and on the basis of assumption 
H I we apply the variable change of equation (5): 

vi = In (vf) (24) 

where yf is the transfomled i rh correction marker and 
has normally distributed errors. In this context, the cor­
rection markers induce a cost function term given by 
equation: 

J ' (xl ~ ~ (Y' - h' (X)lT R;' (Y' - h' (x)) (25) 
2 

where hC (x) and Rc arc the ObSerl'alioll operator 
and er/YJr covariance matrix associated to the correction 
markers. The ith component of hC operator is: 

" 
hf(i3) = L Jj,m~i3j (26) 

i""] 

where, Ji,j is the Kronecker symbol (which equals 1 
when i = j and zero otherwise) and the mf index is such 
that Zm~ is the closest upper grid point to zf. Here again, 
Rc can ' be written in teons of the pC eorrclation matrix 
and the aC std vector: 

(27) _,---___ .cIR-'":.:I2.ij_= [(7" 1; [a"lj [p0'!;j 
9 At a given depth the gas trnppcd in the bubbles is younger lhan Ihe su rrounding icc. 

lOThc 11.0 operator enables 10 predict y" mcasurcmC11ls. 
II No error correlations being provided, the p~ matrix is therefore the identity. 
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2.3.3 Generalized observation operator and cova ri­
ance matrix 

In order to simplify the developments of section 2.4, we 
now define the generalized observation operator h(x) : 

h(x) ~ ( h"O(i) 0) (28) 
h' (x) 

According to H6, we also define R the generalized 
obsermtiOIl error covariance matrix which is diagonal­
block: 

R ~ (R' 0) o R, (29) 

At iast, H (x) = ~ designates the tangent linear op­
eralor of the generalized obscrvation operator. 

2.4 Optimal solution and co nfidence int ervals 

3 

The optimization of the cost function is perfomlcd 
with the m lqn3 minimizer developed by Gilbert and 
Lemarechal [3] which is based on a limited memory 
quasi-newton algorithm [2]. Let us designate x the op­
timized control variable. Assuming that the hex) opera­
tor is only weakly non-li near (hypothesis H7), the con­
fidence intcrvals on i can be estimated by the posterior 

error comriance matrix P [! 9] where if is the tangent 
linear operator estimated at the optimum .i: 

Let us wri te: 

• X = X(.i), the optimized icc chronology, 

T • "Vx , the related tangent linear operator calculated 
at the optimal point i. 

We now assume (hypothesis HS) that a normal pdfeor­
reetly approximates the uncertainties on X and we define: 

(31) 

where the Q matrix is an approximation of the poste­
rior error covariallce matrix associated to the optimized 
icc chronology. The matrix diagonal clements conse­
quently provide the confidence intervals on X (sec ap­
pendix 5). 

Applications: t he [DC ice core 

In this section we present numerical experimcnts on 
the EDC core, in order to test the new dating method. 
The first experiment consists in: I) building an optimal 
age scale for the EDC core with the same elements used 
by Parrenin et al. [13] but in a more rigorous way 2) cal­
culating the associated unccrtainty. The two next experi­
ments enable to investigate the sensitivity of the optimal 
age scale, the correction functions and the related confi­
dence intervals to thc shaping of the B matrix. 

3.1 Standard experiment: [DC age sca le construction 
In order 10 construct an optimal age scale for the EDC 

core, we assi mi late the whole set of age markers de­
scribed in table I of Parrenin et al. [13] , particularly the 
age markers of the core bottom which could not be re­
spected with the Monte Carlo method (sec introduction). 
We moreover usc thc optimized Row model simulations 
of Parr en in et al. [14] which provide us the prior guesses 
S b and T b. No correction markers arc used for the current 
experiment. 

The age marker std which arc rcquircd 10 detennine 
the RI> matrix arc also taken from table I of Parrenin et 
al. [13]. No correlation between age obscrvation errors 
were reported in [13] and we adopt this assumption. The 
R(1 matrix is therefore diagonal. This can be a strong as­
sumption in particular for age markers derived from an 
orbital tuning procedure like for instance the 8180 data 
(02 isotope) which are used to derive the EDC3 agc scale 
[13, I]. The constant phase usually assumed in the luning 
procedure may be wrong and therefore lead to a system­
atic bias. 

As already detailcd in section 2.3.1, a proper shaping 
of the Bu and B(j matrices would rcq uire a detailed statis­
tical analysis. In this preliminary study wc only propose 
some simplistic covariancc modelling which arc to a cer­
tain extend arbitrary and which we address in the next 
paragraph. 

We first of all define the Bu eovarianecs as func tions 
of age differellces while the B(j eovariances are set as 
functions of depth differences. This separation is due to 
the distinct dependence of S b and T b either on age or on 
dcpth. Changes in the accumulation rate arc not linked 
to the drilling depth but more naturally to the paleoeli­
mate change through time whereas the thinning of an ice 
layer observed today along the core is more intrinsiely a 
mechanical state attached to the depth of the layer. 

Lct us sccondly focus on the specific B n settings. The 
error variance on & is assumed \0 be constant through 
time and for that purpose we set each O"~ vector com­
ponents to 0.17. We do not expect the discrepancy be­
tween the " true" and the modelled accumulation to get 
worse in the past. We can however expect the model to 
better estimate the accumulation rates of the inter-glacial 
stages bccause the sedimentation model is dcrived from 
a prcsent-day spatial parameterization linking the mean 
annual temperature with the ice deuterium content. We 
ignore this point in this preliminary study. In addition, 
the correlation matrix p~ is defined as a gaussian func­
tion of Xb with L~, a correlation length parameter in timc 
unit which is set to 9 kyr (I kyr = 1000 years): 

(32) 

Let us at last detail the B(j settings. Referring to the (J 
crror variance, its shape is chosen taking into account the 
two forward model characteristics: I) the longer the icc 
partiele trajectories, the greater the error of the forward 
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model is, 2) when dealing with a I D flow model and 
depending on the amount of basal melting, the thinning 
function may becomc artificially very close to zero ncar 
the base; the potential result is a largcly over-estimated 
icc age. [n the light of this comment, one can control the 
magnitude of the error variance with the growth of the ice 
age and one candidate for the a~ vector components can 

therefore be a growing function of the inverse ofT;b, the 
total thinning experienced by the icc layer between Zj_ ] 

and Zi : 

[ '] _ a~o ~ d" 
a{J i - H L T b 

k "", ] k 

(33) 

where H is the total ice thickness and a~' O a parame­
ter which is set to 0.425. The related correlation profile 
is here again chosen as a gaussian function depicted with 
the correspondi ng correlation length parameter L~ set to 
150 m: 

(34) 

, •. ,---------------------------------------, 

i 
1'-' , 
j , 
! 

•• 

Figure I: Depth profiles for the background I'lIriallces 
([a~lj)2 (black dashed line) and ([a%J;)2 (black solid 
line) . 

These settings serve our numerical experiments. They 
induce a reversal of trend around 1000 m which is illus­
trated on Figure I with the a~ and a~ depth profiles. Be­

low 1000 m because a~ > a~ , the J function is more 
sensitive 10 a T deviation from its background T b than to 
an 5 deviation from its background Sb whi le above 1000 
m, the opposite configuration takes place. As a resull, if 
corrections are necessary they will rather affect a below 
1000 m and iJ above. 

The optimization of the cost function leads to the so­
lution displayed on figure 2. On the top panel of the fig­
ure is plotted X - Xb, the age difference between the op­
timized and the background age scale (black line) with 
the assimilated set of age markers and their uncertainty 
(black ci rcles with error bars). The bottom panel operates 
a zoom in the depth interval lying between 2700 and 3255 
m where the disagreement between the two icc chronolo­
gies is blazing. On this pancl is directly compared the 

behavior of the two age scales with Xb in grey dashed 
line and X in black solid line. Moreover, the uncertainty 
on the X optimized age scale is shown with a semi dashed 
red line on both panels. 

3.2 Sensitivity experiment through cova riance length 
changes 

In order to investigate the sensitivity of the solution 
to the shaping of the error covariance matrices, we mod­
ify the B{3 covariances by reducing the L{3 value from 
150 to 50 m (this affects the J b terms and their weighing 
factors). We do not modify the other settings. The 1 sf 

sensitivity experiment operates on the set of observations 
described above in the standard experiment whereas the 
2 nd sensitivity experiment assimilates also thinning cor­
rection markers (sec section 2.3.2). The aim of this lat­
ter experiment is to study how the {J thinning correction 
and ils confidence intervals behave in the neighborhood 
of (3 measurements. For that purpose, we use the 6.depth 
data discrepancies of table 2 in Dreyfus et a!. [I J and we 
stick to the assumption H5 made in section 2.3.2. The 
observed 6depth arc deduced from warming or cooling 
events which arc sim ultaneously recorded in the gas bub­
bles (greenhouse gases) and in the icc phase (through wa­
ter isotope of icc which is a proxy of the temperature). 
Here again, we assume no corrclation between correction 
marker errors. The RI! matrix is therefore diagonal. This 
may be a strong assumption if for instance the hypothe­
sis of concomitant variations of the greenhouse and the 
temperature, reveals itself to be wrong. 

In order to describe the results of the 1st sensitivity 
experiment, we designate by i /,fj= L50 and il.,,=50 the 
two age scale sol utions. Figure 3 compares their behav­
ior. The set of age markers are still plotted as black ci r­
cles with error bars. As for the standard experiment, we 
show on the top panel the two resulting agc differences 
i /,,,=>t50 - Xb (black dashed line) and Xl.,,=50 - Xb (grey 
solid line). The bottom panel operates a zoom below 
2700 m and directly shows XL""", I50 and ;XL!I=50. On 
both panels arc plotted the calculated uncertainties asso­
ciated to each age scale, in red dashed line for Xl.,.= 150 
and in yellow solid line for i {,,,=50 . 

Figure 4 displays the result of the 2nd sensitivity ex­
periment. The top and bottom panels show the /J thin­
ning correction function respectively for L{3 = 150 and 
L{J = 50 m. The black squares with crror bars arc the 
thinning correction markers, the black line is the thinning 
correction function solution while the dashed black lincs 
are the confidence intervals. 

4 Discussion 

On the two panels of figure 2, one can see how the op­
timized chronology does captures the necessary change 
of slope in order to respect the age markers. The gen­
eral tTcnd of the uncertainty on X is a growth (errors cu­
mulate) on which arc superimposed several drops local­
ized in the neighborhood of age markers. These drops 
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markedly occur where the age marker uncertainty is be+ 
low the uncertainty attached to the background age scale. 
This behavior can be observed for instance, between 2000 
and 2700 m where 6 ages markers are assimilated with a 
4 kyr unccrtainty (sec table I in Parrenin et al. [13]). 
This illustrates the expected spreading of the infonnation 
brought by observations in their neighborhood. Further 
on, in area with high density of observations, the esti+ 
mated age scale uncertainty is more or less steady but 
below the mean level of the related age marker uncertain­
ties 12: this fcature can be clearly observed below 2700 
m. 

On the top panel of figure 3, the comparison of the 
XL,.= 150 and XL/<=50 solutions shows a slight sensitiv­
ity of the age scales to £ {3 changes (in the investigated 
range). A smaller covariance length however leads to 
a chronology with smoother curvatures in the neighbor­
hood of age markers. This feature can be observed on the 
two solutions XLI'= I50 and Xl'fJ=50, for the dated hori­
zons lying at 1265.10, 1838.09 and 2620.23 m depth. It 
is meanwhile clear on both panels, that the uncertainty 
on the optimized age scale is strongly sensitive to £ {3 
changes. One can expect that highcr covariance lengths 
result in lower age scale uncertainty. This is however a lit+ 
tle more complex because of two opposite driving forces. 
A greater covariance length: I) causes the errors to cu­
mulate faster with depth but 2) induces a wider diffusion 
of the infonnat ion brought by an age marker. The latter 
statement is exclusively true when the age marker is in the 
scope of action of the covariance length. An illustration 
of this point can be observed below and above 2300 m. 
Below 2300 m, the uncertainty on X LfJ= t50 is first higher 
than the one related to XI".=50 but then tums smaller 
downwards. Below 2300 m moreover, the depth interval 
separating two successive age markers is too large com­
pared to the magnitude of the covariance length: the er­
ror accretion dominates and the uncertainty on the age 
solution is higher for £ {3 = 150 m 13. Above 2300 m, 
this depth interval becomes sufficiently small compared 
to thc magnitude of the covariance length: the spreading 
of data information dominates and the uncertainty on the 
age solution is lower for £ {3 = 150 Ill. This interpreta­
tion may be slightly blurred because in this experiment 
two covariance lengths operate at the same time: L {3 and 
Lo. But above 2700 m the impact of the 8 0 covariances 
can be neglected regarding the respective magnitudes of: 
I) (10 and (I{3 std, 2) Lo and L {3 converted in age units 14. 

Moreover the depth interval lying above 2700 Ill, char­
acterized itsclf by uncenainties on age markers that are 
far below the uncenainty anached to the background age 
scale which ensures a strong inflcxion of the uncertainty 
curve. 

On figure 4, the expected behavior for the {J solution 
and its confidence intervals 15 can be seen. At each cor-

reetion marker depth, the uncertainty drops and the con+ 
fidence intervals converge very elose to the value of the 
uncertainty attached to the correction marker. The com­
parison of the two panels of figure 4 shows the impact 
of £ {3 changes: the larger the covariance lcngth the fur­
ther the uncenainty infonnation brought by the correc­
tion marker data diffuses. One comment is neccssary in 
order to explain the non smooth behavior of the solution 
at some particular depth, despite we do take into account 
correlations for the background errors. A detailed analy­
sis shows that this behavior is observed when age marker 
constraint conflicts with a correction marker constraint, 
the fomlcr constraint requiring for instance an older ice 
age while the latter constraint pushes toward the oppo­
site: this is precisely the case for the correction marker 
which is at 2785.75 m depth and the three age markers 
which are successively at 2789.58, 2799.36 and 2812.69 
m depths (sec tables 1 and 2 of Dreyfus et a!. [13] and 
table I of Parr en in et a!. [13]). 

5 Conclusion 

This paper dctailed the technical frame ofa new prag­
matic inverse approach which optimally estimates the ice 
chronology of a givcn icc core. This inverse approach is 
new because it takes into account the icc flow model un­
certainties. These latter cannot be ignored in the context 
of the simplified fl ow models currently used for inverse 
dating purpose, unless to enrich the fl ow models in or­
der that they better describe the fl ow irregularities. The 
model uncertainty is introduced in a pragmatic way by 
the mean of correction functions targetting the total thin­
ning function and the accumulation rate, two entities pre­
viously calculated with direct or already optimized dating 
simulations and which serve Ihe purpose of prior guesses 
(or background) for the new inverse approach. A cost 
func tion is derived in a Bayesian framework which de­
scribes in a probabilistic way, the competition between 
the distance to the background knowledge and the dis­
tance to a set of observations. The optimization of the 
cost function enables to identify these correction func­
tions and provides new estimates of the thinning function 
and the accumulation rate. Finally, these new flow cnti­
ties lead to an optimal estimate of the ice age scale. [n 

the Bayesian framework , the calculation of the solution 
confidence intervals can be perfonned under certain hy­
pothesis. 

We successfully applied this new dating method to 
construct the age scale of the EDC core with the lise of 
the official set of age markers (13]. No a posteriori cor­
rection in thc core bottom was needed: the new method 
enables in panieular to respect the constraint of the 6180 
age markers which was not the case for the dating simu­
lation optimized with a Monte Carlo technique. Besides, 

121fsome error corrclalions would have been taken into accoum between age markcrs. Ihe obscrvcd uncertainlY drop would nOI occllr so markedly. 
1J Morc precisely. Ihis commem holds above 500 m and below 2300 m. 
H Around 2700 m, L f:J b-ccomes 2 (8) limes larger than 1"0 for L f:J = 50 (\50) m while the " f:J Sid is 6 limes larger than Ihe "0 Sid. 
ISThe confidenec inlervals arc absolUle uncertainties. Their arc however nOI symmelric with rcSpccl 10 Ihe Solul;on because they arc calculal~'(\ by Ihc 

mean oflhe eslimmed rclmive uncertainly allachcd 10 Ihc poSlcrior lognonnat error distribulion. 
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the confidence interval associated to the new icc age scale 
behaves as expected: it increases with the distancc to the 
nearest age marker. 

Preliminary sensitivity lests confirm the well-known 
impact of the background error covariance matrices on 
the solution and especially on the estimated confidence 
interval: the larger the correlation lengths the further the 
information brought by a given observation propagates. 
One important task to do in future works is to shape 
with relevant physical information those background er­
ror matrices. A traditional but time consuming approach 
is to perfonn statistics on the outputs provided by some 
more complex flow modelling (full stokes or higher order 
models). Another approach would consist in working on 
small time intervals carefully chosen with a large num­
ber of observations and searching the most unfavorable 
shapes for the background error matrices which would 
however still respect the data set. 

So me of the assim ilated observations (i.e. data used to 
constrain the modcl) reveal our intent in a very close fu­
ture, 10 inverse at the same time on the ice and on the 
gas age scale (correction markers are more rigorously 
tJ.depfh markers which arc straight forwardly related to 
the close-off depth and 8180 arc gas rather than icc age 
markers). Here again, the idea is to usc a prior guess 
for the co<lie and to calculate an optimal correction func­
tion in best agreement with the data and the background 
knowledge. Moreover, the ability of the method to as­
similate large set of observations brings the perspective 
to inverse chronologies of several cores simultaneously 
by using icc and gas stratigraphic links. This method will 
certainly provide a tool to the palco-community, enabling 
to construct a common and optimal age scale for deep ice 
cores of Greenland and Antarctica. 
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Appendix A : Confidence intervals on the op­
timal ice age 

Let us call X , the model parameter vector to be identi­
fied in the framework of an inverse problem. Let us sup­
pose we solve the problem with a variational approach 
with the min imization of J, the COSI function of the prob­
lem. Let us cal! 9, an additionnal observation model de­
fined as an operator that maps the model space Minto 
the observation space V: 

9: M -- V (35) 

x ....... y = g (x) 

Let us suppose that both .M and V arc linear spaces. 
If X = Xl is the true but unknown optimal sol ution and 

if X = i is the estimated solution, one can define fx the 
analysis error as (assuming it to be nonnaHy distributed): 

, . 
fx=X -x 

with the associated P error covariance matrix: 

(36) 

(37) 

The true but unknown observation mode! can therefore 
be written as: 

y~= g(:I/) 

while the estimated mode! is: 

ii= 9 (i) 

(38) 

(39) 

The error made when estimating the true observation 
model to be fj = 9 (i) is given by fy : 

fy = yl _y (40) 

~ g(x' ) - g (x) 

Let us suppose that fx = xt - i is sma!! enough to 
write: 

g (i+,,)- g (X)~ GT,,+o( II ',II) (41) 

where (;T is the tangent linear operator caleulmed at 
X =x: 

(42) 

Equation (41 ) may be re-wrinen using l y which is a 
randon func tion: 

(43) 

Further on, assuming that fy is norma!ly distributed, 
one can calculate Q, the error covariance matrix which 
measures the crror made on yl estimate: 

Q ~ 

,. 
< fy f y > (44) 

~ < G fxfxTG
T > 

~ G < fx f xT > a T 

~ GPcT 
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Figure 2: Standard experimem: ice chronology oflhe EDC core alld ils confidence illlerval calclllated with Ihe new daling 
method. The lOp panel covers Ihe whole chrollology while the bOllom pallel operates a zoom beIWeell 2700 III alld Ihe core 
bOl/olll. The ages are measured ill kyr (1000 years). The age difference betweenlhe lIew alld Ihe backgroulld ell/vnology 
is shown ill solid black lille ollihe lop panel while Ihe bollom pallel directly shows the lIew alld the backgro/lnd age scales 
/lsillg the same color code (related Y-axis 0 11 the left); 011 bOlh pallels. ill red dashed lille is plolled Ihe relaled estimated 
age scale IIl1certaillfy (related Y-axis 011 the right) as well as the assimilated age markers ill black circles with error bars. 
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Figure 3: 1 $1 sellsitivity e.r:perimelll: £DC ice c}l/vllologies alld their related /li/cerlailllies calclilated with /11'0 covariallce 
lengths Lp = 150 alld Lp = 50 m. The top panel covers the whole chronology while Ihe bOl/om pallel operates a zoom 
be/ll'eell 2700 11/ and the core bouolII. The ages are measured in kyr (1000 years). The age differences betweell the nell' 
and the background chronologies are shown on the lop panel. for both covariance lenglh L{3 = 150 III (black dashed 
line) and Lp = 50 III (grey solid line) while the bot/om panel directly shows both age scales /Ising Ille same color code 
(related Y~axis on the left); on both panels. ill red dashed line tInd yellow solid line are ploued the estimtlted age scale 
uncertainties reSIJective/y for L{3 = 150 tInd Lp = 5011/ (related Y·axis 011 the right) while black circles willi envr bars 
are the assimilated age II/arkers. 
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Figure 4: 2nd sensilivily experimenl: Ihillnillgfilllclion correclioll calculated/or two covariance lengths L {3 = 150 and 
L {3 = 50 III. On the top panel. L {3 = 150 III while on the bottom panel L {3 = 50 m. The squared markers with error 
bars are the thinnillg correction observations (the correctioll markers) and their uncertaillty. The black solid lille is the 
estimated thinning correction /lIl1ction while the black dotted lilies are the related confidence illlervals. 
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