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Abstract: In order \0 study the mechanical behaviour 
of polar ice masses, Ihe method of continuum me­
chanics is used, The newly developed CAFFE model 
(Continuum-mechanical, Anisotropic Flow model, based 
on an anisotropic Flow Enhancement faclor) is described, 
which compriscs an anisotropic now law as well as a fab­
riccvolution equation. The now law is an extension orthe 
isotropic Glen's now law, in which anisotropy enters via 
an enhancement factor that depends on the deformability 
of the polycrystal. The fabric evolution equation results 
from an orientationalmass balance and includes constitu­
tive relations for grain rot,lIion and recrystallization. The 
CAFFE model fulfi lls all the fundamental principles of 
classical continuum mech,lIlics, is sufficiently simple 10 

allow numerical implementations in icc- now models and 
contains only a limited number of free parameters. The 
applicability of the CAFre model is demonstrated by a 
case study for the site of the EPICA (European Project 
for Icc Coring in Antarctica) icc core in Oronning Maud 
Land, East Antarctica. 

Key words: Ice, polycrystal, now, anisotropy, continuum 
mechanics, icc core 

1 Introduction 

Ice in natural land icc masses, such as polar ice sheets, 
ice caps or glaciers. consists of zillions of individual 
hexagonal crystals ("crystallites" or "grains") with a typ­
ic;!1 di;!meter of millimeters to centimeters. This length 
scale stands in contrast with the size of the ice masses. 
whic h mngcs from 10<)"s of meters to ](:x:x)"s of kilome­
ters. It has long been known that. while the distribu­
tion of the crystallographic axes (also known as optical 
axes or c-axes) at the surface of an ice sheet is essentially 
at random. deeper down into the ice, ditTerent types of 
anisotropic fabrics with preferred orientations of the c­
axes tend to develop. 

Many models have been proposed to describe the 
anisotropy of polar icc. On the one end of the range 
in complexity. a simple now enhancement factor is in­
troduced in an ad·hoc fashion as a multiplier of the 

isotropic ice nuid ity in order to ;!ccount for anisotropy 
;!ndlor impurities. This is done in most current icc-sheet 
models, oftcn without explicitly mentioning anisotropy 
[19, 25, 46}. In macroscopic, phenomenological mod­
els, an an isotropic macroscopic fonnulation for the now 
law of the polycrystal is postulated. To be usable, the 
rheological parameters that enter this law must be eval­
uated as functions of the anisotropic fabric 114, 15, 34, 
351. The concept of homogenization models, also called 
micro-macro modcls, is to derive the polycrystalline be­
haviour al the level of individual crystals and the fab­
ric [I, 4. 5,17, 26,29,50, 51]. As for the "high-cnd" 
complexity. full-field models solve the Stokes equation 
for ice now properly by decomposing the polycrystal 
into many elements, which makes it possible to infer the 
stress and strain-rate heterogeneities at the microscopic 
scale [27, 28, 30, 31]. A very comprehensive, up-to-date 
overview of thcse different types of models is given by 
Gagl iardini et al. [131 (in th is volume). However, the 
more sophisticated models arc usually too complex and 
computationally time-consuming to be included readily 
in a model of macroscopic icc flow. 

Here, the Continuum-mechanical. An isotropic Flow 
model, based on an anisotropic Flow Enhancement factor 
("CAFre mode]"), shall be described. It belongs to the 
elass of macroscopic models, and is laid down in detail in 
the study by Placidi et al. [42} (based on previous works 
by Faria [10, IIJ, Fariaet al. [12}, Placidi [40, 41 [, Placidi 
and HUller L43J). The now enhancement factor is taken 
as a function of a newly introduced scalar quantity called 
deformabilitJ. which is essentially a non-dimensional in­
variant related to the shear stress acting on the basal plane 
of a crystallite, weighted by the orientation-distribution 
function which describes the anisotropic fabric of the 
polycrysta1. Fabric evolution is modelled by an orienta­
tion mass balance which accounts for grain rotation and 
recrystallization processes. 

The CAFre model fulfills all the fundamental princi­
ples of classical continuum mechanics (see also Placidi 
et al. [44J), and it is a good compromise between nec­
essary simplicity on the one hand. and considemtion of 
the major effects of anisotropy on the other. In order 
to demonstrate its performance, the model is applied to 
the site of the EPICA (European Project for Ice Cor­
ing in Antarctica) ice core in Dronning Maud Land, East 
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Quantity Value 

3 Stress exponent, n 
Pre-exponenti al constant, Ao 

Activation energy, Q 

3.985 X 1O- 13 S- 1 Pa - 3 

1.916 x 103 s- 1 Pa - 3 

60kJ mol - 1 

(forT' ::; 263.15 K) 
(for T' > 263.15 K) 

(forT' ::; 263.15 K) 
(for T' > 263.15 K) 139kJ mol - 1 

Tablc I: Physical parameters for Glell's jfow law. 

Antarctica. for which data o n the icc now as well as on 
the ani sotropic fabric arc available. 

2 CAFFE model 

2.1 Glen's flo w law 
Let us brie ny review the isotropic case, for which poly­

crystalline ice is treated as an incompressible, viscous 
nuid. The Cauchy stress tensor T is split up according 
10 

T = - pI +5, (I) 

where p denotes the pressure, and 5 is the traceless stress 
deviator (tr S = 0). Due to the incompressibili ty, the Oow 
law only determ ines the stress dev iator 5 and reads 

5 = 211D, (2) 

where D = sy m grad v is the strain-rate tensor (sym met­
ric part of the gradient o f the veloci ty v ), and the coeffi ­
e ient 'I) is the shear Iliscosity (or simply the I' iscosity). Its 
inverse, thejfuidity. cun be factorized as 

~ ~ 2EA(T' )J(a ), 
'I 

(3) 

where 

(4) 

is thc effective stress (sq uare root o f the second invari­
ant o f the stress deviator), and the creep fll llctioll / (0' ) is 
g iven by the power law 

/ (0' ) = O'n- l (5) 

(Ihe parameter n is ca lled "stress exponent"). Further, 
the rate faclOr A (T' ) depends on the temperature rela­
tive to pressure mel ting T' = T - Till + To (T: ab­
solute temperature, T,,, = To - {3p: pressure mehing 
point, To = 273.16 1(: melting point at zero pressure, 
(3 = 9.8 X 10- 2 K :\ IPa- 1: Clausius-Clapeyron constant) 
via the Arrhe nius law 

A(T' ) = Ao e-Q / RT', (6) 

where Ao is the pre-exponential constant, Q the acti va­
tion energy and R = 8.3l4Jmol- 1 K- I the universal 
gas constan\. The jfow ellhallcemcl1I f aclOr E is equal to 
un ity for pure iee, and can be set to values deviating from 
unity in order 10 account roughl y for e ffects o f impuriti es 
and/or anisotropy (Paterson 137]). 

The isotropic now law for ice is now obtained by in­
serting Eq . (3) (with the spec ifications of Eqs. (5) and 
(6)J in the viscous Oow law (2). Th is yields 

D ~ EA(T' )J(a) 5, (7) 

wh ich is ca lled Nye's generalization of Glen·s jfow law, 
or Glell ·sjfow law fo r shon (e.g. , Greve and Bl aller [20], 
Hooke [23] , Paterson [38], van der Veen [52]). Suitable 
values for the several parameters arc listed in Table I. 

2.2 Anisot ropic generalization of Glen's flow law 

2.2.1 Deformation of a crystallite 

In order to derive a gencralization o f Glen's now law (7) 
which accounts for general, anisotropic fabrics of the ice 
pol ycrystal, we first considcr the de fo mlat ion of a crys­
tallite embedded in the polycryst<l li ine aggregate. Fo l­
lowing Pl acidi et al.[421. onl y thc dominnnt deformatio n 
along the bnsal plane is accounted for, whereas deforma­
tio ns along prismatic and pyramidal planes. which arc at 
least 60 times more difficult to activate, shall be neglccted 
(fig. I ). 

<C' : ! 

." 'y" "'. 

Basa! Prismatic 

'"V , ,"". , .'. " ,'. a " :\ . '. .. 
:'~ : \ '. . , ..... 1'\, "' ... ' 

Pyramidal 

Figure I: Basal. prismatic and pyramidal glide planes ill 
the hexagonal ice crystal. sketched as a riglit liexagollal 
prism (Faria /9J). 

Let n be the normal unit vector of the basal plane (di ­
rection of the c-axis), then Tn is the resolved stress vec­
tor (Fig. 2). Note that the tensor T is interpreted as the 
macroscopic stress which docs not depend on the orienta­
tio n n . It is reasonable to assume that onl y the stress com­
ponent S l tangenti al to the basal plane (resolved shear 
stress) contributes to its shear deformation , while the 
component nomlal to the basal pl ane has no effect. 

-138-



basal plane 

Figure 2: Decomposition of the stress vector inlO a parI 
normal and a parrlangen/ialro rhe basal plane. 

According to Fig. 2, the decomposition of the stress 
vector reads 

Tn = (Tn· n)n + Stt., (8) 

where t denotes the tangentia l unit vector. Inscrting the 
decomposition ( I) of the stress tensor T readity elim i­
nates the pressure p and leaves 

5n = (5n · n)n + Stt. (9) 

As mentioned above, deformation of the crystalli te in the 
polycrystalline aggregate is attributed 10 the tangential 
component St only. Since wc aim at a theory which de­
scribes the effects of anisotropy by a scalar, anisotropic 
flow enhancement faclOr, we define the scalar invariant 

S~ = 5n · 5n - (5n · n )2 . ( 10) 

This quantity has the unit of a stress squared. and so a nat­
ural way 10 non-dimensionalize it is by the square of the 
effective stress a [Eq. (4)], which is also a scalar invari­
ant. T hus, we introduce the deformabilitJ of a crystallite 
in the polycrystalline aggregate. which is loaded by the 
stress T , as 

(II) 

The factor 5/2 has been introduced mcrely for reasons of 
convenicnce, as it will become clear below. 

2.2.2 Flow la\\' for polycrystalline ice 

In polyerystalline icc, the crystallites within a control 
volume (which is assumed to be large compared 10 the 
crystallite dimensions, but small compared 10 the macro­
scopic scale of icc flow) show a certain fabric. Extreme 
cases arc on the one hand the single maximum fabric , for 
which all c-axes are perfectly aligned, and on the other 
hand the isotropic fabric with a completely random di stri­
bution of the c-axes. A general fabric, which is usually in 
between these cascs, can be described by the orielllarion 
mass densit), (OM D) p· (n ). It is defined as the mass per 
volume and orientation, the latter being specified by the 
normal unit veclOr (direction of the c-axis) n E S2 (S2 is 

the unit sphere). Evidently, when integrated over all ori­
entations, the OMD must yield the nOnl1:l1 mass density 
p, which leads to the normalization condition 

J p'(n)d2n = p. 

S' 

( 12) 

Alternatively, an orielllatioll dislribuliollfilllctioll (ODF) 
f' (11) can be defined :IS 

n u) ~ p'(U), 
p 

(13) 

which is normalized 10 unity when integrated over all ori­
enl<ltions. 

We use the ODF in order to define the deformabilifJ of 
polycrystall ine ice by weighting the deform ability of the 
crystallite (II), 

A = J A' (n)f'(n ) d2n 

S' 

5 J S;(U)f' ( ) I' ~- -- n (n 
2 u' 

s' 

= sJ 5n ·Sn - (5n . n )2f' (u)d2n 
tr (52) . 

S' 

( 14) 

Note thai, for the isotropic case, the ODF is r(n) = 
1/(47r), and from Eq. ( 14) we obtain a deformability of 
A = 1 (Pl ilcid i el al. [42]). For that reason, the factor 5/2 
has been introduced in Eq. (II). 

UC/SM ! 

+-W-+ 
i 

SS/SM -rn 
+--

Figure 3: Uniaxial compression on single maximllm 
(UC/SM) al1(l simple sllear on single maximum (SS/SM) 
for a small sample of polycrystallille ice. Stresses are ill­
dicated as black arrows, alld tile single maximllmfabric 
is marked by tile dark-grey arrows within 'he ice sample. 

TIle envisaged flow law for anisotropic polar icc can 
now be formulated. Essentially, we keep the form of 
the Glen's flow taw (7), but with a scalar. anisotropic en­
hancement factor E(A) instead of the parameter E, 

D ~ E(A) A(T')f(u) S. (15) 

The func tion E(A) is supposed to be strictly increasing 
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with the dcformabil ity A, and has the fixed points 

£ (0) = Em;n 

(uniaxial compression on single maximum), 

E (l ) ~ I 

(arbitrary stress on isotropic fabric) , 
( 16) 

£(~) = Em"x 

(simple shear on single maximum). 

T he " hard" case ( 16h and the "soft" case (16h arc illus­
trated in Fig. 3. Note also that the defonnability cannot 
lake values larger than A = 5/2 (Placidi et a1. [42]). 

For the detailed form £ (A) of the anisotropic en­
hancement factor, in addition to Eq. (16), we demand 
that the function is continuously differentiable, lhat is, 
E E Gt [O, !J. Moreover. Azuma 121 and Miyamoto [32] 
have experimentally verified that the enhancemcnt factor 
depends on the Schmid fac tor (resolved shear stress) to 
the fourth power. that is, on the square of the deformabi l­
ity A. T his yields 

E(A ) ~ 

E",;n + (1 - E", ;n )A ' , 

8 £ ",,,x - 1 
t = - , 

21 1 - E m;n 

o ~ A ~ 1, 

4A2(E rnax - 1) + 25 - 4Ernax 

2 1 

(17) 

(for details sec Plaeidi et a1. L42]). Several investigations 
(e.g. Budd and Jacka [3[, Pimienta et al. [39], Russell­
Head and Budd [45]) indicate that the paramcter E max 
(maximum softening) is approximately equal to ten. The 
parameter Em;n (maximum hardening) can be realisti­
cally chosen between zero and one tenth , a non-zero 
value serving mainly the purpose of avoiding numerical 
problems. The fUllction (17) is shown in Fig. 4. 

10 

j 9 E "" 10 
8 m" 

E . "" 0 7 moo 
C 6 • E 5 
• 4 g 
• 3 
~ 2 c 
w 1 --------- ------------ - --

00 05 1 15 2 25 
Deformabitity 

Figure 4: Aniso/ropic enhancelllellf faclOr £ (A) as a 
fllll c/ion of the deformability A according to £q. (17).for 
Emax = 10 and Em;n = O. 

2.2.3 Inversion of the flow la w 

As long as the creep function / (0-) is given by the power 
law (5), the anisotropic fiow law (15) can be inverted an­
alytically. We find 

(18) 

whcre 

( 19) 

is the ejjeclil"e slrain rale. 11le defomlability A also 
needs to be expressed by strain rates instead of stresses 
[sce Eq. ( 14)]. In <lnalogy to Eq. (9), we consider the 
resolved strain-rate vector On in a crystallite in the poly­
crystalline <lggregate, and decompose it according 10 

On = (On · n )n + Dtt , (20) 

where D t is the resolved shear rate in the basal plane (see 
also Fig. 2). As in Eq. ( 10), wedefinc the scalar invariant 

D? = On · On - (On · n )2 . (21 ) 

Owing to the collinearity of the tcnsors 5 and 0 [sce 
Eqs. ( 15) and (18)], the deformability of a crystallitc in 
the polycrystall inc aggrcgate [Eq. (1 I) I can be readily ex­
pressed by D t and d, 

A "( ) = ~ D~(n) = ~ On · On - (On · n )2 (22) 
n 2 J2 ;) tr ( D2) 

and the de formability of polycrystalline ice [Eq. ( 14)[ 
yields 

A = J A ' (n ) J' (n) d2n 

s' 

~ 5/ On · On - (On · n )2 J' (n) d2n. (23) 
tr (0 2) 

S' 

This completcs the inversion of the an isotropic now law. 

2.3 Evolution of a nisotropy 

2.3. 1 O ricn ta tionlllass ba lance 

The anisotropic now law in thc form ( 15) or ( 18) needs 
to be complementcd by an evolution equation for the 
anisotropic fabric . This is done by formulating the ori­
ellfarion lIIass balance for the OMO p' ( 11 ). 

-140-



" , 

" 
" 

-7-
, 

'" n 

/ 
s' 

with Ihe usc of the Gauss theorem and Ihe mass­
conservation requirement 

J p" (n) r" (n) d2n = O. 

s' 

(27) 

In order 10 solve lhe orientation mass balance (25), 
const itutive relations for Ihe orientation transition rate 
u ' (n ). the orientation flu x q ' (n ) and the orientat ion pro­
duction rale r" (n ) need 10 be provided as closure cond i­
tions. 

2.3.2 Constitutive relation for the orientation transi-
Figure 5: Orientation transition rare u "(n ) 011 the IlIIil lion ra te 
~phere 52. 

We arc not going to enler Ihe detailed formalism of 
orientation balance equations here (sec Pl acidi et al. [42j. 
:lnd references therein), Instead, we rather motivate the 
form of the orientation mass balance by generalizing the 
ordinary mass balance. The d ifference is that, in addi­
tion to the dependencies on the posi tion vector x and the 
time t, the density and velocity fields also depend on the 
orientation vector n E S2, which is indicated by the no­
tation p' (n ) and v' (Il). The velocity, which describes 
motions in the physical space, is complemented by an ori­
elltaliol1frallSifioll rale u - (n ), which describes motions 
on thc unit sphere, that is. changes of the oriental ion due 
10 gra in rOlation (Fig. 5). Also, an oriel//aliol1 flux q ' (n ) 
is considered. wh ich allows redistributions of the OMD 
due to rotation recrystallization (polygon ization). Conse­
quently, the orientat ion mass balance reads 

&!:t' + div (p·v' )+ divs~(p" u· + q· )= pT ·. (24) 

The first two lerms on the left-hand side arc straightfor­
ward general izat ions of the terms in the ordinary mass 
balance. The third tcrm on the left-hand side is the equiv­
alen t of the seeond tcrm for the orientat ion transition rate 
lI' (n) and the orientat ion nux q "(n ), where divs2 is the 
divergence operator on the unit sphere. On thc right-hand 
side, a source term appears which allows that certain ori­
entations can be produced:ll the expense of others. TI1C 

quantity [' (n) is thcrefore called the Orielllalioll plVdllc­
lioll fale. Physica ll y. it describes migration recrystalliza­
tion a nd all othcr proccsses in which Ihe transport of mass 
from one grain , having a certain orientat ion, to another 
grain , having a different orientation, cannot be neglected. 

In the following, we will make the reasonable assump­
tion lhat the spatial velocity docs not depend on the ori­
clllalion, Ihal is, v' (n ) = v. Therefore, lhe orienUltion 
mass balance (24) sim plifies to 

&:t' + div (p"v)+ di vs2(p' 1I' + q ") = pT". (25) 

Intcgralion over S2 (all orientations) gives lhe classical 
m3SS balance 

c;:: + div (pv ) = 0, (26) 

As mentioned above, lhe orielllation transition rate corre­
sponds physically to gra in rotation. Since grain rotation 
is induced by shear deformation in the bas31 plane, we 
argue that it is controlled by the resolved shcar ratc Dtt 
[Eq . (20)[, and use the relation 

u" (n ) = -t Dtt+Wn 

= t · [( On ' n ) n - Dn[ + Wn (28) 

(sce, c.g. , Dafal ias [6]). The parameter L is assumed 10 

be a posi tive constant. The <lddi tional term Wn with the 
spi n tensor W = skw grad v (skew-symmetric part of the 
grad ient of the veloc ity v) describes the contribution of 
local rigid-body rotations. 

In the special case L = 1, the basal planes are m<lterial 
area elements, that is, they carry out an affine rotation. 
However, due to geometric incompatibilities o f the de­
formation of individual crystallites in the polycrystalline 
aggregate, an affine rotation is not plausible, and we ex­
pect realistic values of L 10 be less than unity. 

2.3.3 Constitutive n!lation for the orientation flux 

The orientation flux is supposed to deseribe rotation re­
crystallization (polygonization). Following the argumen­
tation by GOdcTl [16[, it is modelled as a diffusive pro­
cess, 

q' (n) ~ - .\gmds, [p' (n)H ' (n)[, (29) 

where the parameter). > 0 is the orientation ditTusivity, 
grads~ is the gradient operalOr on the unit sphere, and the 
"hardness" 'H.' (n ) is a monotonically decreasing function 
of the crystallite deformability A' (n) [see Eq. (l1)J. A 
simple choice for the hardncss function would therefore 
be 

H' (n) ~ , 
A" (n )+f 

(30) 

the offset f « 1 bei ng introduced in order to prevent a 
singularity for A' = O. However, recent results by Du­
rand et a1. [8[ suggest that rotation rceryst<lll izat ion is an 
isotropic process not affected by the orientation. In this 
case, the choice 

H' (n): ' (31 ) 

is indicated, which renders Eq. (29) equivalent to Fick's 
laws of diffusion on the unit sphere. 
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2.3.4 Constitutive rela tion fo r the o rientation pro· 
duction ra te 

The driv ing forcc for the oricntation production rate. 
which models essentially migration recrystallization. arc 
macroscopic dcformations of the polycrystal . which can 
be more easily followed on the microscopic scale by 
grains oriented favourably for the given defonnation. 
Therefore. it is reasonable to assume that the orientation 
production rate for a certain orient:llion 11 is related to the 
crystallite deformability A' (ll ) lEqs. (11). (22)]. In the 
CAFFE model, the linear relation 

r' (n) ~ r [A' (n) - AJ (32) 

is proposed. Subtrac tion of the polycrystal deformabi l ~ 

ity A is required in order to fulfill the mass-conservation 
condition (27). The parameter r is assumed to be pos­
itive, which guarantees a positive mass production for 
favourably oriented grains. and a negative production for 
unfavourably oriented grains (Fig. 6). 

r 

0+---:;*"-----
A A' 

Figure 6: OrielllariOIl production rate according to 
Eq. (32). 

The CAFFE model is now fomlul:lIed completely. 
Equat ion ( 15) is the actual now law, which replaces its 
isotropic counterpart (7). Anisotropy enters via the en­
hancement factor E(A) [Eq. (17)!, which depends on the 
deformability A defi ned in Eq. (14). Computation of the 
deformability requires knowledge of the orientation mass 
density p' , which is governed by the evolution equation 
(25) and the constitutive relations (28). (29) and (32). 

3 Application to the EDML ice core 

3. 1 Methods 
We have developed a one-dimensional now model , in­

cluding the CAI-"""FE model, for the site of the EPICA icc 
core at Kohnen Station in Dronning Maud Land, East 
Antarctica ('"EDML core", 75°00'06/15, 00°04'04"8. 
2892 meters above sea level; see hnp:llwww.awi­
bremerhaven.de/Polar/Kohnenl). For th is core with an 
overall length of 2774 m, preliminary fabric data are 
available from 50 m until 2570 m depth (I. Hamann, pers. 
comm. 2006). The t":lbric is essentially isotropic down to 
3pproxim3(ely 600 111 depth. and shows a gr3dual tr3n­
sition to 3 broad girdle fabric between 600 Olnd I()(X) m 
depth. Further down, the girdle fabric narrows until ap­
proximately 2000 m depth. The fabric then experiences 

an abrupt change towards a single maximum, which pre­
vails below 2040 III depth. Tendencies of secondary or 
multiple maximOl are observed at several depths. The 
complete data set and a detailed interpretation will be pre­
sented elsewhere (Hamann ct a1. [22]). 

The location of the EDML site on a nank (rather than 
a dome like most other ice cores) allows deriving a one­
dirncnsionaillow model based on the shallow-icc approx­
imation (Hutter l24J. Morland [33]), with which the per­
formance of the CAFFE model can be tested. We define a 
local Cartesian coordinate system such that Kohnen Sta­
tion is located at the origin. the x-axis points in the 260° 
(WSW) direction, the y-axis in the 170° (SSE) direction , 
3nd z (depth) points vertic311y downward (Fig. 7). 

.74.51' 11". 

·74'54' 

·74·57" 

·75·00' 

x (260°) 
-75·03' 

, 
Figure 7: Local coordinate system for the EDML site. 
UI/derlaid topography map by Wesche el al./53/. 

Accord ing to the topographical data by Wesche et ::II. 
[531, the x-ax is is approximately aligned with the down­
hill direction, and the gradient of the free surface eleva­
tion, II, is 

8h ,I 
""i.l = - 9 x 1 0~ ± 10%, 
vI 

oh 
-= 0. oy (33) 

Th us, in the shallow-ice approximation, the only non­
vanishing bed-parallel shear-stress component is Txz 
(= S"!z ), given by 

(34) 

where 9 is the acceleration due to gravity. Combination 
with the x-z-componenl of the Glen 's fl ow law (7) yields 
the isotropic horizontal velocity, 

/I 

v"! = -2P9~~ J A(T')an~ l i dE (35) 
, 

(e.g .. Grcve 1181, Greve and BI31\er [20]), where H is the 
icc thickness, the rate fac tor A(T') rmd stress exponent 
n arc chosen as listed in Sect. 2.1. and the enhancement 
factor E has been sct to unity. Sim ilarly, for anisotropic 
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Figure 8: Dansgaard-JollIIsen type distributions oj the vertical strain rate (left panel) Gild the tempera/ure al the EOML 
j';te (righl panel). The depth of the killk.\" is a/ Iwo-rhirds oitlle focal ice thickness. The strain rale at the surface has been 
chosen slIch that Ihe dowl!\rard vertical velocity equals the accumulation rate. and the .~lIrface alld basal temperatures 
match the ice-core data. 

condi tions and the correspondi ng flow law (15), the hori­
zontal ve locity is 

fI 

oh J - , Vx = - 2P9&x E (A ) A(T' ) (7n- i dE, (36) 

, 

with the enhancement faclor function E(A) of Eq. (17). 
Note that no-slip conditions have been assumed at the ice 
basco that is, v'" (z = H) = O. 

The unknowns in Eq. (36) arc the normal dev iatoric 
stresses (Su . Sy y, S zz ) which arc required together with 
the shallow-icc shear stress (34) for computing the de­
formability A by Eq. ( 14), and then the enhancement fac­
tor E (A) by Eq. ( 17). The normal deviatoric stresses arc 
computed by application of the inverse anisotropic fl ow 
law (18) with the deformability in the limn (23). The 
latter is evaluated with the calculated shallow-icc defor­
mations :md an assumed venieal strain rate D:: in the 
form of a Dansgaard-Johnsen type dis tribution l71. which 
consists of a constant val ue of Dz: from the free surface 
down to two thirds of the ice thickness, and a linearly 
decreasing value of Dz: below. A simil ar d istribution is 
empl oyed for thc temperature profile (sec Fig. 8). We also 
assume cxtension in the x-dircetion onl y, so that the onl y 
non-zero horizont:ll strain rate entering the evalu:ltion of 
Eq. (23) is D~~ = - Dz: . Thc vertical velocity V z results 
from integrating the prescribed vertical strain rate D n , 

which gives a linear/quadratic profile (e.g., Greve el al. 
[2 ID. 

For the ODF, we usc the preliminary data of the 
EDML fabric described above. However, since during 
the drilling process the orientation orthe core is not fixed. 
the horizontal orientation of the non-circularly symmet­
ric g irdle fabric (between approximately 600 and 2040 m 

depth) relative to our coordinate system , i.e., the direc­
tion of ice flow, is unknown. For this reason, we need (0 

assign an orientat ion for the fabric whcn computing the 
enhancement factor. We consider two limiting cases by 
rotating the initial data such that the girdle fabric at all 
dcpths is al igned with the x-axis (casc "RI T') and with 
the y-axis (case "R23"). respectively. This is illustrated 
in Fig. 9. 

:::r:: 
" : .. .... :. 
:;.:: ." . • ;,s •• 
."::.. 
r " ..... 

Figure 9: Sketch of the rotation of the girdle fabrics in 
order to align wirh the x -axis (case "RI3") and lI'irh the 
y-axis (case "R23") in/he Schmidt projection. 

At thc surface. we assume isotropic condit ions, so that 
As = 1, and for the maximum softcning and hardcning 
parameters. we usc the values Erna~ = 10 and Em;" = 0, 
respectively. 

In a second step, we attempt at solving the fabric evo­
lution equation (25). For the lack of better knowledge, we 
neglect recrystallization. that is. we sci). = 0 and r = ° 
in the constitutive relations (29) and (32), respectively. 
By allowing only a dcpcndency of the oricntation mass 
density p' on the vertical coordinate :: (one-dimensional 
steady-state problem) and on the orientat ion n , the orien-
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tatian mass balance (25) yields an equation which gov­
erns the fabric evolution along the EDML icc core. 

(37) 

where the orientational gradient operator Oi and the ori­
entation transition rate u; , respectively, read in index no-
tat ion as 

(38) 

and, due to Eq. (28), 

l t l = t DMnhn ",ni - t D i j1lj + W ;j ll j . (39) 

With Eq. (38), and by inserting the constitutive relation 
Eq. (39) in Eq. (37), it follows 

op' •••• 
oz 'Uz + u; 0iP + P o;,u i 

op' • 
= oz Vz + (Hlij - ~D;j)n/)i P 

+ 3LP' DI! ",n~.nh = O. (40) 

We assume that the local now field consists of vertical 
compression with the compression ratc (ncgative vcrt ical 
strain rate) c = -{)u~/{)z according to Fig. 8, horizontal 
extension in x -directi on, and the horizontal, bed-parallel 
shear rate 

'Y = fl8Vz 
= 2pg fl8

h 
t eA ) ACT' ) O'n- t Z 

, .< 
(4 1) 

that results from Eq. (36). The velocity gradient L = 
grad v then reads 

( 

€ 0 
l ~ 0 0 

o 0 
(42) 

Conscquently, we obtain for the strai n-rate tensor 0 and 
the spin tensor W 

D ~ ( 
€ 0 

10
1 

) 0 0 

1 'Y 0 -€ 

(43) 

and 

W ~ ( 0 0 11 ) 0 0 o . 
-h 0 0 

(44) 

With these expressions and the introduction of spherical 
coordinates, Eq. (40) reduces to 

8p' 
4 {)z V z 

+ 3tp' [c(2sln2 800s 2r.p - 1 - 3eos 28) 

+ 2'Y sin 28 cos r.pj 

8p' [ sill r.p] + 2-
8 

asin 2rp + ')'{ - 1 + t) --" 
rp tan Q 

8p' [ 1 
+ 2 {)8 - '2l£sin28 (cos2rp+ 3) 

+')'(1 -t eOs 28) eOS (fl] = 0, (45) 

where 8 and (fI arc the polar angle (co-latitude) and az­
imuth angle (longitude), respectively. Note that, due to 
Eq. (41), the shear rate ,), depends on the fabric via the 
deformability A. 

The shear now at the EDML station leads to the 
transport of ice particles over significant horizontal dis­
tances. Huybrechts et al. (251 estimate. based on three­
dimensional now modelling, that particles at 89% depth 
of the core originate from ~ 184 km upstream. Thi s is 
not taken into account in our spatially one-dimensional 
model. However, the variation of the shear upstream of 
the drill site is likely small due to the small varia tion of 
the surface gradient (Fig. 7), so that the error resulting 
from the neglected horizontal inhomogeneity should be 
limited . 

In this study, we restrict the solut ion of Eq. (45) to 
the simplified case of a transversely isotropic (circularly 
symmetric) fab ric, so that the OMD p' i~ only a func­
tion of the depth z and the polar ang le 8. TIlen Eq. (45) 
becomes, after integration over the azimuth angle (fl. 

op' op' 
4 {)z 'UZ - {)8 31£ sin 2(} 

- 3tp'c(1 + 3 cos 28) = O. (46) 

Equation (46) is solved by using a finite-difference dis­
cretizat ion with the parameter t = 0.6. 

3.2 Results 

Figure 10 shows the variation of the enhancement fac­
tor, the ice nuidity and the horizontal velocity along the 
icc core, computed with the ODF based on the fabric 
data described above. For both limiting cases R 13 and 
R23. the enhancement factor is close to unity in the up­
per 600 m. which reflects the nearly isotropic fabrics in 
that pari of the EDML core. Further down, in the girdle 
fabric regime, the case R 13 is characterized by a moder­
atc increasc of the enhaneemcnt fac tor to an average valuc 
of about two, whereas the case R23 exh ibils a strong de­
crease of the enhancement factor to values close to zero. 
This demonstrates clearly that the girdle fabrics produce 
a sign ificant ly different mechanical response depending 
on the orientation relative to the icc now. Case R23 is 
probably closer to reality. because in the girdle fabric 
regime above 2000 m depth the deformation is essentially 
pure shear (vertical compression , horizontal extension in 
x -direction only). For this situation, a simple "deck-of­
cards" model illustrates that thc coaxes turn away from 
the :r-axis and towards the z-axis. whcrcas nothing hap­
pens in y-dircction. so that in the Schmidt projection a 
concentration perpendicular to the x -axis (now direction) 
results. 

Below 2(x)() m depth, where the fabric switches 10 ,I 

single maximum , the difference between the cases R I3 
and R23 essentially vanishes. The crystallite basal planes 
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arc favourably oriented for the now prevailing simplc­
shear deformation, which leads \0 large defonnabilitics. 
Consequently, the enhancement faclOr shows a sharp in­
crease to a maximum value of about eight, which is close 
to the theoretical maximum of E lllnx = 10. 

The variabi lit ies of the enhancement factor and the ef­
fective stress. as well as the increase of the temperature 
with depth, contribute to the nuidity profiles shown in 
Fig. lOb. Since the nu idity is very sma ll above 2000 m 
depth and increases only funher down, the di fference be­
tween the cases R 13 and R23 in absolute values is sur­
prisingly small. At 2563 m depth , the fluidity is about 
200 times higher than the fluidity at 1000 m depth for the 
case R23 due to the counteract ing contributions from the 
favourably oriented c-axes, the higher temperature and 
the smaller e ffective stress. The lattcr is somewhat sur­
prising; it is caused by the normal deviatoric stresses Sx:e 
and S zz , wh ich decrease strongly below 2000 m depth 
and ou tweigh the innuence of the increasing shcar stress 
Sxz in the effective stress. 

Owing to the large enhancement factors close to the 
bottom, the an isotropic now law predicts significa ntly 
larger horizontal vclocit ies compared to the isotropic now 
law for the ent ire depth of the icc core (Fig . 10e). Atthe 
surface, thc an isotropic horizontal veloci ties arc by ap­
proximately a faclOr 3.5 larger than their isotropic coun­
terpan s, and the absolute value of ~ 0.7 m a-I agrces 
very well with measurements (H. OeTter, pers. comm. 
2005; Wesche et a!. [53]). The difference between the 
cases R I3 and R23 amounts to ~ 10%, the larger val­
ues bei ng obta ined for the case R23 owing to the slightly 
larger e nhancement factors below 2000 m depth. Inter­
esti ngly. these differences show that the fabrics are not 
perfectly transversely isotropic below 2000 m depth, even 
though they are very close 10 the sing le-maxi mum type. 

Let us now turn to the simu l:lIion in wh ich the fabric 
evolut ion is computed by solving Eq. (46) for a trans­
versely isotropic fabric. Although this assumption is not 
consistent with the observed gird le fabric between ap­
proximately 600 and 2000 m depth and is therefore a 
gross simplification. it is interesting to study the mechan­
ical response of such a simplified system and the di ffer­
ences to the ice now resulting from applying the mea­
sured fahrics. 

Figure ll a shows the comparison between the en­
hancement factors resulting from the computed, trans­
versely isotropic fabric (which wi ll be referred to as 
"modelled enhancement factor" in the following) and 
fro m the fabric data. Evidently, the agreemcnt is good 
despite the assumption of transverse isotropy. Down to 
1800 III depth, the modelled enhancement factor lies in 
between the cases R l 3 and R23, which are the limiting 
cases for the orientation of the measured gird le fabric 
with respect to the ice-flow direction. Between 1800 and 
1900 m depth, the modelled enhancement factor is very 
close to the low values of the case R23, for which the 
girdle fabric is aligned perpendicular to the now direc­
tion. Below 2000 m depth , the sharp increasc is :l1so well 
reproduced; however, the maximum of the modelled en­
hancement factor is more pronounced :md lies closer to 
the boltom than for the cases R 13 and R23. 

For that reason. the modelled enhancement t:1ctor leads 
to larger near-basal shear rales than the enhancemcnt fac­
tor based on the cases R 13 and R23. Consequently, the 
horizontal velocity resulting from the modelled enhance­
ment factor is larger by about a factor two than the ve­
locities for the cases RI3 and R23 (Fig. I [b). At the sur­
face, a value of ~ 1.5 ma- 1 is reached, which is twice 
the measured surface velocity. Thi s highlights the great 
sensitivity of the ice dynamics 10 the processes ncar the 
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bollOI1l, which arc mOSI ditTiculllo mood precisely. Be­
side the assumpt ion of transverse isotropy. a weak point 
in [hal context is Ihe neg lect ion of recrystall izll tion pro­
cesses, which arc expected 10 become important for the 
fabri c evolution in Ihe lower part of the ice core. This 
point requires further attention. 

4 Conclusions 

The new ly developed CAFFE mode l (Continuum­
mech,lllical, Anisotropic Flow model, based on an 
anisotropic Flow Enhancement factor), which compri ses 
an an isotropic now law as well as a fabric evolution equa­
tion. was presented in this study. It is a good compro­
mise between physica l adequateness and simplicity, and 
is therefore well suited for being used in now models o f 
ice sheets and glaciers. 

The CAFl-"E model was successfully applied to the site 
of the EDM L icc core in East Antarctica. Two dilTerent 
methods were employed, (i) computing the anisotropic 
enhancement factor and the horizontal now based on fab­
rics data, and (i i) solving the fabric evolution eq uation 
under the simplifying assumption of transverse isotropy. 
Method (i) demonstrated clearly the importance of the 
anisotropic fabric in the icc column for the now veloc­
ity, ,md beller agreement with the measured surfacc ve­
locity was achieved compared 10 an isotropic computa­
tion. The anisotropic enhancement fac tor produced with 
method (ii) agr(."Cd reasonably well with that of method 
(i), despite the fa ct that the measured fabric is not trans­
versely isotropic in large parts of the icc core. 

A solution of the fabric evolution cquation (45) for 
the EDM L ice core without the assumption of trans­
verse isotropy has been presented elsewhere (Seddi k et al. 
(48]). Further, the CAFFE model has already been im-

plemented in the three-dimensional , full -S tokes icc- now 
model Elmer/Icc (Seddik [47l, Seddik et al. [49]) in or­
der to simul ate the icc now in the vic inity within 100 km 
around the Dome Fuji drill site (MolOyama 136]) in cen­
tral East Antarctica. 
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