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Image reconstruction from Fourier intensity through phase retrieval was investigated when the intensity was
contaminated with Poisson noise. Although different initial conditions and/or the instability of the iterative
phase retrieval process led to different reconstructed images, we found that the distribution of the resulting
images in both the object and Fourier spaces formed spherical shell structures. Averaging of the images over
the distribution corresponds to the position of the image at the sphere center. © 2010 Optical Society of
America

OCIS codes: 100.5070, 100.3008.

1. INTRODUCTION
General scattering experiments give us only the scattered
intensity without phase information. Since a scattered
field with amplitude and phase information is a Fourier
transform of the scatterer density, the use of an inverse
Fourier transform, for example, by using lenses in visible
optics, allows us to reconstruct the image of the scatter-
ers. However, when ideal lenses are not available as
probes in a scattering experiment, phase retrieval from
the intensity is essential to reconstruct the object density.
The possibility of phase retrieval was first pointed out by
Sayre [1] in terms of Shannon’s sampling theorem. An it-
erative algorithm with the Fourier transform for phase
retrieval was presented by Gerchberg and Saxton [2].
Fienup presented an error reduction (ER) algorithm
based on the steepest-descent method and the hybrid
input-output (HIO) algorithm [3]. Phase retrieval with
these algorithms has been widely used in various fields
including astronomy, general optics, x-ray crystallogra-
phy, and electron microscopy. A good explanation of why
phases can be retrieved from the oversampled diffraction
intensities is introduced in [4]. After the first report of
lensless imaging in a soft x-ray region by Miao et al. [5],
this field—often called diffractive imaging [6]—has ex-
panded rapidly by using various probes such as x-rays
[7–10], electrons [11–14], and the higher harmonics of
tabletop lasers [15].

The theoretical and empirical analyses of phase re-
trieval have contributed to obtain most plausible images
from diffraction patterns with respect to both domain con-
straints [16,17]. As a remarkable method for phase re-
trieval, averaging methods using phase-retrieved images
were presented by Miao et al. [18], Chapman et al. [19],
and Thibault et al. [20]. Such methods have been empiri-
cally used to obtain feasible images from diffraction pat-
terns. Two kinds of averaging methods for phase retrieval

have been proposed for an advanced usage. One is the use
of different runs of phase retrieval by [18,19] and the
other is the average of various images obtained in the fi-
nal process of iterative phase retrieval [20]. These meth-
ods differ in the preparation of prior images fitting the
given noisy Fourier intensity. However, the grounds for
averaging the estimated images are not yet clear. Making
up this lack of clarity is important to establish this usage
as a confident algorithm for imaging. More concretely, we
focus on the structure of a distribution of the estimated
images in the object space and the relationship between
these images and their average.

In this paper, the spherical shell structures of a distri-
bution consisting of phase-retrieved images are found
from the Poisson-noise-contaminated Fourier intensity
through numerical examples. The spherical structure
gives theoretical support to the use of an average image
by [18–20].

2. PHASE RETRIEVAL
The retrieval of the Fourier phase using intensity mea-
surements was first presented in the cyclic transform of
the Gerchberg–Saxton iterative algorithm shown in Fig. 1
[2]. The previous object � is transformed into F by the
Fourier transform F; F is replaced with F� (the amplitude
is given by the experiment in the Fourier domain, and the
phase of F� is the same as that of F, while the replaced
amplitude is the constraint in the Fourier domain); �� is
obtained by the inverse Fourier transform F−1 of F�; and
�� is replaced with the updated object as the next � using
some constraints in the object domain. The object domain
X is defined as a discrete squared array, and the Fourier
domain K is also defined as the same as domain X with
the discrete Fourier transform for practical computation.
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In the following, the terminologies of object and domain
are referred to interchangeably as image and space.

In the mathematical treatment of phase retrieval, let
Sobj be the set of objects satisfying the object-domain con-
straints and Sobs be the set of objects satisfying the
Fourier-domain constraint �Fobs�2. However, there are cer-
tain kinds of obstacle factors in the measured �Fobs�—e.g.,
Poisson noise and the lack of intensity caused by the di-
rect beam—that make it difficult to estimate the missing
Fourier phase. Thus an implausible object influenced by
such factors could be derived with an iterative phase-
retrieval algorithm. The most plausible object, �obj, is pre-
sented as a pair given by minimizing the distance be-
tween elements of Sobj and Sobs as

��obs,�obj� = arg min
�1�Sobs,�2�Sobj

L��1,�2�, �1�

where �obs�Sobs, �obj�Sobj, and L��1 ,�2�=�r�X��1�r�
−�2�r��. If Sobj�Sobs��, there exists a target element �obj
satisfying �obs=�obj. Otherwise, in the case of Sobj�Sobs
=�, �obj in Eq. (1) is an estimated object not satisfying the
Fourier-domain constraint.

The iterative phase-retrieval algorithm by Gerchberg
and Saxton [2] is regarded as a method of establishing
minimization with an update from the nth object �n to the
�n+1�th object �n+1 as

�n+1�r� = ��n��r�, r�” D

0, r � D� , �2�

where D is the set of points at which �n� violates the
object-domain constraints. Based on the minimization in
Eq. (1), �n� and �n+1 are in Sobs and Sobj, respectively, and
for a sufficiently small difference between �n� and �n+1, an
estimate of the object is given by �n+1.

In the initial state of the phase-retrieval process, a
prior object is very far from the plausible object; hence,
the HIO algorithm is often used as an improved version of

the updating method with respect to the region violating
the object-domain constraints [3],

�n+1�r� = ��n��r�, r�” D

�n�r� − ��n��r�, r � D� , �3�

where � is a positive constant. The HIO provides a typical
change to the object �n� on the set of points not satisfying
the object-domain constraints. Both of these algorithms
have been used connectively, and a charge-flipping algo-
rithm was recently introduced with a different object-
domain constraint [16].

3. STRUCTURE OF DISTRIBUTION
OF PHASE-RETRIEVED IMAGES
The following is an example of our numerical simulations
to investigate the structures of phase-retrieved images.
We chose a two-dimensional figure �org as the original im-
age on a discrete square array domain X �256�256�
shown in Fig. 2(a). Forg is the Fourier transform of �org.
The observed Fourier intensity including Poisson noise is
regarded as a random sample from the Poisson distribu-
tion with the intensity Iorg= �Forg�2 as the expectation. Fol-
lowing Choi and Lanterman [17], the Poisson-noise-
contaminated intensity for each element k in the Fourier
domain K is obtained by

Poisson�cIorg�k�� 	 Inoise�k�, �4�

where the coefficient c is 3.332�10−9 based on c
= �total count� /�k�KIorg�k� and the total count is settled
by 2�104, and where “	” means that the right part of the
equation is a random sample from the probability distri-
bution of the left part. Figures 2(b) and 2(c) are the Fou-
rier intensity Iorg �=�Forg�2� and the Poisson noise intensity
Inoise [=�Fpoisson�2 due to Eq. (4)] with the logarithmic scale,
respectively. A sufficient support area is given as one of
the object-domain constraints. The objective is to find the
image that best fits the original one using the Fourier in-
tensity Inoise contaminated by Poisson noise.

Using 10,000 different initial images, 10,000 kinds of
the estimated images (�1 , . . . ,�M, with M=10,000) are ob-
tained with the HIO (1000 iterations) and the ER (2000
iterations). Figures 3(a)–3(c) are three examples of these
estimated images. Although they closely resemble each
other at the first glance, their structures differ upon

Fig. 1. Gerchberg–Saxton iterative diagram for phase retrieval.

Fig. 2. (Color online) (a) �org used as the original image. (b) Fourier intensity Iorg obtained by Fourier transform of �org. (c) Poisson-
noise-contaminated intensity Inoise obtained from Eq. (4). The insets in (b) and (c) are each an enlargement of a quarter.
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closer inspection. Figures 3(d) and 3(i) are the average
image �̄ �=�i=1

M �i /M� and the original image �org, respec-
tively. The profile under each image is a line profile
marked by a horizontal line. The average image �̄ and �org
resemble each other. The zero intensity region of the pro-
file in Fig. 3(d) shows good agreement with the corre-
sponding region in Fig. 3(i). However, no such regions are
found in the profiles of Figs. 3(a)–3(c) due to the influence
of noise.

To calculate different reconstructions during one run of
the algorithm, a single phase retrieval with the HIO
(1000 iterations) proceeds, and 10,000 different estimated
images (�1 , . . . ,�M, with M=10,000) are generated after
each of 10,000 recitations of 50 HIO and 150 ER itera-
tions. Figures 3(e)–3(g) are three examples of these esti-
mated images. Although they closely resemble each other
at the first glance, their structures differ upon closer in-
spection. Figure 3(h) is the average image �̄ �=�i=1

M �i /M�.
The profile under each image is a line profile marked by a
horizontal line. The image and its profile of �̄ in Fig. 3(h)
show good agreement with those of �̄ in Fig. 3(d). The
noise intensities are found in the regions of profiles in
Figs. 3(e)–3(g) corresponding to the zero intensity region
of the profile in Fig. 3(h).

Although the shapes of the estimated images are dis-
tinct in each method, their R-factors are almost the same.
Therefore, it is not appropriate to estimate any of the fine
characteristics by using only one estimation method. The
profiles clearly show that two average images [Figs. 3(d)
and 3(h)] are close to the original image �org, whereas

each estimated image is not. This means that an averag-
ing method is feasible for phase retrieval when the Pois-
son noise contaminates the Fourier intensity.

To assess the validity of the averaging of estimated im-
ages, we investigate the distributions of the individual
images (�i’s or �i’s) that are used to calculate the average
image. Let X and K be the object and Fourier spaces; we
use a distance L to represent the difference between two
images or these Fourier transformations.

We formalize the subset of ��1 , . . . ,�M� in order to sat-
isfy the constraint of the distance L from the average im-
age �̄ as

A� = ��i�L��̄,�i� � 
s,s + q�, i = 1, . . . ,M�, �5�

where L is the distance, M is the number of the prepared
estimated images �M=10,000�, s=0,0.001, . . . ,0.080, and
q=0.001. Also, A� is defined in the same way. The cardi-
nality of A� denotes the frequency of the quantized value
q to each distance. Figure 4(a) presents a histogram with
a quantized interval 
s ,s+q� and A� for s
=0,0.001, . . . ,0.080. The case of A� is shown in Fig. 4(b).
A� and A� each bears a strong resemblance to the other.
Both estimated images ��1 , . . . ,�M� and ��1 , . . . ,�M� form a
unimodal distribution. They are distant from the original
points of average images �̄ and �̄. That is, their average
images separate from the distribution of each estimated
image. This shows that almost all the estimated images
are distributed on thick spherical shells and their centers
are the average images.

Fig. 3. (Color online) (a)–(c) Three examples of estimated images �i �i=1,2,3� using three different initial conditions. The noise-
contaminated-diffraction pattern in Fig. 2(c) was used for the diffractive imaging. (d) Average image �̄ taken from the average of 10,000
estimated images ��1 , . . . ,�10,000�. (e)–(g) Three examples of estimated images �i �i=1,2,3� chosen during the final stage of iterations.
Figure 2(c) was also used for the diffractive imaging. (h) Average image �̄ taken from the average of 10,000 estimated images
��1 , . . . ,�10,000�. (i) Original image �org. A line profile along each thin solid horizontal red line is shown just under each image.
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Let us also investigate the structure of the Fourier
transformation F�i

=F��i� (for i=1, . . . ,M) and the average
F�̄=F��̄�. We note that averaging ��1 , . . . ,�M� is equivalent
to that of �F�1

, . . . ,F�M
� by using

F� 1

M�
i=1

M

�i� =
1

M�
i=1

M

F��i� =
1

M�
i=1

M

F�i
. �6�

We define the subsets of �F�1
, . . . ,F�M

� that satisfy the con-
straint of the distance from F�̄ to each F�i

as

B� = �F�i
�L�F�̄,F�i

� � 
t,t + q��, i = 1, . . . ,M�, �7�

where t=0,40, . . . ,34,000 and q�=40. In the same way, B�

is defined using F�i
=F��i� �i=1, . . . ,M� and average F�̄

=F��̄�. The cardinalities of B� and B� are presented in
Figs. 4(c) and 4(d), respectively. They form a unimodal
distribution. �F�1

, . . . ,F�M
� and �F�1

, . . . ,F�M
� are away

from the averages F�̄ and F�̄ of the original points in the
graphs, respectively. That is, their averages are separated
from the Fourier transformation of the estimated images.
This shows that almost all these transformations are dis-
tributed on thick spherical shells and that the centers are
the averages. Thus, these are also distributed in the
spherical shell structure in the Fourier space. The histo-
grams of B� and B� resemble each other. Figure 4(e) sche-
matically shows the spherical shell structures in both
spaces.

4. DISCUSSION
Noise in the observation of Fourier intensity is an ob-
stacle to finding a plausible Fourier phase. In the case of
Fourier intensity contaminated by Poisson noise, a
spherical shell structure of the distribution consisting of

Fig. 4. (a) Histogram A� of distance values between average image �̄ and each estimated image �j for j=1, . . . ,10,000. (b) Histogram A�

of the distance value between the average image �̄ and each estimated image �j for j=1, . . . ,10,000. (c) and (d) Histograms B� and B� in
the Fourier space that correspond to A� and A� in the object space, respectively. (e) The relationship between the object and Fourier
spaces X and K is schematically presented. Various distinct estimated images (�j, with j=1, . . . ,N) are distributed around the center �̄,
and their Fourier transformed functions [Fj=F��j�, with j=1, . . . ,N] are also distributed around the center F̄�. In the case of the esti-
mated images ��1 , . . . ,�N�, the relationship between the two spaces is the same as in the case ��1 , . . . ,�N�.
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phase-retrieved images is found in the object space
through numerical simulations. This indicates the effec-
tiveness of using the average of many different phase-
retrieved images obtained by experimental diffraction
waves [18–20]. We preformed many simulations using dif-
ferent images from Fig. 2(a); however, all these simula-
tions revealed a spherical shell structure. Another inter-
esting feature was found in the ensemble of retrieved
images. The phase-retrieved images were not distributed
uniformly and were not dense. They formed a fractal-like
arrangement. Iterative Fourier transform is a statistical
dynamical system. The spherical shell structure might be
an attractive fractal-like invariant set that is in the final
state of iterations. The center of the averaging image also
might be a singular point as a repeller. This is related to
dynamical systems based on the iterated projections by
Elser [21]. This paper is, to the best of our knowledge, the
first step toward an advanced analysis based on the struc-
ture of the distribution of phase-retrieved images. The
investigation of the averaging methods using recent
experimental results [22,23] of our groups in electron
microscopy is also one of the prominent future related
works. The more precise characteristics of the structure
and the spatial resolution of the final image by the aver-
aging methods remain to be elucidated.
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