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Based on the minimization of the Lagrange formula, which is composed of two kinds of information measure,
the maximum entropy method (MEM) is derived for diffractive imaging contaminated by quantum noise. This
gives a suitable object corresponding to the maximum entropy principle with an iterative procedure. The
MEM-based iterative phase retrieval algorithm with the initial process of the hybrid input–output (HIO-MEM)
is presented, and a simple numerical example shows that the algorithm is effective for Poisson noise added to
Fourier intensity. The relationship between the newly derived MEM for diffractive imaging and the conven-
tional MEM for structure analysis based on crystallography is revealed. © 2008 Optical Society of America

OCIS codes: 100.5070, 100.3008.

1. INTRODUCTION
A phase problem generally arises in the measurement of
waves; that is, the phase is generally missing while am-
plitude is observed as intensity. Sayre pointed out that
the missing phase can be retrieved by measuring the in-
tensity only in terms of Shannon’s sampling theorem [1].
An iterative algorithm for phase retrieval was first pre-
sented by Gerchberg and Saxton [2]; then Fienup derived
an error reduction (ER) algorithm based on the steepest-
descent method and presented the hybrid input–output
(HIO) algorithm [3]. These algorithms have been used in
the fields of astronomy, optics, and both x-ray and elec-
tron microscopy. In materials science, the first instance of
imaging using a soft x-ray diffraction pattern was pre-
sented by Miao et al.[4] This epochal result opens the door
to structure analysis of noncrystalline materials without
an objective lens. Following that, many related experi-
ments were presented using different sources, such as
x-ray [5–8], electron microscope [9–11], and tabletop light
sources of laser [12]. These recent achievements are sum-
marized in [13].

In the phase problem of x-ray crystallography, technical
and theoretical methods for determining the periodic
structures of materials have been introduced and devel-
oped. Although there are some resemblances between
crystallography and general optical imaging, Millane
pointed out in [14], p. 394, that “phase-retrieval theory
and algorithms in crystallography and in general imaging
have been developed fairly independently.” As the meth-
odology, the maximum entropy method (MEM) for crystal-
lography introduced by Collins [15] was originally focused
on reconstruction from incomplete noisy data [16,17].
This made the MEM a practical method for x-ray crystal-
lography [18–22].

However, the relationship between the MEM for crys-
tallography and the phase retrieval algorithms is still
vague: the objectives of both are the same in terms of re-

constructing a suitable object image, but the MEM for
crystallography is used for superresolution from the noise
data and not for phase retrieval directly. The relationship
between an iterative algorithm for phase retrieval and
the information-theoretic measures was pointed out in
[23], revealing the importance of the MEM for diffractive
imaging. One such information-theoretic measure was in-
troduced for phase retrieval [24].

The MEM from incomplete and noisy data brings a fea-
sible result that is helpful for diffractive imaging, because
the noise in the Fourier intensity measurement generally
influences the process of phase retrieval. Poisson noise
due to quantum noise is inevitable in the measurement of
diffraction intensity. Thus, the possibility of a phase re-
trieval algorithm providing an optimal solution to this
noise is important for diffractive imaging.

In this paper, we introduce a Lagrange formalism with
two function spaces defined on the object and Fourier do-
mains, clarify the relationship between phase retrieval
and the MEM, and for the first time, to our knowledge,
present a MEM-based iterative phase retrieval algorithm
with the initial process of the hybrid input–output (HIO-
MEM). A simple numerical example using Fourier inten-
sity contaminated by Poisson noise is also presented.

2. LAGRANGE’S METHOD FOR PHASE
RETRIEVAL ALGORITHMS
Phase retrieval is represented as a corrective diagram of
the Fourier and inverse Fourier transforms between the
object domain and the Fourier domain, which is presented
in the Gerchberg–Saxton iterative algorithm [2]. The re-
construction of the Fourier phase using the intensity
measurement of the Fourier domain is presented as a cy-
clic transform. The prior object � is transformed into F by
the Fourier transform FT; F is replaced by F� (the ampli-
tude is given by the experiment in the Fourier domain
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and the phase of F� is the same as that of F, while the
replaced amplitude is the constraint in the Fourier do-
main); �� is obtained by the inverse Fourier transform
FT−1 of F�; and �� is replaced by the updated object as the
next � using some constraints in the object domain.

Based on the above cyclic transformation, let us define
the Lagrange formalism for phase retrieval. We restrict
ourselves to the case in which the object function is real
and nonnegative; that is, the real positive condition for
one of the object-domain constraints is assumed. As a
mathematical presentation, let FO be a function space
generated by the set of all real functions with finite vol-
ume on the object domain O, and let FK be a function
space generated by the set of all finite-norm functions on
the Fourier domain K. The Gerchberg–Saxton diagram is
regarded as the transform back and forth between the
two function spaces, FO and FK (Fig. 1). Thus, to express
the changes of the transforms in the diagram, a criterion
is needed for both spaces, simultaneously. Particularly, it
is needed to introduce an information measure into the
object domain for the estimation of a target object from
uncertain conditions. To start, we introduce the minimi-
zation of the following Lagrange formula composed of two
kinds of information measures for FO and FK as

L = D + �E, �1�

where D and E are distance-like measures denoting the
discrimination between the two elements of FO and of FK,
respectively, and � is a coefficient.

Various information measures denoting the complexity
or discrimination have been used in information theory
[25–27]. If the similarity of two elements corresponds to
the value of some information measure, it is suitable for
the formulation of D�� ,��� and E�F ,F��. In information
theory, a distance-like measure between two probability
distributions is called information divergence, and it is
generalized for nonnegative real functions with finite vol-
ume [28].

As for two elements, we introduce the nth object �n and
�n+1�th object �n+1, which are real nonnegative functions
in FO, and the norm ��n+1−�n� is assumed to be suffi-
ciently small. This assumption is an underlying condition
for mathematically deriving this algorithm. The relation-
ship between the nth and �n+1�th objects denotes an it-
erative transform in the function space FO. In the func-
tion space FK, we introduce Fn+1 and Fn+1� , where Fn+1
denotes the Fourier transform of �n+1, �Fn+1� � is the obser-
vation �Fobs� of the Fourier domain, and the phase of Fn+1�
is the same as that of Fn+1.

Concerning the representation of the discrimination D,
the I-divergence is well used in information theory [28],
and the squared loss function is suitable for E, because
the Fourier intensity is obtained and the phase of the
Fourier domain is lost. From the above setting for D and
E, the Lagrange formula Eq. (1) is concretely represented
as

L = I��n+1,�n� + �E�Fn+1,Fn+1� �, �2�

where

I��n+1,�n� = �
r

�n+1�r�ln
�n+1�r�

�n�r�
+ �

r
�n�r� − �

r
�n+1�r�,

�3�

E�Fn+1,Fn+1� � =
1

M�
k

��Fn+1�k�� − �Fn+1� �k���2, �4�

Fn+1= �Fn+1�exp�i�n+1�, Fn+1� = �Fobs�exp�i�n+1�, and M is the
cardinality of the domain K.

Fienup’s relation gives the following representation of
object functions [3]:

�E�Fn+1,Fn+1� �

��n+1
=

2

M
��n+1 − �n+1� �. �5�

Under the constraint that ��n+1−�n� be sufficiently small,
�L /��n+1=0 gives the following iterative formula with a
positive real constant � [23]:

�n+1�r� = �n�r�exp����n��r� − �n�r���. �6�

This algorithm gives a suitable object corresponding to
the maximum entropy principle with an iterative proce-
dure.

In this section, we have presented an iterative MEM
phase retrieval algorithm based on the Lagrange method.
However, there is no example using the iterative MEM al-
gorithm for diffractive imaging. We next propose in Sec-
tion 3 an algorithm using the MEM in order to establish
its effective use for diffractive imaging.

3. NUMERICAL EXAMPLE
In this section, a numerical example using Poisson noise
in the measurement of Fourier intensity is presented.
When the difference between the nth object and the �n
+1�th object is large, Fienup’s HIO [3] or charge flipping
[29] is often used; when the difference is small, the ER al-
gorithm is used. Here we present a sample simulation us-
ing the HIO-MEM:

Fig. 1. Gerchberg–Saxton iterative diagram of phase retrieval
based on two function spaces, FO and FK.
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�n+1�r� =�
�n��r� r � S,

n � n0,

�n�r� − ��n��r� r � S,

�n�r�exp����n��r� − �n�r��� r � S,

n � n0,

0 r � S,
�

�7�

where the HIO is used for an initial process with a suit-
able number of iterations n0 and a pseudo-suitable object
is obtained, and the MEM phase retrieval algorithm Eq.
(6) is then used for the finishing process. Here S is the set
of the points violating the object-domain constraint, and �
and � are the coefficients. As a comparison, the HIO-ER is
also presented as

�n+1�r� =�
�n��r� r � S,

n � n0,

�n�r� − ��n��r� r � S,

�n��r� r � S,

n � n0.

0 r � S,
� �8�

The setting of the numerical example can be described as
follows. The target �target consists two same-height pillars
shown at the upper left of Fig. 2 (the object domain is N
pixels �N=256�). The observation with the Poisson noise
is generated by the formula

Poisson��Ftarget
c �k��2� 	 c2�Fobs

poisson�k��2, �9�

where Ftarget
c is obtained by the Fourier transform of

c�target and c=0.0001. The expectation of the Poisson dis-
tribution is the Fourier intensity �Ftarget

c �2. An initial ob-
ject is a random object. In the first step, the HIO with a
tight support is used, and its parameters are settled as
�=0.5 and n0=1000) for the HIO-MEM and the HIO-ER,
respectively; next, two kinds of algorithms, the ER and a
MEM phase retrieval algorithm (the parameter �=0.01),
are used, and the HIO-ER and the HIO-MEM are com-
pared. Five thousand iterations are provided after the ini-
tial process of these algorithms. The number of iterations

for these algorithms is sufficient to obtain a suitable re-
sult. All parameters in the HIO-ER and the HIO-MEM in-
cluding the iteration numbers n0 and n are chosen as one
of the feasible settings with some trials. The typical ob-
jects �mem and �er obtained by the HIO-MEM and the
HIO-ER, respectively, are presented in Fig. 2. The shape
of �er shows two pillars; however, the influence of the
noise is remarkable. The shape of �mem is favorable and
the noise is smaller than for �er not only on the tops of the
pillars but also between them. Generally, the noise in
�Ftarget�2 is an obstacle in obtaining the target object; thus
a standard phase retrieval algorithm using the HIO and
the ER does not give a feasible object. As a comparison be-
tween the HIO-ER and the HIO-MEM, the MEM-based
algorithm with a sufficient number of iterations and suit-
able parameter settings gives a better result than that us-
ing the ER for the Fourier intensity contaminated by
Poisson noise.

Figure 3 shows schematic discrimination between
�target and �mem and between �target and �er using
I-divergence in the object-function space FO. The
I-divergence is well used as a distance-like measure be-
tween two positive real object functions [28]. Concerning
the objects shown in Fig. 2, the ratio Imem/Ier is 0.054,
where Imem=I��target,�mem� and Ier=I��target,�er�. Thus the
I-divergence Imem is less than Ier with a suitable setting of
the HIO-MEM parameters. Needless to say, a large noise
in the Fourier intensity does not give the characteristic
result in the comparison between the HIO-ER and the
HIO-MEM.

4. DISCUSSION
We focus now on the relationship between the MEM for
diffractive imaging and the conventional MEM for struc-
ture analysis based on crystallography. The MEM was es-
tablished in terms of statistical physics by Jaynes [30,31]
and was introduced into the field of crystallography to
produce electron density maps [15–22]. To investigate the
relationship between the MEMs for crystallography con-
ventionally used and those for phase retrieval derived, as
far as we know for the first time, in this paper, let us re-

Fig. 2. �er and �mem are obtained by the HIO-ER and HIO-MEM,
respectively. The figure on the upper left represents �target.

Fig. 3. Discrimination based on I-divergence between two object
functions is shown in the function space FO. The I-divergence
Imem (from �target to �mem) is less than Ier (from �target to �er) with a
suitable setting of the parameters of the HIO-MEM.
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view the MEM formalism of Collins [15]. � is the obtained
electron density by the structure factors �Fobs�exp�i�model�,
where �Fobs� and �model are the observed and the model-
based phase, respectively. Fcal is the Fourier transform of
�, and �F̂�0�� �=�F0�� is the number of electrons in a unit
cell. Let us consider the maximization of

Q��� = − �
r

���r�ln
���r�

���r�

−
�

2�
k

�Fcal�k� − �Fobs�k��exp
i�model�k���2

	�k�2 �10�

by setting �Q��� /���r�=0, where the summation over r in-
cludes a unit cell; ��=� /���r� and ��=� /���r� are used in
the entropy formula; the summation k is taken over the
Fourier domain K; 	�k� is a standard deviation of
�Fobs�k��; and � is a constant. The maximum entropy map-
ping is obtained as [15]

��r� = exp�ln ��r� + �F0


�
k

��Fobs�k��exp
i�model�k�� − Fcal�k��

	�k�2


exp�− i2�k · r�
 . �11�

Thus the above equation presents the relationship be-
tween the prior object � and the posterior object �; how-
ever, the procedure does not update the phase of the
structure factors �model introduced as the model-based
phase. In crystallography, the phase-update procedure is
not needed after the process of determining the model-
based phase. Thus the relationship between the MEM
and phase retrieval has not been treated, and this is a
reason why the relationship between phase retrieval in
general optics and in crystallography has not been dis-
cussed in the literature.

The variance 	�k� is used in Eq. (11). However, some
uncertain factors are contained in the observed �Fobs�.
Then 	�k� is redundant in the Lagrange formulation. The
relationship between two function spaces is introduced
into our formalism for a MEM phase retrieval algorithm;
thus such a harmonious formulation between the two
function spaces gives the fundamental formalism for
phase retrieval.

From this discussion, we conclude the following. The
MEM for crystallography has been used to reconstruct
images from incomplete and noisy data; focusing on such
use, we express the MEM for diffractive imaging in terms
of an iterative algorithm based on the Lagrange formal-
ism for phase retrieval. Important future work will in-
clude the application of a MEM-based phase retrieval al-
gorithm using experimental data. The numerical example
in our paper is a simple setting in order to emphasize the
effectiveness of the proposed algorithm for phase retrieval
with Poison noise. The imaging of multiwall carbon nano-
tubes by diffraction microscopy using a 20 kV electron
beam has been achieved experimentally by our research
group [11], and we will apply the proposed algorithm to

such experimental data in future research. Theoretical
extension to complex object functions based on an
information-theoretic analysis and introduction of the al-
gorithm into the newly developed method using an en-
semble of the estimated objects will also be subjects of our
future work.
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