

| Title            | Bactericidal Activity of Mouse -Defensin, Cryptdin-4 Predominantly Affects Noncommensal Bacteria |
|------------------|--------------------------------------------------------------------------------------------------|
| Author(s)        | Masuda, Koji; Sakai, Naoki; Nakamura, Kiminori; Yoshioka, Sawako; Ayabe, Tokiyoshi               |
| Citation         | Journal of Innate Immunity, 3(3), 315-326<br>https://doi.org/10.1159/000322037                   |
| Issue Date       | 2011-04                                                                                          |
| Doc URL          | http://hdl.handle.net/2115/45394                                                                 |
| Rights           | Copyright © 2011 S. Karger AG, Basel                                                             |
| Туре             | article (author version)                                                                         |
| File Information | JII3-3_315-326.pdf                                                                               |



| 1  | Bactericidal Activity of Mouse $\alpha$ -Defensin, Cryptdin-4                                  |
|----|------------------------------------------------------------------------------------------------|
| 2  | Predominantly Affects Non-Commensal Bacteria                                                   |
| 3  |                                                                                                |
| 4  |                                                                                                |
| 5  | Koji Masuda <sup>a</sup> , Naoki Sakai <sup>a, b</sup> , Kiminori Nakamura <sup>a, b</sup> ,   |
| 6  | Sawako Yoshioka <sup>a</sup> and Tokiyoshi Ayabe <sup>a, b, *</sup>                            |
| 7  |                                                                                                |
| 8  |                                                                                                |
| 9  | Innate Immunity Laboratory, <sup>a</sup> Graduate School of Life Science,                      |
| 10 | <sup>b</sup> Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido |
| 11 | University                                                                                     |
| 12 |                                                                                                |
| 13 | Short title: Selective Bactericidal Activity of Cryptdin-4                                     |
| 14 |                                                                                                |
| 15 | * Corresponding author: Tokiyoshi Ayabe, M.D., Ph.D., Professor, Department of Cell            |
| 16 | Biological Science, Graduate School of Life Science, Hokkaido University. N21, W11,            |
| 17 | Kita-ku, Sapporo, Hokkaido 001-0021, Japan,                                                    |
| 18 | Tel: +81-11-706-9049, Fax: +81-11-706-9053, e-mail: ayabe@sci.hokudai.ac.jp                    |
| 19 |                                                                                                |

- 20 Abstract
- 21

22 Mouse Paneth cell  $\alpha$ -defensins, termed cryptdins, are secreted into the intestinal 23 lumen, exert microbicidal activity and contribute to the intestinal innate immunity. 24 Among them, cryptdin-4 (Crp4) has the most potent microbicidal activity. In the intestinal lumen, commensal bacteria colonize and elicit beneficial effects to the 25 26 host. However, the effects of Crp4 against commensal bacteria are poorly 27 understood. Thus, we investigated the bactericidal activities of Crp4 against commensal bacteria compared to non-commensal bacteria. Oxidized Crp4 showed 28 29 only minimal or no bactericidal activity against 8 out of 12 commensal bacterial species, including Bifidobacterium bifidum and Lactobacillus casei. We further 30 31 addressed a role of the conserved disulfide bonds of Crp4 by analyzing reduced 32 Crp4 (r-Crp4). r-Crp4 demonstrated significantly greater bactericidal activities 33 against 7 of 12 commensal bacteria than did oxidized Crp4. Oxidized Crp4 and 34 r-Crp4 elicited equivalently potent bactericidal activities against 11 of 11 non-commensal bacteria tested such as Salmonella enterica serovar Typhimurium, 35 36 and 5 of 12 commensal bacteria. Furthermore, when r-Crp4 was exposed to a processing enzyme of cryptdins, MMP-7, r-Crp4 was degraded, and bactericidal 37

| 38 | activities disappeared. These findings suggest that Crp4 has selective bactericidal             |
|----|-------------------------------------------------------------------------------------------------|
| 39 | activities against intestinal microbiota and that the activities are dependent on the           |
| 40 | disulfide bonds.                                                                                |
| 41 |                                                                                                 |
| 42 |                                                                                                 |
| 43 | Introduction                                                                                    |
| 44 |                                                                                                 |
| 45 | Innate immunity functions as the front line of host defense in plants, invertebrates,           |
| 46 | and mammals. Antimicrobial peptides (AMPs) are one of the major effectors of innate             |
| 47 | immunity [1-3]. In the small intestine, antimicrobial peptide $\alpha$ -defensins are expressed |
| 48 | in the granules of Paneth cells and are secreted into the lumen of intestinal crypts in         |
| 49 | response to bacterial stimuli [4]. The secreted $\alpha$ -defensins elicit potent bactericidal  |
| 50 | activity and contribute to innate immunity in the small intestine [5, 6]. Mouse                 |
| 51 | $\alpha$ -defensins, termed cryptdins (Crps) are activated in vivo in Paneth cell granules      |
| 52 | through the processing of pro-cryptdins (pro-Crps) with the proteolytic enzyme, matrix          |
| 53 | metalloproteinase-7 (matrilysin, MMP-7) [7, 8]. MMP-7 cleaves pro-Crps at three                 |
| 54 | cleavage sites, and one of these sites is the N-terminus or near the N-terminus of mature       |
| 55 | Crps [9]. This processing is an essential event for the production of mature, functional        |

| 56       | Crps [7-9]. MMP-7-deficient mice that lack active form of Crps are significantly                                                                                            |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 57       | susceptible to orally administered Salmonella enterica serovar Typhimurium than wild                                                                                        |
| 58       | type mice [7]. These results also show the pivotal role of AMPs in innate immunity.                                                                                         |
| 59       | In the gastrointestinal tract, a highly complex microbial ecosystem is constructed by                                                                                       |
| 60       | colonizing microbes. Hosts and microbiota have co-evolved in ways that have mutually                                                                                        |
| 61       | beneficial effects [10]. These include host development [11], nutritional absorption [12],                                                                                  |
| 62       | and functional development of the immune systems [13]. Recent studies have shown                                                                                            |
| 63       | that well-balanced cross-talk between the host and commensal bacteria are important                                                                                         |
| 64       | [14], as imbalances of the relationships result in inflammation [15] and cancer [16]. In                                                                                    |
| 65       | the mouse small intestine, the expression of more than 20 cryptdin genes and                                                                                                |
| 66       | cryptdin-related sequence genes have been reported [17-20], and these peptides are                                                                                          |
| 67       | secreted into the intestinal lumen where commensal bacteria reside [21]. Among Crps,                                                                                        |
| 68       | cryptdin-1 ~ -6 (Crp1~6) are characterized at peptide level. Although the amino acid                                                                                        |
| 69       | sequence identities of mature regions of Crp1~3, 6 are more than 90%, those of Crp4                                                                                         |
| 70       |                                                                                                                                                                             |
|          | and Crp5 with Crp1 are 42 and 54%, respectively [18]. In particular, Crp4 has several                                                                                       |
| 71       | and Crp5 with Crp1 are 42 and 54%, respectively [18]. In particular, Crp4 has several features that distinguish it from other Crps. For example, the Crp4 polypeptide chain |
| 71<br>72 |                                                                                                                                                                             |

start site [22]. Crp4 also has the most potent *in vitro* bactericidal activity of known mouse Paneth cell  $\alpha$ -defensins [18], suggesting that Crp4 may have pivotal role for intestinal innate immunity. However, the interaction of Crp4 and small intestinal microbiota is poorly understood. Thus, to clarify the effects of Crp4 on commensal bacteria, we investigated the bactericidal activities of Crp4 against commensal bacteria compared to non-commensal bacteria. We further tested the bactericidal activities of Crp1 in addition to Crp4.

81 Crp4 is highly cationic peptide and generally believed to permeabilize bacterial 82 plasma membrane through electrostatic interaction with negatively charged bacterial 83 phospholipids followed by the insertion of hydrophobic side chains [23]. This 84 conclusion is supported by the reports which reveal that positively charged Arg residues 85 of Crp4 is critical for its bactericidal activity [24]. However, the precise mechanism(s) of its bactericidal activity are not known. α-Defensins including Crp4 are characterized 86 by invariant disulfide bonds arranged between Cys<sup>1</sup>-Cys<sup>6</sup>, Cys<sup>2</sup>-Cys<sup>4</sup>, and Cys<sup>3</sup>-Cys<sup>5</sup> [3]. 87 88 The pairings of three disulfide bonds are conserved in all species which express these 89 peptides. Previously, the bactericidal activities of the Crp4 mutants in which Cys 90 residues were substituted to Ala residues were analyzed by Maemoto et al [25]. They 91 showed that disulfide bond-null mutants had equivalent or greater bactericidal activity

| 92  | than native Crp4 [25]. However, the effects of the disulfide bonds in native Crp4 on    |
|-----|-----------------------------------------------------------------------------------------|
| 93  | bactericidal activity against commensal bacteria remain unknown. Therefore, we further  |
| 94  | addressed a role of the disulfide bonds on the bactericidal activity of Crp4 using      |
| 95  | reduced Crp4 (r-Crp4) which did not contain disulfide bonds.                            |
| 96  | Crp4 is processed by MMP-7 in the granules of Paneth cells. It was reported that        |
| 97  | disulfide bonds null-mutant of Crp4 was degraded by MMP-7 [25]. This result indicates   |
| 98  | that disulfide bonds of Crp4 determine proteolytic resistance to MMP-7. Therefore, to   |
| 99  | elucidate the effect of reduction on the processing of r-Crp4, we also investigated the |
| 100 | susceptibility of r-Crp4 to MMP-7 and the effects of MMP-7 on the bactericidal activity |
| 101 | of the processed r-Crp4.                                                                |
| 102 |                                                                                         |
| 103 |                                                                                         |
| 104 | Materials and Methods                                                                   |
| 105 |                                                                                         |
| 106 | Preparation of oxidized Crps and r-Crps                                                 |
| 107 | Three pairs of disulfide bonds were introduced into Crp4 (Sigma Genosys, St. Louis,     |
| 108 | MO or Medical & Biological Laboratories Co., Ltd, Nagoya, Japan) by air oxidation as    |
| 109 | described [25]. Crp4 was then purified to homogeneity using reverse-phase high          |

performance liquid chromatography (RP-HPLC). The Crp4 with three pairs of disulfide
bonds, defined as oxidized Crp4, was purified by a C-18 column (SepaxHP-C18,
4.6x150 mm, 5 µm, Sepax Technologies, Inc., Newark, DE) in 0.1% trifluoroacetic acid
with an 18-36% acetonitrile gradient developed over 30 min at 1 ml/min (online suppl.
fig. S1a). Oxidized Crp4 was obtained after final lyophilization and stored at -30°C until
use.

116 r-Crp4, in which the disulfide bonds were entirely reduced, was prepared. Oxidized 117 Crp4 was dissolved in 500 mM dithiothreitol (DTT), and let stand at 4°C overnight. The reaction mixture was then applied to a C-18 column and r-Crp4 was purified by 118 119 RP-HPLC under the same condition as used in the purification of oxidized Crp4 (online 120 suppl. fig. S1b). Because the retention times of DTT and r-Crp4 were very different, we 121 conclude DTT was completely removed from r-Crp4 in the purification process. Thus, 122 r-Crp4 used in the assay did not contain DTT, and we confirmed that DTT did not affect 123 the bactericidal assay. r-Crp4 was obtained after final lyophilization and stored at -30°C 124 until use. Oxidized Crp1 and r-Crp1 were also prepared by the same respective 125 methods.

126

#### 127 Evaluation of disulfide bond formation

| 128 | Disulfide bonds formation was evaluated by Acid-Urea PAGE (AU-PAGE) [26],             |
|-----|---------------------------------------------------------------------------------------|
| 129 | MALDI-TOF MS, and RP-HPLC. In AU-PAGE analysis, samples (1.0 $\mu$ g) of oxidized     |
| 130 | Crp4 and r-Crp4 were dissolved in 5% acetic acid and electrophoresed on 12.5%         |
| 131 | acrylamide gel containing 5% acetic acid and 5 M Urea at 150 V [26]. Thereafter, the  |
| 132 | gel was stained with Coomassie brilliant blue R-250. Molecular masses of the peptides |
| 133 | were determined by MALDI-TOF MS (Voyager-DE PRO, Applied Biosystems,                  |
| 134 | Carlsbad, CA). Oxidized Crp4 and r-Crp4 were analyzed by RP-HPLC using a C-18         |
| 135 | column under the same condition as used in the purification of oxidized Crp4.         |

136

#### 137 Bacterial strains and culture conditions

As some of the most common commensal bacteria in the small intestine [27-30], 138

Bifidobacterium bifidum ATCC 11863 (B. bifidum), Bifidobacterium breve JCM 1192 139

140 (B. breve), Bifidobacterium longum ATCC 15707 (B. longum), Lactobacillus

141 acidophilus ATCC 314 (L. acidophilus), Lactobacillus casei ATCC 393 (L. casei),

Lactobacillus johnsonii JCM 2012 (L. johnsonii), Bacteroides fragilis JCM 11019 (B. 142

143 fragilis), Bacteroides ovatus JCM 5824 (B. ovatus), Bacteroides thetaiotaomicron JCM

144 5827 (B. thetaiotaomicron), Bacteroides vulgatus JCM 5826 (B. vulgatus),

145 Enterococcus faecalis JCM 5803 (E. faecalis) and Enterococcus faecium JCM 5804 (E.

| 146 | faecium) were used. As examples of non-commensal bacteria in the small intestine,                             |
|-----|---------------------------------------------------------------------------------------------------------------|
| 147 | wild-type Salmonella enterica serovar Typhimurium ATCC 14028 (S. enterica serovar                             |
| 148 | Typhimurium), a defensin-sensitive strain of Salmonella enterica serovar Typhimurium                          |
| 149 | phoP- (S. enterica serovar Typhimurium phoP-) [31], Escherichia coli ML35 ATCC                                |
| 150 | 43827 (E. coli), Staphylococcus aureus ATCC 27217 (S. aureus), Listeria                                       |
| 151 | monocytogenes JCM 7671 (L. monocytogenes), Klebsiella oxytoca JCM 1665 (K.                                    |
| 152 | oxytoca), Klebsiella pneumoniae JCM 1662 (K. pneumoniae), Proteus vulgaris JCM                                |
| 153 | 20013 (P. vulgaris), Yersinia enterocolitica JCM 7577 (Y. enterocolitica),                                    |
| 154 | Campylobacter coli JCM 2529 (C. coli) and Campylobacter jejuni JCM 2013 (C. jejuni)                           |
| 155 | were used. Bacteria were cultured in the following media; B. bifidum: reinforced                              |
| 156 | clostridial medium (RCM) supplemented with 2% (w/v) of skim milk, B. breve and B.                             |
| 157 | longum: RCM, Lactobacillus sp.: de Man, Rogosa, and Sharpe (MRS) broth,                                       |
| 158 | Bacteroides sp.: GAM broth (Nissui Seiyaku Co., Ltd., Tokyo, Japan), Enterococcus                             |
| 159 | sp.: Brain Heart Infusion (BHI), non-commensal bacteria except for C. coli and C.                             |
| 160 | jejuni: Tryptic Soy broth, C. coli and C. jejuni: GAM broth. Commensal bacteria were                          |
| 161 | grown in anaerobic conditions using the Anaero Pack system (Mitsubishi Gas Chemical                           |
| 162 | Co., Inc., Tokyo, Japan) at 37°C. Non-commensal bacteria except for C. coli and C.                            |
| 163 | <i>jejuni</i> were grown in a shaking incubator at 37°C with shaking at 180 rpm. <i>C. coli</i> and <i>C.</i> |

164 *jejuni* were grown in microaerophilic conditions using the Anaero Pack system.

165

166 Bactericidal peptide assay

167 Exponential-phase bacteria cultured at 37°C were deposited by centrifugation at 168 9,300 g at 4°C for 5 min. Bacteria except for B. vulgatus were washed twice and 169 resuspended in Milli-Q water, B. vulgatus was washed twice and resuspended in PBS 170 diluted 1:4 with Milli-Q water. The OD<sub>620</sub> was measured to determine bacterial cell 171 numbers. Twenty µl of samples containing 1,000 colony forming units (CFU) per 172 aliquot mixed with equal vol of oxidized Crp4, r-Crp4, oxidized Crp1 or r-Crp1 to final 173 concentrations ranging from 0.027 to 1.35 µM. The mixtures were incubated for 1 hr at 174 37°C. The incubated samples were plated on RCM Agar plates for Bifidobacterium sp., 175 MRS Agar plates for Lactobacillus sp., GAM Agar plates for Bacteroides sp., BHI Agar 176 plates for Enterococcus sp. and Tryptic Soy Agar (TSA) plates for non-commensal 177 bacteria. The plates were then incubated in anaerobic conditions at 37°C for commensal 178 bacteria or at 37°C for non-commensal bacteria. Bacterial survival rates were 179 determined from surviving colonies relative to peptide-unexposed controls (online suppl. 180 fig. S2). Bacterial cell viability of peptide-unexposed controls was not changed during 181 bactericidal peptide assay (data not shown).

## 

# Bactericidal peptide assay against a bacterial mixture

| 184 | Exponential-phase S. enterica serovar Typhimurium, L. casei and B. thetaiotaomicron             |
|-----|-------------------------------------------------------------------------------------------------|
| 185 | cultured at 37°C were washed with Milli-Q water and each bacteria population was                |
| 186 | adjusted to 150 CFU in 20 $\mu$ l. Then each bacterial solution of 20 $\mu$ l was mixed and the |
| 187 | mixture was incubated with 60 $\mu$ l of oxidized Crp4 or r-Crp4 with the final                 |
| 188 | concentration of 1.35 $\mu$ M. After incubation for 1 hr at 37°C, the bacterial mixtures were   |
| 189 | separated and grown on TSA plates at aerobic conditions, MRS and GAM plates at                  |
| 190 | anaerobic conditions using the Anaero Pack system, respectively. More than 28 colonies          |
| 191 | were picked randomly from each plate as a representative of total colonies, then the            |
| 192 | genomic sequences of the conserved region in 16S rRNA among three species of                    |
| 193 | bacteria were amplified by colony direct polymerase chain reaction (PCR) using Blend            |
| 194 | Taq (TOYOBO, Tokyo, Japan). The forward primer (5'-GTTGG TGAGG TAACG                            |
| 195 | GCTCA CCAA-3') was paired with the reverse primer (5'-TGACG GGCGG TGTGT                         |
| 196 | ACAAG GC-3'). The PCR products from S. enterica serovar Typhimurium, L. casei                   |
| 197 | and B. thetaiotaomicron were digested at only one site by BamH I, Bgl II and Spe I,             |
| 198 | respectively. Therefore, after the digestion of the PCR products by these three enzymes,        |
| 199 | each bacterium was distinguished by the resulting patterns visualized by agarose                |

| 200 | electrophoresis. Relative bacterial distribution was shown from picked representative     |
|-----|-------------------------------------------------------------------------------------------|
| 201 | colonies, and the actual colony numbers of each bacterium were estimated by               |
| 202 | multiplying the relative bacterial distribution by the total colony numbers. Because each |
| 203 | plate is appropriate for each bacterium, the numbers of S. enterica serovar Typhimurium   |
| 204 | L. casei and B. thetaiotaomicron were estimated from colonies grown on TSA, MRS           |
| 205 | and GAM plates, respectively.                                                             |
| 206 |                                                                                           |

#### 207 Antimicrobial assay with membrane potential sensitive dye

208 Exponential-phase bacteria were incubated in Milli-Q water at 37°C with oxidized 209 Crp4 or r-Crp4 (1.35  $\mu$ M) for 1 hr. Then the suspensions were incubated for 10 min with 210 1 µg/ml of the membrane potential sensitive fluorophore, bis-(1,3-dibutylbarbituric 211 acid) trimethine oxonol [DiBAC<sub>4</sub>(3)] (Invitrogen, Carlsbad, CA) as described [32]. The suspensions were centrifuged for 5 min at 9,300 g, and the bacterial pellets were 212 213 resuspended in 1 ml PBS(-). Each bacterial sample was analyzed on a desktop cell 214 sorter JSAN (Bay Bioscience, Kobe, Japan). The median fluorescence intensity ratio (MFIR) was obtained by dividing the median fluorescence intensity of peptide treated 215 216 sample by the median fluorescence intensity of non treated sample.

| 219 | Samples (1.0 $\mu$ g) of oxidized Crp4 and r-Crp4 were incubated with an activated         |
|-----|--------------------------------------------------------------------------------------------|
| 220 | recombinant human MMP-7 (1.0 $\mu$ g) catalytic domain (Calbiochem, La Jolla, CA) in 10    |
| 221 | mM HEPES pH 7.4, 150 mM NaCl, and 5 mM CaCl <sub>2</sub> for 18-24 hr at 37°C [9, 25]. The |
| 222 | digested samples were analyzed by Tris-Tricine SDS-PAGE, N-terminal peptide                |
| 223 | sequencing and MALDI-TOF MS. For N-terminal peptide sequencing by Edman                    |
| 224 | degradation, digested r-Crp4 was resolved by RP-HPLC under the same condition as           |
| 225 | used in the purification of oxidized Crp4. Fifty pmol samples of digested r-Crp4 were      |
| 226 | subjected to 5 cycles of N-terminal peptide sequencing at The Creative Research            |
| 227 | Initiative Sousei, Hokkaido University. To determine biological activity, the digested     |
| 228 | samples were applied to bactericidal peptide assays as described above.                    |
| 229 |                                                                                            |
| 230 |                                                                                            |
| 231 | Results                                                                                    |
| 232 |                                                                                            |
| 233 | Oxidized Crp4 shows bactericidal activities against non-commensal bacteria, but            |
| 234 | little or no bactericidal activity against some commensal bacteria                         |
| 235 | Throughout the present study, we used oxidized Crp4 containing three pairs of              |

| 236 | disulfide bonds and r-Crp4 obtained by the reduction of oxidized Crp4. As shown in the    |
|-----|-------------------------------------------------------------------------------------------|
| 237 | results of AU-PAGE (fig. 1), MALDI-TOF MS (fig. 2a) and RP-HPLC (online suppl.            |
| 238 | fig. S1a), oxidized Crp4 was homogeneous. Oxidized Crp4 showed lower molecular            |
| 239 | weight than r-Crp4 by 6 Da (fig. 2), consistent with the oxidation of 6 Cys residues in   |
| 240 | the formation of disulfide pairings. Furthermore, oxidized Crp4 had bactericidal activity |
| 241 | against two strains of S. enterica serovar Typhimurium, as well as E. coli and S. aureus  |
| 242 | (fig. 3). Hence, oxidized Crp4 prepared was both biologically active and contained three  |
| 243 | pairs of disulfide bonds. r-Crp4 showed reduced migration relative to oxidized Crp4 in    |
| 244 | AU-PAGE (fig. 1). This corresponds to the results of AU-PAGE for oxidized Crp4            |
| 245 | versus Cys-to-Ala substituted Crp4, in which the disulfide-null mutant showed reduced     |
| 246 | migration compared to oxidized Crp4 [25]. MALDI-TOF MS of r-Crp4 showed a major           |
| 247 | peak (fig. 2b) and RP-HPLC of r-Crp4 showed a single peak (online suppl. fig. S1b).       |
| 248 | From these results, we judged r-Crp4 to be homogeneous and that the three pairs of        |
| 249 | disulfide bonds were reduced. The reduction state of r-Crp4 was assured by                |
| 250 | MALDI-TOF MS and AU-PAGE prior to use and after incubation in bactericidal assays.        |
| 251 | Although r-Crp4 showed secondary bands in AU-PAGE suggestive of disulfide bond            |
| 252 | formation, some Cys residues may tend to form disulfide bonds in AU-PAGE since an         |
| 253 | excess concentration of DTT is needed for the complete reduction of Crp4.                 |

| 254 | Bactericidal activities of oxidized Crp4 against small intestinal commensal and                 |
|-----|-------------------------------------------------------------------------------------------------|
| 255 | non-commensal bacteria were examined. Oxidized Crp4 killed 11 out of 11                         |
| 256 | non-commensal bacteria and 4 of 12 commensal bacteria, B. longum, B. vulgatus, E.               |
| 257 | faecalis and E. faecium in a dose-dependent manner (fig. 3, 4c, j, k, l). In contrast,          |
| 258 | oxidized Crp4 showed little or no bactericidal activities on 8 out of 12 commensal              |
| 259 | bacteria, B. bifidum, B. breve, L. acidophilus, L. casei, L. johnsonii, B. fragilis, B.         |
| 260 | ovatus and B. thetaiotaomicron at 1.35 $\mu$ M (fig. 4a, b, d, e, f, g, h, i). These activities |
| 261 | did not change at 2.7 $\mu$ M peptide concentration (data not shown). Thus, oxidized Crp4       |
| 262 | had only minimal or no effect on survival of 8 out of the 12 species of commensal               |
| 263 | bacteria tested. In contrast, oxidized Crp4 had potent bactericidal activities against 11 of    |
| 264 | the 11 non-commensal bacterial species tested, but was only active against 4 of the 12          |
| 265 | species of commensal bacteria. The statistical analysis of bactericidal activities of           |
| 266 | oxidized Crp4 against commensal bacteria and non-commensal bacteria revealed that               |
| 267 | oxidized Crp4 showed significantly greater bactericidal activities against                      |
| 268 | non-commensal bacteria than against commensals at 1.35 $\mu M$ (fig. 5, commensal               |
| 269 | bacteria vs. non-commensal bacteria exposed to oxidized Crp4).                                  |
| 270 | In the intestinal lumen, a wide variety of bacteria are able to colonize. To test the           |

271 selective activity of oxidized Crp4 further, a mixture of commensal and non-commensal

bacteria were exposed to oxidized Crp4. Oxidized Crp4 selectively killed *S. enterica*serovar Typhimurium, while viability of the other commensal bacteria, *L. casei* and *B. thetaiotaomicron* in the mixture was retained (fig. 6, non-treated and oxidized
Crp4-treated). This result supports the selective activities of Crp4.

276 To determine whether this selective activity is specific to oxidized Crp4, we 277 analyzed the bactericidal activities of oxidized Crp1, the most abundant Crp, against six 278 non-commensal bacteria, S. enterica serovar Typhimurium, S. aureus, E. coli, L. 279 monocytogenes, K. oxytoca and P. vulgaris, and six commensal bacteria, B. bifidum, B. 280 longum, L. casei, L. johnsonii, B. fragilis and B. thetaiotaomicron. Oxidized Crp1 281 showed potent bactericidal activities against 6 of 6 non-commensal bacteria and 1 of 6 282 commensal bacteria, B. longum (online suppl. table S1), however Crp1 had little or no 283 effect on 5 of 6 commensal bacteria (online suppl. table S1). Thus, oxidized Crp1 also 284 had predominant bactericidal activities against non-commensal bacteria as did oxidized 285 Crp4.

286

287 r-Crp4 has bactericidal activities against both commensal and non-commensal
288 bacteria

289 Since disulfide bond pairings in  $\alpha$ -defensins are conserved in all species which

| 290 | express these peptides, the bactericidal activities of r-Crp4 were analyzed to elucidate   |
|-----|--------------------------------------------------------------------------------------------|
| 291 | the effects of the conserved disulfide bonds on its bactericidal activity. r-Crp4 showed   |
| 292 | equivalent bactericidal activities against all non-commensal bacteria but only 5 of 12     |
| 293 | commensal bacterial species, B. longum, L. acidophilus, B. vulgatus, E. faecalis and E.    |
| 294 | faecium in comparisons with oxidized Crp4 (fig. 3, 4c, d, j, k, l). These data indicated   |
| 295 | that the bactericidal activities of Crp4 against these bacteria were independent of the    |
| 296 | existence of the disulfide bonds. On the other hand, r-Crp4 killed 7 out of 12             |
| 297 | commensal bacteria, B. bifidum, B. breve, L. casei, L. johnsonii, B. fragilis, B. ovatus   |
| 298 | and B. thetaiotaomicron in a dose-dependent manner and showed significantly greater        |
| 299 | bactericidal activities compared to those of oxidized Crp4 (fig. 4a, b, e, f, g, h, i).    |
| 300 | Therefore, the reduction of the disulfide bonds conferred Crp4 bactericidal activities     |
| 301 | against B. bifidum, B. breve, L. casei, L. johnsonii, B. fragilis, B. ovatus and B.        |
| 302 | thetaiotaomicron, but the disulfide bonds had little or no effect on bactericidal activity |
| 303 | against all non-commensal bacteria tested and B. longum, L. acidophilus, B. vulgatus, E.   |
| 304 | faecalis and E. faecium. Comparison of bactericidal activities of oxidized Crp4 and        |
| 305 | r-Crp4 revealed that r-Crp4 had significantly greater bactericidal activities against      |
| 306 | commensal bacteria than those of oxidized Crp4 (fig. 5, commensal bacteria exposed to      |
| 307 | oxidized Crp4 vs. r-Crp4). Bactericidal activities of oxidized Crp4 and r-Crp4 were not    |

309

significantly different against non-commensal bacteria (fig. 5, non- commensal bacteria exposed to oxidized Crp4 vs. r-Crp4).

310 When the mixture of commensal and non-commensal bacteria was exposed to r-Crp4,

r-Crp4 had potent bactericidal activities against both commensals and non-commensals
(fig. 6, non-treated and r-Crp4-treated). Therefore, the selective bactericidal activities of
Crp4 against certain commensal bacteria were regulated by its disulfide bonds.

314 Furthermore, bactericidal activities of r-Crp1 against 6 non-commensal and 6 315 commensal bacteria were also tested for relative sensitivity to a second mouse 316  $\alpha$ -defensin, oxidized and reduced Crp1. r-Crp1 showed equivalent bactericidal activities 317 to those of oxidized Crp1 against 6 of 6 non-commensal bacteria and against 1 of 6 318 commensal bacteria, B. longum (online suppl. table S1), but it demonstrated 319 significantly greater bactericidal activity against 5 of 6 commensal bacteria (online 320 suppl. table S1) compared to that of oxidized Crp1. Thus, the predominant bactericidal 321 activities of Crp1 against non-commensal bacteria were also affected by its disulfide 322 bonds as in the case of Crp4.

We next tested membrane disruption activity of Crp4. It has been reported that Crp4 permeabilized bacterial cell membrane, and permeabilization correlated with bacterial killing activity [23]. To examine the possible mechanism of bactericidal activities of

| 326 | Crp4, a depolarization of the membrane potential was detected with membrane potential     |
|-----|-------------------------------------------------------------------------------------------|
| 327 | sensitive fluoroprobe, $DiBAC_4(3)$ [32] after exposure to oxidized and reduced Crp4.     |
| 328 | r-Crp4 exhibited the significantly greater depolarization than oxidized Crp4 in 3 of 3    |
| 329 | commensal bacteria tested (fig. 7). On the other hand, the depolarization activities of   |
| 330 | oxidized Crp4 and r-Crp4 were not significantly different against 2 of 3 species of       |
| 331 | non-commensal bacteria (fig. 7). Both oxidized and reduced Crp4 showed a remarkable       |
| 332 | depolarization against K. oxytoca (fig. 7).                                               |
| 333 |                                                                                           |
| 334 | Digestion of r-Crp4 by MMP-7 resulted in the attenuation of its bactericidal activity     |
| 335 | Crps are processed and activated by the processing enzyme, MMP-7 in vivo in Paneth        |
| 336 | cell granules. It was reported that disulfide bonds of Crp4 are essential for proteolytic |
| 337 | resistance to MMP-7 by using disulfide bonds null-mutant of Crp4 [25]. Therefore, to      |
| 338 | elucidate the susceptibility of r-Crp4 to MMP-7, an assay for proteolytic degradation     |
| 339 | was conducted. Oxidized Crp4 and r-Crp4 were incubated with or without MMP-7 and          |
| 340 | then applied to Tris-Tricine SDS-PAGE. r-Crp4 was digested by MMP-7 into smaller          |
| 341 | fragments, whereas oxidized Crp4 showed complete resistance to MMP-7 (fig. 8a).           |

- 342 N-terminal peptide sequencing of the peptide fragment that emerged in the Tris-Tricine
- 343 SDS-PAGE revealed that the N-terminus was YCRKG. MALDI-TOF MS showed that

| 344 | the peptide fragment had a molecular weight of 2480 Da. These results indicated that                                |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 345 | MMP-7 cleaved r-Crp4 at $Cys^4 \downarrow Tyr^5$ and $Phe^{25} \downarrow Leu^{26}$ as shown in figure 8b. Although |
| 346 | the peptide fragment appeared to have a molecular weight of ~3.5 kDa in figure 8a,                                  |
| 347 | because the fragment comprises cationic amino acids at high rates (theoretical $pI =$                               |
| 348 | 10.3), it might had a smaller migration in Tris-Tricine SDS-PAGE than that expected                                 |
| 349 | from molecular weight determined by MALDI-TOF MS. The observed cleavage sites                                       |
| 350 | correspond to the previous cleavage of reduced, alkylated pro-Crp4 by MMP-7 at the                                  |
| 351 | same sites [9]. Furthermore, the digested peptide fragments were assayed for                                        |
| 352 | bactericidal peptide activity to test for biological effects of the degradation. Previously,                        |
| 353 | it was shown that MMP-7 itself had no effect on bactericidal activity [7, 25]. The                                  |
| 354 | bactericidal activities of r-Crp4 against commensal and non-commensal bacteria except                               |
| 355 | for L. acidophilus significantly decreased when r-Crp4 was digested by MMP-7 (table                                 |
| 356 | 1). In contrast, the faint bactericidal activity of digested r-Crp4 against L. acidophilus                          |
| 357 | remained (table 1). Thus, the degradation of r-Crp4 by MMP-7 attenuated its                                         |
| 358 | bactericidal activity against most bacteria tested.                                                                 |

**Discussion** 

363 In this study, the bactericidal activities of oxidized Crp4 against commensal and 364 non-commensal bacteria has been analyzed. Consistent with the results of previous 365 studies [18, 25], oxidized Crp4 showed potent bactericidal activities against 366 non-commensal bacteria. In contrast, oxidized Crp4 had only minimal or no bactericidal 367 activity against commensal bacteria, though it showed dose-dependent activity against B. 368 longum, B. vulgatus, E. faecalis and E. faecium. These results demonstrate that oxidized 369 Crp4 has more selective bactericidal activity against small intestinal bacteria. Thus, it is 370 suggested that Crp4 has a role in the regulation of intestinal microbiota by killing 371 certain non-commensal species while retaining the viability of certain commensal 372 bacteria. This concept was supported by the result that oxidized Crp4 selectively killed 373 S. enterica serovar Typhimurium but showed no bactericidal activity against two species 374 of commensal bacteria, L. casei and B. thetaiotaomicron when a mixture of bacterial 375 species was exposed to oxidized Crp4. Oxidized Crp1 also showed selective 376 bactericidal activities, suggesting that other members of Crps contribute to maintain 377 intestinal microbiota by killing non-commensal bacteria selectively. A recent study of 378 intestinal microbiota in MMP-7-deficient mice that lacked active form of Crps showed 379 that a significantly higher percentage of Firmicutes and a significantly lower percentage

380 of Bacteroides were detected in the small bowel of MMP-7-deficient mice compared to 381 wild-type mice [33]. Since total bacterial numbers in both mice were not changed, it 382 appears that Crps regulated the composition of the intestinal bacteria [33], consistent 383 with our results that demonstrate the selective bactericidal activity of Crp4.

384 Some commensal bacteria showed resistance to oxidized Crp4. To date, various ways 385 of bacterial resistance mechanisms against AMPs have been reported [34]. These 386 include proteolytic degradation of AMPs by microbial proteases [35], binding of 387 secreted bacterial proteins to AMPs for preventing AMPs from accessing the bacterial 388 plasma membrane [36], extruding AMPs from bacterial cell by multiple drug resistance 389 exporter [37], and modification of bacterial cell membrane to reduce the net anionic 390 charge, resulting in attenuation of the affinity of AMPs to surface membrane [38, 39]. A 391 wide variety of microbicidal mechanisms, such as the permeabilization of bacterial cell 392 membranes, and the inhibition of DNA or protein synthesis, are presented for various 393 AMPs [40]. In the case of Crp4, it was shown that Crp4 permeabilized the phospholipid 394 bilayer and that the activity was dependent on the membrane composition [41]. 395 However, the precise bactericidal mechanism(s) of native Crp4 are yet to be fully 396 elucidated and may be bacteria-dependent. Therefore, the bacterial resistance 397 mechanisms against Crp4 may also be various and bacteria dependent. We detected

depolarization of the membrane potential in some non-commensal bacteria by Crp4.
Further investigation of bacterial factors that affect bactericidal activity is needed to
uncover the bacterial resistant mechanisms to Crp4.

401 In this study, Bifidobacterium sp., Lactobacillus sp., Bacteroides sp. and 402 Enterococcus sp. were used as types of small intestinal commensal bacteria. These 403 bacteria were reported to colonize the mouse small intestine where Crp4 is present [42, 404 43]. Oxidized Crp4 did not show bactericidal activities against B. Bifidum, 405 Lactobacillus sp., B. thetaiotaomicron and B. fragilis, while it killed B. Longum, B. 406 vulgatus and Enterococcus sp. B. bifidum comprises the major portion of the intestinal 407 microbiota in breast-fed infants [27]. B. longum is mainly found in the adult intestine 408 [28], and L. acidophilus, L. casei, L. johnsonii, B. thetaiotaomicron, B. fragilis and B. 409 vulgatus colonize the intestinal tract in both infants and adults [29, 30]. Enterococcus sp. 410 are commensal bacteria that can cause opportunistic infection. It is speculated that the 411 bacteria-dependent bactericidal activities of oxidized Crp4 against commensal bacteria 412 reflect in vivo regulatory role of Crp4 to tune microbial homeostasis. 413 The bactericidal activities of r-Crp4 which contained no disulfide bond against small

- 414 intestinal bacteria were analyzed. r-Crp4 had significantly greater bactericidal activities
- 415 against B. bifidum, B. breve, L. casei, L. johnsonii, B. fragilis, B. ovatus and B.

| 416 | thetaiotaomicron than did oxidized Crp4. This result shows that the bactericidal            |
|-----|---------------------------------------------------------------------------------------------|
| 417 | activities of Crp4 against certain commensal bacteria were regulated by a function of its   |
| 418 | disulfide bonds, indicating a novel role of the conserved disulfide bonds of Crp4 in        |
| 419 | controlling bactericidal activities. r-Crp4 showed significantly greater depolarization     |
| 420 | activity than oxidized Crp4 against the three commensal bacterial species tested. These     |
| 421 | results suggest that disruption of membrane integration may account for part of the         |
| 422 | potent bactericidal activities of r-Crp4 relative to oxidized Crp4, especially with respect |
| 423 | to certain commensals. Meanwhile, r-Crp4 and oxidized Crp4 showed equivalent                |
| 424 | bactericidal activities against 11 of 11 non-commensal bacteria, 5 of 12 commensal          |
| 425 | bacteria. These results demonstrate that bactericidal activities of Crp4 against these      |
| 426 | bacteria have no relationship with the presence of disulfide bonds. Previously, Maemoto     |
| 427 | et al showed that the bactericidal activity of Crp4 against non-commensal bacteria was      |
| 428 | independent of its disulfide array by using a disulfide-null mutant of Crp4 [25]. Our       |
| 429 | results show that the reduction of disulfide bonds has the compatible effect with the       |
| 430 | previous study against non-commensal bacteria. Thus, the regulatory effect of disulfide     |
| 431 | bonds depends on bacterial species. r-Crp1 also showed the bacteria-dependent               |
| 432 | regulatory effects of disulfide bonds. It is speculated that this property of disulfide     |
| 433 | bonds may applicable to other Crps. Native Crp4 consists of a triple-stranded               |

| 434 | antiparallel $\beta$ -sheet [44], whereas the NMR spectroscopy of Cys-to-Ala-substituted     |
|-----|----------------------------------------------------------------------------------------------|
| 435 | Crp4 indicates the mutant peptide is disordered [25]. According to these structural data,    |
| 436 | r-Crp4 used in this study may also have a random coil structure. In that case, it is         |
| 437 | suggested that the flexibility of r-Crp4 makes it bactericidal against B. bifidum, L. casei, |
| 438 | L. johnsonii, B. thetaiotaomicron and B. fragilis those oxidized Crp4 did not kill           |
| 439 | completely.                                                                                  |

440 In vitro degradation assays revealed that r-Crp4 was digested by MMP-7. Further, the 441 bactericidal activities of r-Crp4 against small intestinal microbiota, except for L. 442 acidophilus were attenuated by this digestion. If r-Crp4 was secreted into the lumen of 443 the small intestine, r-Crp4 would kill both non-commensal and commensal bacteria, 444 resulting in the perturbation of small intestinal microbial homeostasis. Thus, it is considered that degradation and inactivation of r-Crp4 before secretion would prevent 445 446 this perturbation. This suggests that the host has a management mechanism to avoid the 447 release of aberrant Crp4 that is disadvantageous to the host.

448 Previously, it was reported that the proform of human Paneth cell α-defensin, HD5 449 was reduced in some patients with Crohn's disease [45]. The reduced pro-HD5 was 450 degraded by trypsin, a processing enzyme of HD5 *in vivo*. This resulted in diminished 451 production of mature HD5 [45]. If Crp4 were reduced *in vivo*, degradation of Crp4 by

| 453 | indicated that the protease resistance of $\alpha$ -defensins due to the disulfide bonds may |
|-----|----------------------------------------------------------------------------------------------|
| 454 | contribute to the maintenance of intestinal innate immunity as well as pathology of          |
| 455 | diseases such as inflammatory bowel disease.                                                 |
| 456 |                                                                                              |
| 457 |                                                                                              |
| 458 | Acknowledgements                                                                             |
| 459 |                                                                                              |
| 460 | We are grateful to Prof. A.J. Ouellette (University of Southern California) for helpful      |
| 461 | discussions. This work was supported by Grant-in-Aid for Frontier Technology                 |
| 462 | Research from Northern Advancement Center for Science and Technology (NOASTEC)               |
| 463 | of Japan (TA), a Grant-in-Aid for Knowledge Cluster Phase II, Sapporo Bio-S and a            |
| 464 | Grant-in-Aid for Scientific Research on Priority Areas from The Ministry of Education,       |
| 465 | Culture, Sports, Science and Technology of Japan (TA, NS). This work was also                |
| 466 | partially supported by a Grant-in-Aid for Young Scientists (B) (NS) and Grant-in-Aid         |
| 467 | for Scientific Research (C) (KN) from The Ministry of Education, Culture, Sports,            |

MMP-7 would lead to the dysfunction of innate immunity. Therefore, these results

- 468 Science and Technology of Japan.
- 469

| 470 |   |                                                                                             |
|-----|---|---------------------------------------------------------------------------------------------|
| 471 |   | References                                                                                  |
| 472 |   |                                                                                             |
| 473 | 1 | Zasloff M: Antimicrobial peptides of multicellular organisms. Nature                        |
| 474 |   | 2002;415:389-395.                                                                           |
| 475 | 2 | Ganz T: Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol               |
| 476 |   | 2003;3:710-720.                                                                             |
| 477 | 3 | Selsted ME, Ouellette AJ: Mammalian defensins in the antimicrobial immune                   |
| 478 |   | response. Nat Immunol 2005;6:551-557.                                                       |
| 479 | 4 | Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ: Secretion              |
| 480 |   | of microbicidal $\alpha$ -defensins by intestinal Paneth cells in response to bacteria. Nat |
| 481 |   | Immunol 2000;1:113-118.                                                                     |
| 482 | 5 | Ayabe T, Ashida T, Kohgo Y, Kono T: The role of Paneth cells and their                      |
| 483 |   | antimicrobial peptides in innate host defense. Trends Microbiol 2004;12:394-398.            |
| 484 | 6 | Salzman NH, Underwood MA, Bevins CL: Paneth cells, defensins, and the                       |
| 485 |   | commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa.          |
| 486 |   | Semin Immunol 2007;19:70-83.                                                                |
| 487 | 7 | Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, López-Boado YS, Stratman JL,                 |

| 488 |    | Hultgren SJ, Matrisian LM, Parks WC: Regulation of intestinal $\alpha$ -defensin        |
|-----|----|-----------------------------------------------------------------------------------------|
| 489 |    | activation by the metalloproteinase matrilysin in innate host defense. Science          |
| 490 |    | 1999;286:113-117.                                                                       |
| 491 | 8  | Ayabe T, Satchell DP, Pesendorfer P, Tanabe H, Wilson CL, Hagen SJ, Ouellette           |
| 492 |    | AJ: Activation of Paneth cell $\alpha$ -defensins in mouse small intestine. J Biol Chem |
| 493 |    | 2002;277:5219-5228.                                                                     |
| 494 | 9  | Shirafuji Y, Tanabe H, Satchell DP, Henschen-Edman A, Wilson CL, Ouellette AJ:          |
| 495 |    | Structural determinants of procryptdin recognition and cleavage by matrix               |
| 496 |    | metalloproteinase-7. J Biol Chem 2003;278:7910-7919.                                    |
| 497 | 10 | Dethlefsen L, McFall-Ngai M, Relman DA: An ecological and evolutionary                  |
| 498 |    | perspective on human-microbe mutualism and disease. Nature 2007;449:811-818.            |
| 499 | 11 | Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai                |
| 500 |    | MJ: Microbial factor-mediated development in a host-bacterial mutualism. Science        |
| 501 |    | 2004;306:1186-1188.                                                                     |
| 502 | 12 | Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI: An                  |
| 503 |    | obesity-associated gut microbiome with increased capacity for energy harvest.           |
| 504 |    | Nature 2006;444:1027-1031.                                                              |
| 505 | 13 | Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL: An immunomodulatory                      |

| 506 |    | molecule of symbiotic bacteria directs maturation of the host immune system. Cell    |
|-----|----|--------------------------------------------------------------------------------------|
| 507 |    | 2005;122:107-118.                                                                    |
| 508 | 14 | Artis D: Epithelial-cell recognition of commensal bacteria and maintenance of        |
| 509 |    | immune homeostasis in the gut. Nat Rev Immunol 2008;8:411-420.                       |
| 510 | 15 | Mazmanian SK, Round JL, Kasper DL: A microbial symbiosis factor prevents             |
| 511 |    | intestinal inflammatory disease. Nature 2008;453:620-625.                            |
| 512 | 16 | Karin M, Lawrence T, Nizet V: Innate immunity gone awry: linking microbial           |
| 513 |    | infections to chronic inflammation and cancer. Cell 2006;124:823-835.                |
| 514 | 17 | Ouellette AJ, Lualdi JC: A novel mouse gene family coding for cationic,              |
| 515 |    | cysteine-rich peptides. Regulation in small intestine and cells of myeloid origin. J |
| 516 |    | Biol Chem 1990;265:9831-9837.                                                        |
| 517 | 18 | Ouellette AJ, Hsieh MM, Nosek MT, Cano-Gauci DF, Huttner KM, Buick RN,               |
| 518 |    | Selsted ME: Mouse Paneth cell defensins: primary structures and antibacterial        |
| 519 |    | activities of numerous cryptdin isoforms. Infect Immun 1994;62:5040-5047.            |
| 520 | 19 | Hornef MW, Putsep K, Karlsson J, Refai E, Andersson M: Increased diversity of        |
| 521 |    | intestinal antimicrobial peptides by covalent dimer formation. Nat Immunol           |
| 522 |    | 2004;5:836-843.                                                                      |

523 20 Patil A, Hughes AL, Zhang G: Rapid evolution and diversification of mammalian

| 524 |    | $\alpha$ -defensins as revealed by comparative analysis of rodent and primate genes.          |
|-----|----|-----------------------------------------------------------------------------------------------|
| 525 |    | Physiol Genomics 2004;20:1-11.                                                                |
| 526 | 21 | Mastroianni JR, Ouellette AJ: $\alpha$ -defensins in enteric innate immunity: functional      |
| 527 |    | Paneth cell $\alpha$ -defensins in mouse colonic lumen. J Biol Chem                           |
| 528 |    | 2009;284:27848-27856.                                                                         |
| 529 | 22 | Ouellette AJ, Darmoul D, Tran D, Huttner KM, Yuan J, Selsted ME: Peptide                      |
| 530 |    | localization and gene structure of cryptdin 4, a differentially expressed mouse               |
| 531 |    | Paneth cell α-defensin. Infect Immun 1999;67:6643-6651.                                       |
| 532 | 23 | Satchell DP, Sheynis T, Kolusheva S, Cummings J, Vanderlick TK, Jelinek R,                    |
| 533 |    | Selsted ME, Ouellette AJ: Quantitative interactions between cryptdin-4 amino                  |
| 534 |    | terminal variants and membranes. Peptides 2003;24:1795-1805.                                  |
| 535 | 24 | Tanabe H, Qu X, Weeks CS, Cummings JE, Kolusheva S, Walsh KB, Jelinek R,                      |
| 536 |    | Vanderlick TK, Selsted ME, Ouellette AJ: Structure-activity determinants in Paneth            |
| 537 |    | cell $\alpha$ -defensins: loss-of-function in mouse cryptdin-4 by charge-reversal at arginine |
| 538 |    | residue positions. J Biol Chem 2004;279:11976-11983.                                          |
| 539 | 25 | Maemoto A, Qu X, Rosengren KJ, Tanabe H, Henschen-Edman A, Craik DJ,                          |
| 540 |    | Ouellette AJ: Functional analysis of the $\alpha$ -defensin disulfide array in mouse          |
| 541 |    | cryptdin-4. J Biol Chem 2004;279:44188-44196.                                                 |

| 542 | 26 | Selsted ME, Brown DM, DeLange RJ, Lehrer RI: Primary structures of MCP-1 and         |
|-----|----|--------------------------------------------------------------------------------------|
| 543 |    | MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem           |
| 544 |    | 1983;258:14485-14489.                                                                |
| 545 | 27 | Weiss JE, Rettger LF: Lactobacillus bifidus. J Bacteriol 1934;28:501-521.            |
| 546 | 28 | Reuter G: Designation of type strains for Bifidobacterium species. Int J Syst        |
| 547 |    | Bacteriol. 1971;21:273-275.                                                          |
| 548 | 29 | Dellaglio F, Bottazzi V, Vescovo M: Deoxyribonucleic acid homology among             |
| 549 |    | Lactobacillus species of the subgenus Streptobacterium Orla-Jensen. Int J Syst       |
| 550 |    | Bacteriol. 1975;25:160-172.                                                          |
| 551 | 30 | Hansen PA, Mocquot G: Lactobacillus acidophilus (Moro) comb. nov. Int J Syst         |
| 552 |    | Bacteriol. 1970;20:325-327.                                                          |
| 553 | 31 | Fields PI, Groisman EA, Heffron F: A Salmonella locus that controls resistance to    |
| 554 |    | microbicidal proteins from phagocytic cells. Science 1989;243:1059-1062.             |
| 555 | 32 | Nuding S, Fellermann K, Wehkamp J, Mueller HA, Stange EF: A flow cytometric          |
| 556 |    | assay to monitor antimicrobial activity of defensins and cationic tissue extracts. J |
| 557 |    | Microbiol Methods 2006;65:335-345.                                                   |
| 558 | 33 | Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, Teggatz P,        |
| 559 |    | Barman M, Hayward M, Eastwood D, Stoel M, Zhou Y, Sodergren E, Weinstock             |

| 560 |    | GM, Bevins CL, Williams CB, Bos NA: Enteric defensins are essential regulators     |
|-----|----|------------------------------------------------------------------------------------|
| 561 |    | of intestinal microbial ecology. Nat Immunol 2010;11:76-83.                        |
| 562 | 34 | Peschel A, Sahl HG: The co-evolution of host cationic antimicrobial peptides and   |
| 563 |    | microbial resistance. Nat Rev Microbiol 2006;4:529-536.                            |
| 564 | 35 | Guina T, Yi EC, Wang H, Hackett M, Miller SI: A PhoP-regulated outer membrane      |
| 565 |    | protease of Salmonella enterica serovar Typhimurium promotes resistance to         |
| 566 |    | alpha-helical antimicrobial peptides. J Bacteriol 2000;182:4077-4086.              |
| 567 | 36 | Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A: Staphylococcus    |
| 568 |    | aureus resists human defensins by production of staphylokinase, a novel bacterial  |
| 569 |    | evasion mechanism. J Immunol 2004;172:1169-1176.                                   |
| 570 | 37 | Shafer WM, Qu X, Waring AJ, Lehrer RI: Modulation of Neisseria gonorrhoeae         |
| 571 |    | susceptibility to vertebrate antibacterial peptides due to a member of the         |
| 572 |    | resistance/nodulation/division efflux pump family. Proc Natl Acad Sci USA          |
| 573 |    | 1998;95:1829-1833.                                                                 |
| 574 | 38 | Guo L, Lim KB, Poduje CM, Daniel M, Gunn JS, Hackett M, Miller SI: Lipid A         |
| 575 |    | acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell |
| 576 |    | 1998;95:189-198.                                                                   |
| 577 | 39 | Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H,      |

| 578 |    | Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KP, van Strijp JA:                  |
|-----|----|---------------------------------------------------------------------------------------|
| 579 |    | Staphylococcus aureus resistance to human defensins and evasion of neutrophil         |
| 580 |    | killing via the novel virulence factor MprF is based on modification of membrane      |
| 581 |    | lipids with l-lysine. J Exp Med 2001;193:1067-1076.                                   |
| 582 | 40 | Brogden KA: Antimicrobial peptides: pore formers or metabolic inhibitors in           |
| 583 |    | bacteria? Nat Rev Microbiol 2005;3:238-250.                                           |
| 584 | 41 | Hadjicharalambous C, Sheynis T, Jelinek R, Shanahan MT, Ouellette AJ, Gizeli E:       |
| 585 |    | Mechanisms of $\alpha$ -defensin bactericidal action: comparative membrane disruption |
| 586 |    | by cryptdin-4 and its disulfide-null analogue. Biochemistry 2008;47:12626-12634.      |
| 587 | 42 | Wagner RD, Warner T, Roberts L, Farmer J, Balish E: Colonization of congenitally      |
| 588 |    | immunodeficient mice with probiotic bacteria. Infect Immun 1997;65:3345-3351.         |
| 589 | 43 | Ménard O, Butel M, Gaboriau-Routhiau V, Waligora-Dupriet A: Gnotobiotic mouse         |
| 590 |    | immune response induced by Bifidobacterium sp. strains isolated from infants. Appl    |
| 591 |    | Environ Microbiol 2008;74:660-666.                                                    |
| 592 | 44 | Jing WG, Hunter HN, Tanabe H, Ouellette AJ, Vogel HJ: Solution structure of           |
| 593 |    | cryptdin-4, a mouse Paneth cell $\alpha$ -defensin. Biochemistry 2004;43:15759-15766. |
| 594 | 45 | Tanabe H, Ayabe T, Maemoto A, Ishikawa C, Inaba Y, Sato R, Moriichi K,                |
| 595 |    | Okamoto K, Watari J, Kono T, Ashida T, Kohgo Y: Denatured human $\alpha$ -defensin    |

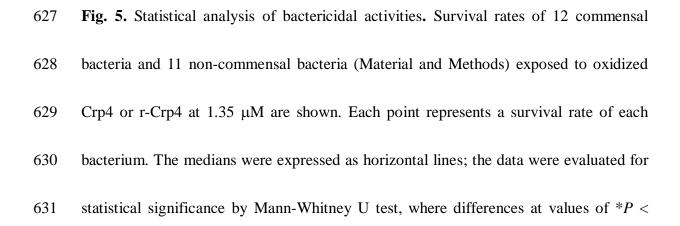
| attenuates the bactericidal activity and the stability against enzymatic digestion.     |
|-----------------------------------------------------------------------------------------|
| Biochem Biophys Res Commun 2007;358:349-355.                                            |
|                                                                                         |
|                                                                                         |
|                                                                                         |
| Figure Legends                                                                          |
|                                                                                         |
| Fig. 1. AU-PAGE analysis of oxidized Crp4 and r-Crp4. Samples (1.0 $\mu$ g) of oxidized |
| Crp4 and r-Crp4 were resolved by AU-PAGE (12.5% acrylamide gel containing 5%            |
| acetic acid and 5 M Urea) and then stained with Coomassie brilliant blue R-250.         |
|                                                                                         |
| Fig. 2. MALDI-TOF MS analysis of oxidized Crp4 and r-Crp4. Molecular weights of         |
| oxidized Crp4 and r-Crp4 analyzed by MALDI-TOF MS are shown in (a) and (b),             |
| respectively.                                                                           |
|                                                                                         |
| Fig. 3. Bactericidal activities of oxidized Crp4 and r-Crp4 against non-commensal       |
| bacteria. Survival rates of S. enterica serovar Typhimurium (a), S. enterica serovar    |
| Typhimurium phoP- (b), E. coli ML35 (c), S. aureus (d), L. monocytogenes (e), K.        |
|                                                                                         |

614 oxytoca (f), K. pneumoniae (g), P. vulgaris (h), Y. enterocolitica (i), C. coli (j) and C.

615 *jejuni* (**k**) exposed to oxidized Crp4 ( $\bullet$ ) or r-Crp4 ( $\Box$ ) at 0.027, 0.054, 0.135, 0.27 and

- 616 1.35  $\mu$ M are shown. Data were expressed as the means  $\pm$  S.E., n = 6 for **a**, **b**, **c** and **d**, n
- 617 = 3 for  $\mathbf{e}$ ,  $\mathbf{f}$ ,  $\mathbf{g}$ ,  $\mathbf{h}$ ,  $\mathbf{i}$ ,  $\mathbf{j}$  and  $\mathbf{k}$  performed in triplicate.

618


- 619 Fig. 4. Bactericidal activities of oxidized Crp4 and r-Crp4 against commensal bacteria.
- 620 Survival rates of *B. bifidum* (**a**), *B. breve* (**b**), *B. longum* (**c**), *L. acidophilus* (**d**), *L. casei*

621 (e), L. johnsonii (f), B. fragilis (g), B. ovatus (h), B. thetaiotaomicron (i), B. vulgatus (j),

622 E. faecalis (k) and E. faecium (l) exposed to oxidized Crp4 ( $\bullet$ ) or r-Crp4 ( $\Box$ ) at 0.027,

623 0.054, 0.135, 0.27 and 1.35  $\mu$ M are shown. Data were expressed as the means  $\pm$  S.E., n

- 624 = 6 for **a**, **c**, **d**, **e**, **i** and **j**, n = 3 for **b**, **f**, **g**, **h**, **k** and **l** performed in triplicate, \*P < 0.01 by
- 625 Student's *t* test.



632 0.05 were considered to be significant. NS: Not significant.

633

Fig. 6. Bactericidal activities of oxidized Crp4 and r-Crp4 against the mixture of
commensal and non-commensal bacteria. The bacterial mixture of exponentially
growing *S. enterica* serovar Typhimurium as non-commensal bacteria, *L. casei* and *B. thetaiotaomicron* as commensal bacteria were exposed to oxidized Crp4 or r-Crp4 at
1.35 μM. Surviving bacteria were counted as colony forming units.

639

**Fig. 7.** Antimicrobial assay with membrane sensitive dye. The median fluorescence intensity ratio (MFIR) of commensal bacteria (**a**) and non-commensal bacteria (**b**) exposed to oxidized Crp4 (**•**) or r-Crp4 (**□**) are shown. Data were expressed as the means  $\pm$  S.E. performed in triplicate, and evaluated for statistical significance by Student's *t* test, where differences at values of \**P* < 0.05 were considered to be significant. NS: Not significant.

646

Fig. 8. Proteolytic degradation assay of oxidized Crp4 and r-Crp4 by MMP-7. a
Tris-Tricine SDS-PAGE analysis of oxidized Crp4 and r-Crp4 incubated with or without
MMP-7. Samples (1.0 μg) of oxidized Crp4 and r-Crp4 were incubated with or without

| 650 | MMP-7 (1.0 $\mu$ g) catalytic domain. The digested samples were analyzed by Tris-Tricine         |
|-----|--------------------------------------------------------------------------------------------------|
| 651 | SDS-PAGE. The positions of bands corresponding to MMP-7 and Crp4 are noted at the                |
| 652 | right. The bold arrow denotes the position of the MMP-7-digested fragment of r-Crp4.             |
| 653 | <b>b</b> MMP-7 cleavage sites in r-Crp4. The digested r-Crp4 was analyzed by 5 cycles of         |
| 654 | N-terminal peptide sequencing and MALDI-TOF MS. Cleavage sites are noted by                      |
| 655 | downwards arrows ( $\downarrow$ ). Numerals below the r-Crp4 sequence refer to residue positions |
| 656 | in reference to the N-terminal Gly of r-Crp4 as residue position number 1.                       |
| 657 |                                                                                                  |
| 658 |                                                                                                  |
| 659 |                                                                                                  |
| 660 |                                                                                                  |
| 661 |                                                                                                  |
| 662 |                                                                                                  |
| 663 |                                                                                                  |
| 664 |                                                                                                  |
| 665 |                                                                                                  |
| 666 |                                                                                                  |
| 667 |                                                                                                  |

| 668 |       |  |  |  |
|-----|-------|--|--|--|
| 669 |       |  |  |  |
| 670 |       |  |  |  |
| 671 | Table |  |  |  |
| 672 |       |  |  |  |
|     |       |  |  |  |

| <b>Table1.</b> Bactericidal activities of r-Crp4 and MMP-7-digested r-Crp4 |
|----------------------------------------------------------------------------|
|----------------------------------------------------------------------------|

| Bacteria                                                | Survival faces (76) of Succora exposed to: |                         |  |
|---------------------------------------------------------|--------------------------------------------|-------------------------|--|
|                                                         | r-Crp4                                     | MMP-7-digested r-Crp4   |  |
| S. enterica serovar<br>Typhimurium                      | $1.4 \pm 1.2$                              | 98.3 ± 9.9*             |  |
| <i>S. enterica</i> serovar<br>Typhimurium <i>phoP</i> - | $3.2 \pm 2.7$                              | 96.3 ± 12.0*            |  |
| E. coli ML35                                            | $0.0\pm0.0$                                | $118.1 \pm 10.9*$       |  |
| S. aureus                                               | $0.0\pm0.0$                                | $49.5 \pm 13.4*$        |  |
| B. bifidum                                              | $13.1 \pm 7.3$                             | $96.4\pm10.4^{\ast}$    |  |
| B. longum                                               | $0.2\pm0.2$                                | $87.3 \pm 17.0^{*}$     |  |
| L. casei                                                | $28.8\pm7.3$                               | $72.4 \pm 10.3^{*}$     |  |
| L. acidophilus                                          | $53.9\pm6.3$                               | $64.8\pm0.9^{\ddagger}$ |  |
| B. thetaiotaomicron                                     | $33.9\pm5.7$                               | $86.5 \pm 9.5*$         |  |
| B. vulgatus                                             | $13.6\pm6.6$                               | $101.6 \pm 8.9*$        |  |

Survival rates  $(\%)^a$  of bacteria exposed to:

<sup>*a*</sup> Values are means  $\pm$  S.E., for survival rates of bacteria exposed to r-Crp4 (1.35  $\mu$ M) and MMP-7-digested r-Crp4 (1.35  $\mu$ M). n = 6 for r-Crp4, n = 3 for MMP-7-digested r-Crp4.

676 \*Value is significantly different (P < 0.01) compared to that exposed to r-Crp4 as 677 calculated by Student's *t* test.

- 678 <sup>‡</sup>Not significant.
  679
  680
- 681
- 682
- 683

| 684 |                             |
|-----|-----------------------------|
| 685 |                             |
| 686 |                             |
| 687 |                             |
| 688 | <b>Online Supplementary</b> |
| 689 |                             |

Bacteria

## Online supplementary Table S1. Bactericidal activities of oxidized Crp1 and r-Crp1

|                                           | Oxidized Crp1                      | r-Crp1                  |
|-------------------------------------------|------------------------------------|-------------------------|
| Commensal bacteria                        |                                    |                         |
| B. bifidum                                | $97.7\pm5.2$                       | $0 \pm 0^*$             |
| B. longum                                 | $0\pm 0$                           | $0 \pm 0$ ‡             |
| L. casei                                  | $71.1\pm7.8$                       | $0 \pm 0^*$             |
| L. johnsonii                              | $73.5 \pm 13.0$                    | $0 \pm 0^*$             |
| B. fragilis                               | $66.8\pm6.2$                       | $15.1 \pm 7.0*$         |
| B. thetaiotaomicron                       | $89.8\pm3.9$                       | $4.0 \pm 8.1^{*}$       |
| Non-commensal bacteria                    |                                    |                         |
| S. <i>enterica</i> serovar<br>Typhimurium | $1.5 \pm 0.5$                      | 1.9 ± 1.3‡              |
| S. aureus                                 | $0\pm 0$                           | $0\pm 0$ ‡              |
| E. coli                                   | $11.0 \pm 2.1$                     | $0\pm 0$ ‡              |
| L. monocytogenes                          | $24.5\pm8.0$                       | $10.0 \pm 3.1$ ‡        |
| K. oxytoca                                | $0\pm 0$                           | $0\pm 0$ ‡              |
| P. vulgaris                               | $7.9 \pm 2.0$                      | $1.0 \pm 0.4$ ‡         |
| r-Crp1 (1.35 µM) performed                | 1                                  |                         |
| <b>e</b> .                                | rent $(P < 0.01)$ compared to that | exposed to oxidized Crp |
| as calculated by Student's t t            | est.                               |                         |
| <sup>‡</sup> Not significant.             |                                    |                         |

# Survival rates (%)<sup>a</sup> of bacteria exposed to:

699 Online Supplementary Fig. S1. Purification of oxidized Crp4 and r-Crp4 by RP-HPLC. 700 Oxidized Crp4 (a) and r-Crp4 (b) were purified by a C-18 column (SepaxHP-C18, 701 4.6x150 mm, 5 µm, Sepax Technologies, Inc., Newark, DE) in 0.1% trifluoroacetic acid 702 with an 18-36% acetonitrile gradient developed over 30 min at 1 ml/min. 703 704 Online Supplementary Fig. S2. Bactericidal peptide assay. The colonies of Salmonella 705 enterica serovar Typhimurium incubated with oxidized Crp4 are shown as a represented 706 example. Exponential-phase bacteria cultured at 37°C were washed and the bacteria 707 populations were adjusted to 1,000 CFU in 20 µl. Then the bacteria solution was mixed 708 with equivalent volumes of oxidized Crp4 with the final concentrations of 0.027, 0.054, 709 0.135, 0.27, and 1.35  $\mu$ M. The mixtures were plated after incubation for 1 hr at 37°C. 710 The assay measured bactericidal activity because the peptides affect bacteria only at the 711 incubation time. Bacteria survival rates were determined from the numbers of surviving 712 colonies relative to peptide-unexposed controls.

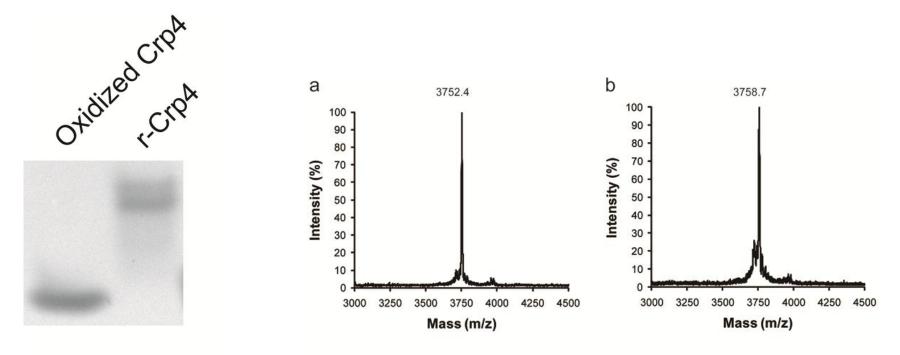
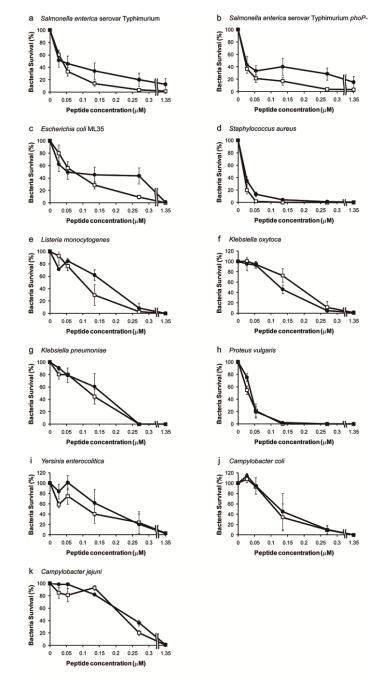
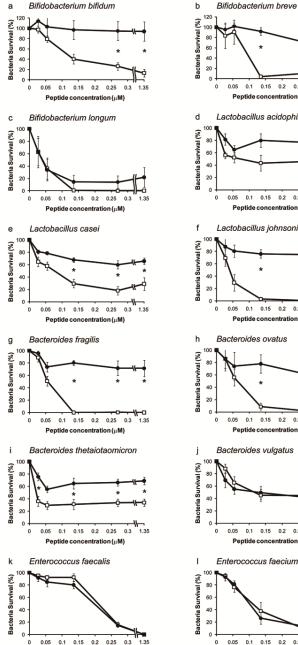
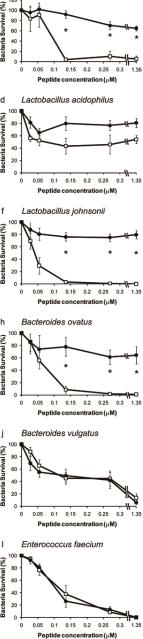
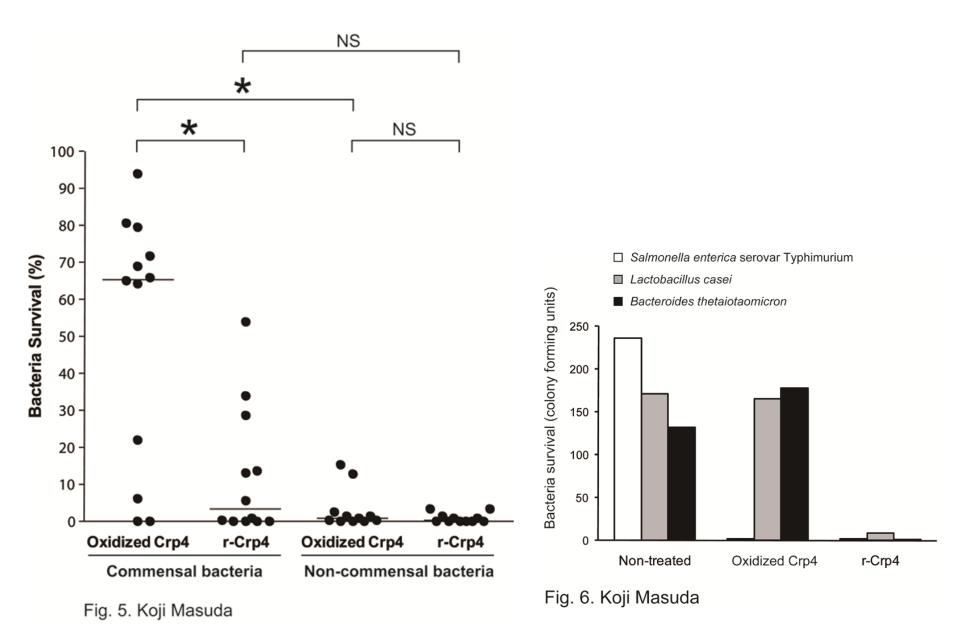






Fig. 1. Koji Masuda

Fig. 2. Koji Masuda










Peptide concentration (µM)



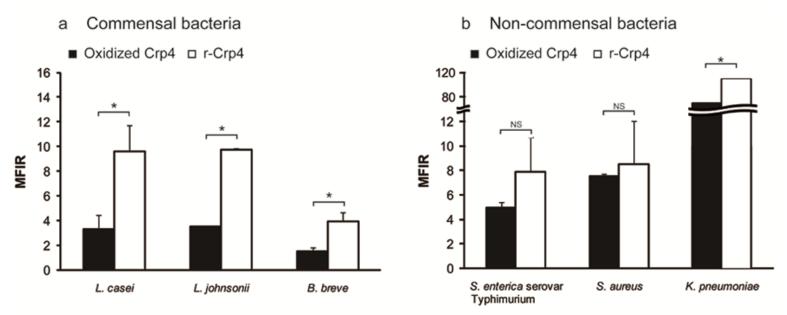



Fig. 7. Koji Masuda

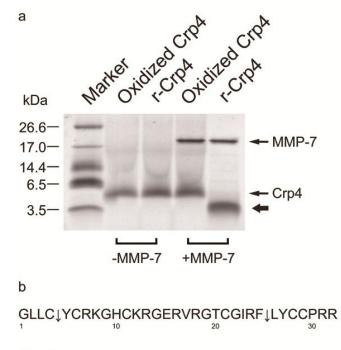



Fig. 8. Koji Masuda