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This paper presents parameter and topology optimization of inductor shapes using evolutionary algorithms. The goal of the optimiza-
tion is to reduce the size of inductors satisfying the specifications on inductance values under weak and strong bias–current conditions.
The inductance values are computed from the finite-element (FE) method taking magnetic saturation into account. The result of the
parameter optimization, which leads to significant reduction in the volume, is realized for test, and the dependence of inductance on bias
currents is experimentally measured, which is shown to agree well with the computed values. Moreover, novel methods are introduced
for topology optimization to obtain inductor shapes with homogeneous ferrite cores suitable for mass production.

Index Terms—Finite-element (FE) method, immune algorithm, inductor, microgenetic algorithm, topology optimization.

I. INTRODUCTION

I NDUCTORS are important electric parts widely used in
electric and electronic devices such as mobile phones and

computers. Size reduction, operation at higher frequencies, and
larger current tolerance in inductors have strongly been required
from industries. While development of new materials having
better characteristics is important to meet these requirements,
improvements in inductor shapes are also indispensable. For the
latter purpose, shape optimization based on evolutionary algo-
rithms and computational electromagnetism is quite effective.

The goal of this study is to develop effective optimization
methods for inductor shapes on the basis of computational elec-
tromagnetism. In the shape optimization, the size of the inductor
is reduced as small as possible satisfying the specification on
the inductance values under weak and strong current–bias con-
ditions. Although evolutionary optimization based on computa-
tional electromagnetism has successfully been applied to var-
ious electric machines with magnetic materials, for example,
motors, transformers, and magnets (e.g., [1] and [2]), there have
been little numbers of reports on the shape optimization of in-
ductors in spite of their importance.

In this work, the shape of inductors is optimized with param-
eter and topological approaches which have different merits.
The parameter optimization, which determines prescribed de-
sign parameters at relatively low computational cost, is adopted
to improve the shape of a typical inductor. It will be shown that
the optimized shapes obtained by the immune algorithm (IA)
and microgenetic algorithms ( GA) [3], [4] are very similar
and the resultant volumes are almost half of the original volume.
Moreover, the measured inductance values of a trial inductor,
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Fig. 1. Cross section of an inductor under consideration.

produced on the basis of the optimization results, will be shown
to agree well with computed values.

On the other hand, the topology optimization, which has more
flexibilities than parameter optimization, is utilized to obtain
novel inductor design. In this work, the shape of inductors is ex-
pressed with so called on–off method [5], which has widely been
used for topology optimizations. However, there is a serious
problem in this method; it often results in checkerboard-like
shapes with many vacancies [6] for which high production cost
are expected. To overcome this difficulty, shape regularization
methods will be introduced. It will be shown that topology op-
timization with these approaches leads to homogenous inductor
cores suitable for mass production.

II. INDUCTOR MODELING

Fig. 1 depicts the cross section of an inductor which will be
considered in this paper. This inductor, whose height and width
are 6.9 7.5 mm (excluding sleeve), and inductance is 100 H,
consists of a bobbin-shaped ferrite core and a cupper coil sur-
rounding it. In a typical application, this inductor is used for
dc–dc converters, in which small ac currents with high dc bias
current are applied to the inductor. Thus, the inductance prop-
erty for dc bias current is important for this purpose.

The dc and ac B-H characteristics of the ferrite core are shown
in Fig. 2(a) and (b). The former is measured by changing the dc
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Fig. 2. B-H curves of ferrite core: (a) dc magnetic property; (b) ac magnetic
property.

current bias, whereas the latter is measured for ac currents with
small amplitude which are superimposed to the dc bias currents.

The inductance of the inductor is here characterized by two
values: and , defined at weak and strong current–bias con-
ditions. Note that is expected to be smaller than because
of magnetic saturation. In this paper, the bias currents are set to
0.2 and 1.0 (A), respectively. In the finite-element (FE) analysis
of magnetic fields, operating points are determined by a dc field
analysis based on the B-H curve shown in Fig. 2(a) and then
small-signal analysis is performed with the curve in Fig. 2(b)
where represents the linearized permeability.

In this study, the 1/4 model shown in Fig. 3 is considered
under the assumption of the up-down and left-right symmetries.
The whole FE region, 40 40 mm, is discretized using the
square elements for axially symmetric analysis. The numbers
of FEs and unknowns are 62 500 and 63 001. The sleeve, lead-
wires, and white resin shown in Fig. 1 are not modeled assuming
that the magnetic effects from these parts are negligible. It will
be shown that FE analysis under this assumption yields results
which are in good agreement with the experimentally measured
results.

III. OPTIMIZATION METHODS

In this paper, IA and GA are used for optimization. For
completeness, they will be shortly described.

A. Immune Algorithm

The IA draws inspiration from the clonal selection principle,
and combines local and global search characteristics. The pro-
cedures in IA are summarized below [3].

Fig. 3. Model for parameter optimization.

1) Generate an initial population of random candidate
solutions.

2) Evaluate the objective function and the constraint condi-
tion for each antibody.

3) Test a stop criterion. If it is satisfied, stop the procedures.
4) Eliminate (in percent) low-ranking antibodies.
5) Generate clones for each surviving antibodies. The highest

ranking antibodies receive a higher number of clones.
6) A small-amplitude Gaussian noise is applied to the clones,

which are then evaluated over the objective and con-
straints. Only the best candidate solution from each subset
of (parent antibody plus clones) is allowed to survive to
the next generation.

7) Add randomly generated antibodies to replace the ones
eliminated in Step 4, in order to keep the population size
constant.

8) Back to step 2.
Steps 5 and 6 have a role of regulating the local search of the

algorithm, while step 7 promotes global search. We can control
the balance of local and global search by adjusting the parame-
ters and .

B. Microgenetic Algorithm

On of the main differences between GA and the conven-
tional GA is that very small populations are used in the former
[4]. To avoid convergence to local optima, all individuals except
the best ranking one are replaced by randomly generated indi-
viduals if the population is converged to a local optimum. In the
following, there are procedures in GA.

1) Generate a small number of initial individuals randomly.
2) Evaluate the objective function and the constraint condi-

tion for each individual, preserving the best one.
3) Test the stop criterion. If it is satisfied, stop the procedures.
4) Make pairs by randomly selecting two individuals, and the

higher ranking individual for each pairs is called the parent.
5) Select two parents randomly, and apply the crossover op-

eration to them to generate one or two children.
6) Compute the difference in the parameters between the best

and the mean of the others. If the population falls into a
local optimum, that is, the mean parameter difference be-
comes less than (in percent), individuals are re-
placed by randomly generated ones. These individuals and
the reserved best individual remain for the next generation.

7) Back to step 2 until the end criterion is satisfied.



WATANABE et al.: OPTIMIZATION OF INDUCTORS USING EVOLUTIONARY ALGORITHMS AND ITS EXPERIMENTAL VALIDATION 3395

TABLE I
PARAMETER OPTIMIZATION RESULTS

Fig. 4. Optimized shapes and flux distributions. (a) Original. (b) IA. (c)��GA.

IV. PARAMETER OPTIMIZATION

A. Optimization Setting

The parameter optimizations with five variables
shown in Fig. 3 are performed using IA

and GA. Note here that depends on and because
the coil area is fixed to that of the original mass product model
whose inductance in specification is 100 H. The objective of
this optimization is to reduce the inductor volume keeping the
inductance to the following specifications: 1) 100 H, 2)

80 H. Considering these specifications in addition to
requirement in reduction of the inductor volume, the objective
function to be minimized is defined as

penalty (1a)

penalty if
otherwise

(1b)

where and [mm] denote the radius and the height of the
inductor. Moreover, the geometrical constraint
is imposed. The parameters domains are set to ,

, , , 5
mms. The optimization parameters are set as follows: ,

(in percent) and the maximum number of function
evaluation is 5000 in IA, and , and the maximum
generation is 200 in GA.

B. Optimization Results

Table I summarizes the best solutions obtained by the IA and
GA. We can see that the inductor volumes in the optimal

solutions are around 55% of the original model shown in Fig. 1.
Fig. 4 shows the cross section of the resultant inductors with
magnetic flux lines. It can be seen that these optimal solutions

Fig. 5. Computed and experimentally measured results. (a) Trial piece pro-
duced based on IA result. (b) Inductance property against dc bias.

Fig. 6. Model for topology optimization Blobs represent cores in the optimiza-
tion domain.

have similar tendencies: low height , wide width , and
fat radius of core . It is suggested from the results that these
features, being independent from optimization methods, are of
importance for reduction in the volume with satisfaction of the
constraints 1) and 2).

A trial inductor, whose cross-sectional view is shown in
Fig. 5(a), is produced based on the solution obtained by IA to
test reliability of numerical analysis. It can be seen in Fig. 5(b)
that the computed dependence of the inductance on the bias
current is in good agreement with the experimentally measured
results. It is concluded that the present parameter optimization
works well, which is shown to be effective for the volume
reduction and have reliable results.

V. TOPOLOGY OPTIMIZATION

A. Optimization Setting

To increase the flexibility in the shape optimization, the
topology optimization is applied to our problem. Fig. 6 shows
the numerical model where the shape of the core is determined
in the optimization domain represented by the grid lines, while
the core shape in the center of the coil is unchanged. The core
in the optimization domain is represented based on so-called
on–off method [5] in which small rectangular cells are covered
by the core material if their states are “on,” but not otherwise.
In this optimization, there are 20 15 cells, each of which is
divided into four FEs.
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Fig. 7. Results of topology optimization. (a) Without regularization.
(b) Method A. (c) Method B.

The objective function is defined by , where is
given in (1a) and is the additional penalty term for regulariza-
tion of topology optimization, which will be mentioned below.
The IA is chosen for the optimization where the optimization
setting is the same as that in the parameter optimization. The
best solution in four trials for under each optimization condi-
tion will be shown below.

It is known that conventional topology optimization based
on the on–off method often results in checkerboard-like shapes
which would have high production costs [6]. To overcome this
difficulty, two regularization methods are introduced. In method
A, the total number of changes in the state of the cells, counted
along - and -axes, is substituted into . The individuals in IA
with checkerboard-like shapes are expected to have small possi-
bilities for survival because their values of are relatively large.
In method B, the penalty is defined by ,
where , denote number of cells whose states are “on,”
and total number of cells, respectively. The aim of this penalty is
simultaneous reduction in the volume and complexity in the core

TABLE II
TOPOLOGY OPTIMIZATION RESULTS

shape. Note here that and are relevant to the overall and
net volumes where the latter excludes the vacancies in the core.

Fig. 7 shows the resultant shapes with magnetic flux lines.
It can be seen that the optimization without regularization re-
sults in the checkerboard-like shape. In contrast, methods A and
B yield homogenous cores, which would be more suitable for
mass production in comparison with Fig. 7(a). Table II summa-
rizes the properties of the optimal solutions. It can be seen that
the values of are well close to the specified value and those
of are greater than the lower limit mentioned in Section IV.
From viewpoint of material cost, the shape obtained by method
B, which has the minimum overall and net volumes, is superior
over the others. The reason why the core resulted from method
A is rather large would be that the penalty in this method tends
to inhibit the change in the core shape in the evolutionary pro-
cesses. The present regularization methods can be applied to
other topology optimization problems.

VI. CONCLUSION

In this paper, parameter and topology optimizations for in-
ductor shapes have been presented. It has been shown that the
volume of the inductor can be significantly reduced by the pa-
rameter optimization keeping the specifications on the induc-
tance values. The dependence of the computed inductance on
the bias current agrees well with that experimentally measured.
To avoid checkerboard-like shapes resulted from the topology
optimization, new regularization methods have been introduced.
As a result, they are shown to lead to homogenous ferrite cores
which are expected to be suitable for mass production.
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