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Abstract

The lace expansion has been a powerful tool for investigating mean-field behavior for various
stochastic-geometrical models, such as self-avoiding walk and percolation, above their respec-
tive upper-critical dimension. In this paper, we prove the lace expansion for the Ising model
that is valid for any spin-spin coupling. For the ferromagnetic case, we also prove that the
expansion coefficients obey certain diagrammatic bounds that are similar to the diagrammatic
bounds on the lace-expansion coefficients for self-avoiding walk. As a result, we obtain Gaus-
sian asymptotics of the critical two-point function for the nearest-neighbor model with d > 4
and for the spread-out model with d > 4 and L > 1, without assuming reflection positivity.

Contents

1 Introduction and results
1.1 Model and the motivation . . . . . . . . . . ... ...
1.2 Mainresults . . . . . . . . e
1.3 Organization . . . . . . . . . . e

2 Lace expansion for the Ising model

2.1 Random-current representation . . . . . . ... ... oL
2.2 Derivation of the lace expansion. . . . . . . . . . . .. ... L
2.2.1 The first stage of the expansion . . . . . . . .. ... ... ... .......
2.2.2  The second stage of the expansion . . . . .. .. ... ... .. .......
2.2.3 Completion of the lace expansion . . . . . . . .. ... ... ...
2.3 Comparison to percolation . . . . . . . . . . ... .. e

3 Bounds on II{’(z) for the ferromagnetic models

3.1 Strategy for the spread-out model . . . . . .. ... 0oL
3.2 Strategy for the nearest-neighbor model . . . . . ... ... ... .. ........

(4)

4 Diagrammatic bounds on 7’ (x)

4.1 Construction of diagrams . . . . . . . . . ...
4.2 Bound on m\(T) . ...
43 Boundson 7§’ () for j>1 . . . .
4.3.1 Proof of Lemmald3l . . . .. ... ... .. ...
4.3.2 Proof of Lemmalddl . . . . .. ... . ...

*Department of Mathematical Sciences, University of Bath, Bath BA2 TAY, UK. a.sakai@bath.ac.uk
fUpdated: November 13, 2006

EEElmaeas aooss



http://jp.arxiv.org/abs/math-ph/0510093v2

5 Bounds on 7{’(z) assuming the decay of G(z) [
5.1 Bounds for the spread-out model . . . . . . ... ..o oL |4__l|
5.2 Bounds for finite-range models . . . . .. ... Lo o lad

1 Introduction and results

1.1 Model and the motivation

The Ising model is a statistical-mechanical model that was first introduced in [22] as a model
for magnets. Consider the d-dimensional integer lattice Z¢, and let A be a finite subset of Z¢
containing the origin o € Z%. For example, A is a d-dimensional hypercube centered at the origin.
At each site x € A, there is a spin variable ¢, that takes values either +1 or —1. The Hamiltonian
represents the energy of the system, and is defined by

HYo) == > JeyPapy—hY s, (1.1)

{z.y}cA zeA

where ¢ = {pz}zen is a spin configuration, {Jx,y}Lyezd is a collection of spin-spin couplings,
and h € R represents the strength of an external magnetic field uniformly imposed on A. We
say that the model is ferromagnetic if J,, > 0 for all pairs {z,y}; in this case, the Hamiltonian
becomes lower as more spins align. The partition function Z,.n at the inverse temperature

p > 0 is the expectation of the Boltzmann factor e PHR(®) with respect to the product measure
HJBEA(%H{¢:C:+1} + %]1{<px:_1}):

Zypn = 271 Z e PH(#) (1.2)
pe{E1}A

Then, we denote the thermal average of a function f = f(¢) by

9—IA]

F(p) e PHR@), (1.3)
pe{£1}4

<f>p7h;A  Zpua

Suppose that the spin-spin coupling is translation-invariant, Z%symmetric and finite-range
(i-e., there exists an L < oo such that J,, = 0 if ||z||c > L) and that J,, > 0 for any = € Z? and
h > 0. Then, there exist monotone infinite-volume limits of (¢z),, 5.5 and (@z@y), ;.1 Let

Mp,h = /{iTr;d <900>p,h;A’ Gp(x) = /{iTr;d <Q00Q01>p7h:0;/\a Xp = %d Gp(x) (1'4)
x

When d > 2, there exists a unique critical inverse temperature p. € (0,00) such that the sponta-
neous magnetization M, = limp, o M, equals zero, Gp(x) decays exponentially as |z| T oo (we
refer, e.g., to [9] for a sharper Ornstein-Zernike result) and thus the magnetic susceptibility x, is
finite if p < pc, while M," > 0 and x, = 0o if p > p. (see [2] and references therein). We should
also refer to [7] for recent results on the phase transition for the Ising model.

We are interested in the behavior of these observables around p = p.. The susceptibility x,
is known to diverge as p T p. [I, 4]. It is generally expected that lim,, |, M; = limypo M, = 0.
We believe that there are so-called critical exponents v = v(d), § = (d) and 6 = §(d), which are
insensitive to the precise definition of J,, > 0 (universality), such that (we use below the limit
notation “~” in some appropriate sense)

plpc Plpe _ hl0
M= (p—pe)’, Xp = (pe—p)77, M, = B/ (1.5)



These exponents (if they exist) are known to obey the mean-field bounds: 5 < 1/2, v > 1 and
§ > 3. For example, # = 1/8, v = 7/4 and § = 15 for the nearest-neighbor model on Z? [26].
Our ultimate goal is to identify the values of the critical exponents in other dimensions and to
understand the universality for the Ising model.

There is a sufficient condition, the so-called bubble condition, for the above critical exponents
to take on their respective mean-field values. Namely, the finiteness of » ;4 G .(2)% (or the
finiteness of ) 7a Gp(x)? uniformly in p < p.) implies that 3 =1/2, v =1 and § = 3 [1, 2, [3, 4].
It is therefore crucial to know how fast G, (x) (or Gp(x) near p = p.) decays as |z| T co. We note
that the bubble condition holds for d > 4 if the anomalous dimension 7 takes on its mean-field
value n = 0, where the anomalous dimension is another critical exponent formally defined as

zltoo .
Gy () =~ |z =2, (1.6)

Let J;, = > rezd Joz €7 and Gy(k) = > sezd Gp(z) €7 for p < pe. For a class of models that
satisfy the so-called reflection positivity [12], the following infrared boundd holds:
A t.
0 < Gylk) < COnSh- uniformly in p < pe, (1.7)
Jo — Ji
where d is supposed to be large enough to ensure integrability of the upper bound. For finite-range
models, d has to be bigger than 2, since Jy — Ji < |k|?, where “f < ¢” means that f/g is bounded
away from zero and infinity. By Parseval’s identity, the infrared bound (I.7)) implies the bubble
condition for finite-range reflection-positive models above four dimensions, and therefore

plpe ppe _ hl0
M} =" (p—po)'/?, Xp = (pc—p)", M, = 3. (1.8)
The class of reflection-positive models includes the nearest-neighbor model, a variant of the next-
nearest-neighbor model, Yukawa potentials, power-law decaying interactions, and their combina-

tions [6]. For the nearest-neighbor model, we further obtain the following x-space Gaussian bound
[32]: for x # o,

uniformly in p < pe. (1.9)

The problem in this approach to investigate critical behavior is that, since general finite-range
models do not always satisfy reflection positivity, their mean-field behavior cannot necessarily be
established, even in high dimensions. If we believe in universality, we expect that finite-range
models exhibit the same mean-field behavior as soon as d > 4. Therefore, it has been desirable to
have approaches that do not assume reflection positivity.

The lace expansion has been used successfully to investigate mean-field behavior for self-
avoiding walk, percolation, lattice trees/animals and the contact process, above the upper-critical
dimension: 4, 6 (4 for oriented percolation), 8 and 4, respectively (see, e.g., [31]). One of the
advantages in the application of the lace expansion is that we do not have to require reflection
positivity to prove a Gaussian infrared bound and mean-field behavior. Another advantage is the
possibility to show an asymptotic result for the decay of correlation. Our goal in this paper is to
prove the lace-expansion results for the Ising model.

In (T7) and ([L3), we also use the fact that, for p < pc, our G, (i.e., the infinite-volume limit of the two-point
function under the free-boundary condition) is equal to the infinite-volume limit of the two-point function under the
periodic-boundary condition.



1.2 Main results

From now on, we fix h = 0 and abbreviate, e.g., (cpocpx>p7h:0;A to (cpocpx>p;A. In this paper, we
prove the following lace expansion for the two-point function, in which we use the notation

Tey = tanh(pJy ). (1.10)

Proposition 1.1. For any p > 0 and any A C Z%, there exist 71'“) Ax) and R“Jr (x) for x € A and
7 >0 such that

<s00801>p;A - + Z HI()])A Tu v 90v801>p A + ( )]+1R;)];Xl)($), (111)

where

1Y) (2) = (=) 70 (), (112)
For the ferromagnetic case, we have the bounds

7'(';)]&\($) > 05,0002, 0< RI()];H) ) < Zﬂ'pA Tuw govgpm> (1.13)

We defer the display of precise expressions of 7'('1()2,)/\($) and R;i Xl) () to Section [2.2.3] since we
need a certain representation to describe these functions. We introduce this representation in
Section 211 and complete the proof of Proposition [[.1] in Section

It is worth emphasizing that the above proposition holds independently of the properties of the
spin-spin coupling: .J,,, does not have to be translation-invariant or Z%-symmetric. In particular,
the identity (LII]) holds independently of the sign of the spin-spin coupling. A spin glass, whose
spin-spin coupling is randomly negative, is an extreme example for which (I.I1]) holds.

Whether or not the lace expansion (LIT]) is useful depends on the possibility of good control
on the expansion coefficients and the remainder. As explained below, it is indeed possible to
have optimal bounds on the expansion coefficients for the nearest-neighbor interaction (i.e., J, , =
1{|lz|1=1}) and for the following spread-out interaction:

Jow = L™u(L 7 ) (1 <L <o), (1.14)

where p : [~1,1]%\ {0} + [0,00) is a bounded probability distribution, which is symmetric under
rotations by 7/2 and reflections in coordinate hyperplanes, and piecewise continuous so that the
Riemann sum L~%Y .4 (L~ 1z) approximates [p, d%z p(z) = 1. One of the simplest examples
would be

Lo<o)l <L}
> zeza Lo<|zllw <L}

Jox:

)

= O(L™) 1<) 112 <1} (1.15)

Proposition 1.2. Let p = 2(d — 4) > 0. For the nearest-neighbor model with d > 1 and for the
spread-out model with L > 1, there are finite constants 0 and A such that

A1 = do,z) (G >0), RO\ (2)] =0 (j 1 00), (1.16)

7)
[TLA () = Goz] < 0500 + TajEere. U2

for any p < pe, any A C Z* and any x € A.



The proof of Proposition depends on certain bounds on the expansion coefficients in terms
of two-point functions. These diagrammatic bounds arise from counting the number of “disjoint
connections”, corresponding to applications of the BK inequality in percolation (e.g., [5]). We
prove these bounds in Section Ml and in anticipation of this, in Section [3] we explain how we use
their implication to prove Proposition .2, with # = O(d~!) and A = O(1) for the nearest-neighbor
model, and § = O(L~2%¢) and A\ = O(6?) with a small € > 0 for the spread-out model.

Let

r=10) =Y Tou D(z) = 22 o® =3 |[*D(x). (1.17)

T T
Due to (LI6) uniformly in A C Z4, there is a limit II,(z) = limyza limjjog Hg)A(x) such that

A1 —d04)

Gp(z) = Ip(z) + (I * 7D = Gy ) (), p(2) = bo,2| < 0000 + N

(1.18)

for any p < p. and any z € Z¢, where (f xg)(z) =3 f(y) g(x —y). We note that the identity

yez?
in (I8 is similar to the recursion equation for the random-walk Green’s function:
e . .
Sp(z) =) r'D™(x) =dop+ (rD=*S,)(x) (Ir] < 1), (1.19)
i=0

where f*(z) = (f*~ % f)(x), with f*9(z) = 6, by convention. The leading asymptotics of
Si(x) for d > 2 is known as Z—‘é|x|_(d_2), where aq = 377921 (4 — 1) (e.g., [14, [15]). Following the
model-independent analysis of the lace expansion in [14] [I5], we obtain the following asymptotics
of the critical two-point function:

Theorem 1.3. Let p=2(d —4) > 0 and fix any small € > 0. For the nearest-neighbor model with
d > 1 and for the spread-out model with L > 1, we have that, for x # o,

A g {(1+o<|x|“”?”>) (NN maodel), (1.20)

G, (z) = —
p() T(pe) o272 | (14 O(z|77"%F)) (SO model),

where constants in the error terms may vary depending on €, and

(o) - (ZH()) A= (Y o) a2

Consequently, (I.8) holds and n = 0.

In this paper, we restrict ourselves to the nearest-neighbor model for d > 4 and to the spread-
out model for d > 4 with L > 1. However, it is strongly expected that our method can show the
same asymptotics of the critical two-point function for any translation-invariant, Z%symmetric
finite-range model above four dimensions, by taking the coordination number sufficiently large.

1.3 Organization

In the rest of this paper, we focus our attention on the model-dependent ingredients: the lace
expansion for the Ising model (Proposition [[LI]) and the bounds on (the alternating sum of) the
expansion coefficients for the ferromagnetic models (Proposition [[L2)). In Section 2| we prove
Proposition [LTl In Section B we reduce Proposition to a few other propositions, which are
then results of the aforementioned diagrammatic bounds on the expansion coefficients. We prove
these diagrammatic bounds in Section @l As soon as the composition of the diagrams in terms
of two-point functions is understood, it is not so hard to establish key elements of the above
reduced propositions. We will prove these elements in Section [5.1] for the spread-out model and in
Section for the nearest-neighbor model.



2 Lace expansion for the Ising model

The lace expansion was initiated by Brydges and Spencer [§] to investigate weakly self-avoiding
walk for d > 4. Later, it was developed for various stochastic-geometrical models, such as strictly
self-avoiding walk for d > 4 (e.g., [18]), lattice trees/animals for d > 8 (e.g., [16]), unoriented
percolation for d > 6 (e.g., [17]), oriented percolation for d > 4 (e.g., [25]) and the contact process
for d > 4 (e.g., [27]). See [31] for an extensive list of references. This is the first lace-expansion
paper for the Ising model.

In this section, we prove the lace expansion (LII]) for the Ising model. From now on, we fix
p > 0 and abbreviate, e.g., WI()?A(x) to 7\ (z).

There may be several ways to derive the lace expansion for (p,¢z),, using, e.g., the high-
temperature expansion, the random-walk representation (e.g., [I0]) or the FK random-cluster
representation (e.g., [I1]). In this paper, we use the random-current representation (Section 21]),
which applies to models in the Griffiths-Simon class (e.g., [IL [4]). This representation is similar in
philosophy to the high-temperature expansion, but it turned out to be more efficient in investigating
the critical phenomena [I, 2, B, 4]. The main advantage in this representation is the source-
switching lemma (Lemma 23] below in Section 2:2.2)) by which we have an identity for (¢,¢z), —
(Potpz) 4 With “A C A” (the meaning will be explained in Section 2.T]). We will repeatedly apply
this identity to complete the lace expansion for (p,¢z), in Section 2.2.31

2.1 Random-current representation

In this subsection, we describe the random-current representation and introduce some notation
that will be essential in the derivation of the lace expansion.

First we introduce some notions and notation. We call a pair of sites b = {u,v} with J, #0 a
bond. So far we have used the notation A C Z9 for a site set. However, we will often abuse this
notation to describe a graph that consists of sites of A and are equipped with a certain bond set,
which we denote by By. Note that “{u,v} € Bp” always implies “u,v € A”, but the latter does
not necessarily imply the former. If we regard A and A as graphs, then “A C A” means that A is
a subset of A as a site set, and that B4 C Bjx.

Now we consider the partition function Z4 on A C A. By expanding the Boltzmann factor in

(T2), we obtain
_ (pJ, )Tlu,v w,v u,v
FEERID VR | (N (D D 2o

M Ny !
pe{£1}A {u,v}eBA " Nu,vEZ4

S (NG s )

EZ]?;'A beB 4 veA py==£1

where we call n = {ny}yep, a current configuration. Note that the single-spin average in the last
line equals 1 if 7, ny is an even integer, and 0 otherwise. Denoting by On the set of sources
v € A at which ) ;- ny is an odd integer, and defining

wam = [T P2 ez (22)
beBy O

we obtain

Zyp= Z UJA(H) H l{zbav np even} — Z U)A(Il). (23)

neZ]iA vEA on=go



Figure 1: A current configuration with sources at x and y. The thick-solid segments represent bonds
with odd currents, while the thin-solid segments represent bonds with positive even currents, which
cannot be seen in the high-temperature expansion.

The partition function Z 4 equals the partition function on A with J, = 0 for all b € Bp \ B 4.
We can also think of Z 4 as the sum of wj(n) over n € Z]EA satisfying n|g,\g,, = 0, where n|p is
a projection of n over the bonds in a bond set B, i.e., n|g = {n : b € B}. By this observation, we
can rewrite (2.3)) as

Za= Y wa(n). (2.4)
on=g
H‘BA\BAEO

Following the same calculation, we can rewrite Za(pzpy) 4 for z,y € A as

Zalowpy) 4= Y < 11 %) I1 G 3 %]f{vemmzb%nb)

neZ]iA beB 4 vEA pup==%1

= Y walm)= > wx(n), (2.5)

on=zAy on=zAy
H‘BA\BAEO

where = A y is an abbreviation for the symmetric difference {z} A {y}:

%] ifx =y,

oy = {2} Ay} ={ (2.6)

{z,y} otherwise.

If x or y is in A° = A\ A, then we define both sides of (Z5]) to be zero. This is consistent with
the above representation when x # y, since, for example, if z € A°, then the leftmost expression
of (2.5) is a multiple of %z%: 1192z = 0, while the last expression in (2.1 is also zero because
there is no way of connecting z and y on a current configuration n with nlg,\g, = 0.

The key observation in the representation (2.5]) is that the right-hand side is nonzero only when
x and y are connected by a chain of bonds with odd currents (see Figure [I). We will exploit this
peculiar underlying percolation picture to derive the lace expansion for the two-point function.

2.2 Derivation of the lace expansion

In this subsection, we derive the lace expansion for (¢,p,), using the random-current representa-
tion. In Section 2.2.1] we introduce some definitions and perform the first stage of the expansion,
namely (LII)) for j = 0, simply using inclusion-exclusion. In Section [Z2.2] we perform the sec-
ond stage of the expansion, where the source-switching lemma (Lemma [2.3]) plays a significant
role to carry on the expansion indefinitely. Finally, in Section 2.2.3] we complete the proof of
Proposition [T



2.2.1 The first stage of the expansion

As mentioned in Section 2] the underlying picture in the random-current representation is quite
similar to percolation. We exploit this similarity to obtain the lace expansion.
First, we introduce some notions and notation.

Definition 2.1. (i) Givenn € ZI_BLA and A C A, we say that x is n-connected to y in (the graph)

A, and simply write ——yn A, if either z = y € A or there is a self-avoiding path (or we
simply call it a path) from x to y consisting of bonds b € B4 with n, > 0. If n € ZEA, we
omit “in A” and simply write x «<— y. We also define

(o 2oy} = {2y} \ {z — y in A}, (2.7)

and say that x is n-connected to y through A.

(ii) Given an event E (i.e., a set of current configurations) and a bond b, we define {F off b} to
be the set of current configurations n € F such that changing n; results in a configuration
that is also in E. Let C(z) = {y : «— y off b}.

(iii) For a directed bond b = (u,v), we write b = u and b = v. We say that a directed bond b is
pivotal for ¥ «— y from z, if {z —— boff b} N {b —— yin Ch(x)°} occurs. If {z — y}

occurs with no pivotal bonds, we say that x is n-doubly connected to y, and write x < y.

We begin with the first stage of the lace expansion. First, by using the above percolation
language, the two-point function can be written as

(Popr)n = . w%(An) 3 wAZ(An) 1{oea}- (2.8)

on=oAx

on=oAx

We decompose the indicator on the right-hand side into two parts depending on whether or not
there is a pivotal bond for 0 «— x from o; if there is, we take the first bond among them. Then,

we have
]l{oT:v} = 1{0?:1:} + Z ]1{0<?>Q off b} l{nb>0} ]l{ETm in C2(0)°}- (29)
beBA
Let
©) () — wa(n)
7 (z) = ) ZA A L{oemsa}- (2.10)

Substituting (29)) into (2.8]), we obtain (see Figure [2)

wp(n) _
(Copadp =T (@) + D D 7, Hosmboft 0} Lin>0} 1pera in o)) (2.11)
beBA On=oAzx

Next, we consider the sum over n in ([2IT)). Since b is pivotal for 0 «— z from o (# z, due to

the last indicator) and dn = o A x, in fact ny is an odd integer. We alternate the parity of n, by
changing the source constraint into o A b A z = {o} A{b,b} A {z} and multiplying by

Zn odd(p‘]b)n/n!
> even (PJb)" /7!

= tanh(pJy) = 7. (2.12)



Figure 2: A schematic representation of (2.IT]). The thick lines are connections consisting of bonds
with odd currents, while the thin arcs are connections made of bonds with positive (not necessarily
odd) currents. The shaded region represents C5 (o).

Then, the sum over n in (2.I1]) equals

wa(n)
Z 7 1{0?}_) off b} Tb]l{nb even} ]l{ET»m in C2(0)°}- (213)
On=oAbAzx A
Note that, except for b, there are no positive currents on the boundary bonds of C4 (o).
Now, we condition on C%(0) = A and decouple events occurring on B 4 from events occurring
on By \ B4, by using the following notation:

ky
inak) =[] (p ) (k € ZEA\Pay, (2.14)
bEBA\BAC

Conditioning on C%(0) = A, multiplying Z4c/Z4c = 1 (and using the notation k = n|g A\B e and
m = n|g ,.) and then summing over A C A, we have

Wy A ZA° w4 (m) _
Em=> > L{oe=b off b} 1 {Ch(0)=A} To L {ky even) Lpeoa in A%}

ACA 9k=onb 25
dm=bAx
U]A W Ac
= Z Z l{o?g off b} N {Ch (0)=A} ToL{n, even} Z # Lz (in A%)}
ACA On=o0Ab Om=bAx
= (‘PE‘PSC>AC
wp(n
= Z Z( ) ]]-{o<f>lg off b} Tb]]-{nb even} <@E@m>cg(0)c' (215)
on=o0Ab A

Furthermore, “off b” and 1{n, even} in the last line can be omitted, since {0 <= b} \ {0 <= b off

b} and {On = o A b} N{ny odd} are subsets of {5 € C5(0)}, on which (pz¢p.) = 0. As a result,

Ch(o)°
(m) Z ]1{0<=>b} Ty <(pb()0x>cb b (0)c (216)
on=oAb
By (Z11) and (2.I6]), we arrive at
<Q00Q01>A = 7T + Z 7TA 7—b SDbQDm> RX)(x)a (2'17)
beBA

where

=2 > wA 1{0<$>b}7b<<90590x>/\—<80580x>cg(0)c)- (2.18)

beBA On=o0Ab

This completes the proof of (LII) for j = 0, with 7}’ () and R\{’(z) being defined in (ZI0) and
([2.18]), respectively.



2.2.2 The second stage of the expansion

In the next stage of the lace expansion, we further expand R\’ () in (ZIT). To do so, we investigate
the difference (502), — (¥52) e (o) I (2I8]). First, we prove the following key propositionEg

Proposition 2.2. For v,z € A and A C A, we have

WAc(IMN) WA
(Popa)n — (Popa) e = BZ % % l{ynﬁ:gg}. (2.19)
m=9
on=vAzx

Therefore, (Qupz) ge < (Popz)y for the ferromagnetic case.

Proof. Since both sides of ([2Z.19]) are equal to 1{zeA} when v = z (see below (2.6)), it suffices to

prove ([2Z.19) for v # x.
First, by using (2.3)-(2.35]), we obtain

ZNZ pe <<@U@x> <(PU<PJ: > Z Z e wp(n Z WA (m) AN
On={v,x} Om={v,z}
= > wy (m) wy (n) — > wp (m) wy (n). (2.20)
Om=g, In={v,x} Om={v,z}, On=0
mg,\g 4. =0 mg,\g =0

Note that the second term is equivalent to the first term if the source constraints for m and n are
exchanged.
Next, we consider the second term of (2.:20), whose exact expression is

(pJo)" (pJo)™ ™

> o(II ) D% Y w Y IT())
b! mp! ng!

Om={v,z},n=0 " bEBA\B 4¢ beB 4c ON={v,z} Om={v,z} bEB 4¢c

mg,\p .. =0 mg,\p .. =0

(2.21)

The following is a variant of the source-switching lemma [I], 13| and allows us to change the source
constraints in (2.27]).

Lemma 2.3 (Source-switching lemma).

S I () teene X T () 2
Om={v,z} bEB4c om=g beB 4c
mp,\g 4. =0 mg,\p .. =0
The idea of the proof of (222]) can easily be extended to more general cases, in which the
source constraint in the left-hand side of ([2:22]) is replaced by dm =V for some V C A and that in
the right-hand side is replaced by 0m =V A {v,z} (e.g., [1]). We will explain the proof of ([2.22])
after completing the proof of Proposition
We continue with the proof of Proposition Substituting (2.22)) into (2.2I]), we obtain

@20 = Z wp (N ]].{m—m:ln.AC} Z H< >

ON= {’U $} om=g beBAC
mlg,\p .. =0
- Z wA(m) ZUA(II) ]]‘{UT:B in A°}- (223)

Om=g,0n={v,x}
thA\]BAC =0

2The mean-field results in [T} 2} [3, 4] are based on a couple of differential inequalities for M, 5 and x, (under the
periodic-boundary condition) using a certain random-walk representation. We can simplify the proof of the same
differential inequalities (under the free-boundary condition as well) using Proposition

10



N=3  N,=3  N;=1 N, =5 N=l

N : 0 5
41

N -
5
21 42

S 0 -\/\22/- = L5

13 23

4

Shw: 0 x> (3 s

13 23

(

45

Figure 3: N = {N,}}_; = (3,3,1,5,1) is an example of a current configuration on [0,5] N Z
satisfying ON = {0,5}, and Gy is the corresponding labeled graph consisting of edges e = bfp,
where ¢, € {1,...,Np}. The third and fourth pictures show the relation between a subgraph S
with S = {0,5} and its image S Aw of the map defined in (2.27)), where w is a path of edges
(11,21,31,41,51).

Note that the source constraints for m and n in the last line are identical to those in the first term

of (2:20), under which T{ve—a} is always 1. By 1), we can rewrite (2.20)) as

wp (m) wp(n
<SDUQ0$>A - <Q0vgpm>,4c‘ = § Z( ) Z( ) ]1{1)<i>ar}' (2'24)
Ac A min
Om=g, On={v,x}
m‘BA\BAC =0

Using (2.3)-(2.4) to omit “m|g,\p,. = 0” and replace wp(m) by wc(m), we arrive at (2.19).
This completes the proof of Proposition 2.2 O

Sketch proof of Lemma [2.3. We explain the meaning of the identity (2.:22]) and the idea of its proof.
Given N = {Np }sem, , we denote by Gy the graph consisting of N, labeled edges between b and b
for every b € By (see Figure [B]). For a subgraph S C G, we denote by OS the set of vertices at
which the number of incident edges in S is odd, and let Sy = SN GN‘BA\]BAC. Then, the left-hand

side of ([2.22]) equals the cardinality |&| of
S ={SCGnN:0S={v,z}, Sp=0}, (2.25)
and the sum in the right-hand side of ([2.22]) equals the cardinality |&’| of
&' ={SCcGn:0S=9, S4 =02} (2.26)

We note that |G| is zero when there are no paths on Gy between v and x consisting of edges whose
endvertices are both in A°, while |&’| may not be zero. The identity (2:22]) reads that |S| equals
|&'| if we compensate for this discrepancy.

Suppose that there is a path (i.e., a ) w from v to = consisting of edges in Gn whose endvertices
are both in A°. Then, the map

Se6 — SAwed, (2.27)

11



Figure 4: A schematic representation of (2:31]). The dashed lines represent A, the thick-solid lines
represent connections consisting of bonds b; such that my, +ny, is odd, and the thin-solid lines are
connections made of bonds by such that my, + np, is positive (not necessarily odd). The shaded

region represents Co,,(v).

is a bijection [T}, [13], and therefore |S| = |&’|. Here and in the rest of the paper, the symmetric
difference between graphs is only in terms of edges. For example, S A w is the result of adding or
deleting edges (not vertices) contained in w. This completes the proof of (2.22)). O

We now start with the second stage of the expansion by using Proposition and applying
inclusion-exclusion as in the first stage of the expansion in Section 2211 First, we decompose
the indicator in (ZI9]) into two parts depending on whether or not there is a pivotal bond b for

v «—— x from v such that v N b. Let

m+n m+n

Ex(v,z;A) = {v % x} N {3 pivotal bond b for v <~ @ from v such that v % b} (2.28)

On the event {v % z} \ Emin(v,z;A), we take the first pivotal bond b for v «— z from v

m-+n

satisfying v % b. Then, we have (cf., (229))

]l{v;li_“;:v} = g on(vaA) + Z L Brin (0,05.4) off b} L{my 41, >0} H{E;I]—H;x in ()} (2.29)
beBA
Let
WAc(IM) WA (N
O;A[X] = Z %c) Z(A ) 1 Bn(v,2:.4) X (M + 1), Ov,z;.4 = O g all]- (2.30)

Substituting (2.29)) into (2.19]), we obtain (see Figure [

(o) n — (PvPr) gc (2.31)
w4e(m) wp (n) B
= @U,x;.A + Z Z TAC Z—A H{Em+n(v,lg;A) off b} l{mb even, n, odd} ]l{bmx in Ch_ ., (v)°}
beBA aamzA@
n=vAz

where we have replaced “my + n, > 0” in ([2.29) by “my even, nj, odd” that is the only possible
combination consistent with the source constraints and the conditions in the indicators. As in
(213), we alternate the parity of n; by changing the source constraint from dn = v A = to
On =v A b A x and multiplying by 7. Then, the sum over m and n in (Z31]) equals

w e (m) wp(n) ~
> e 7y Bmen(bid) off 0} ToLimyny even) Lz in (o)) (2.32)
om=go
on=vAbAx

12



Then, as in (2.I5]), we condition on Cm +n( v) = B and decouple events occurring on Bpe from
events occurring on Bp \ Bge. Let m’ = mlg,c\B 4o pe; M” = Mg e g, ' = nlp,\p, and
n” = n|p,.. Note that dm’ = Om” = &, On’ = v A b and In” = b A x. Multiplying ([2.32)) by
(Zsaerpe/Zacnpe)(Zpe /Zpe) = 1 and using the notation (2Z.14]), we obtain

WA B ZAcmBC wp B(n ") Ze
(m) : : : : ZA ]]-{Em’+rl’ (’UJ—);‘A) off b} n {C?n,_’_n/ (U):B}
BCA Om'=2
On'=vAb

wACﬂBC (m//) wBC (n//)
ZBC ]]-{b —— xin B}

X Tb]l{mé,ng even} Z

8m//:® ZACOBC //+ "
on’’ =bax
wAC wp (n)
= Z Z L By (0,554) off b} N {CEy 1 (0)=B} To1{my 1y, even} (P5Pz) pe
BCA Om=2 Zn
on=vAb
wge(m) wp(n)
= 2 T Zy UBmentosid) o 6} T Lmumy even} (P500)cr | (e (2:33)
om=9o
on=vAb

where we have been able to perform the sum over m” and n” independently, due to the fact that
]1{Em<//—+r>l”m in 5} = 1 for any n” € Z]EBC with On” = b A x. As in the derivation of (ZI6]) from

2I5), we can omit “off ” and 1{mj,n, even} in (2.33]) using the source constraints and the fact
that (p502) N = 0 whenever b € C5 (v). Therefore,

wAc wA(n)
233) = Z 7 ]1Em+n(v7[2;A) Tp <SDESD:B>CII)n+n(U)c. (2.34)
om=g A
on=vAb

By (230)-(234), we arrive at

<(PU<PJ:>A - <¢v@x>Ac = ev,a:;A + Z @v,Q;A Th <(PE§0J:>A
beBA

N Z Ou,bA [Tb<<30590:v>/\ - <@E@x>cb(v)c>:|, (2.35)

beBA

where C?(v) = C5,,,(v) is a variable for the operation ©,,, 4. This completes the second stage of
the expansion.

2.2.3 Completion of the lace expansion
For notational convenience, we define wg(m)/Zg = I1{m=0}. Since En(0,z;A) = {0 <= z} (cf
[228])), we can write

() = Oppn. (2.36)

Also, we can write R\ (z) in 2.I8) as

Ri\l) Z Oo,b;A {Tb <<(Pb(:0x> <@Egpl‘>cb(0)c>:| . (2.37)
b

13



Using (2.35), we obtain

RE\I)(m) = Z <@obA {Tb ®b$cb ] + Z O0.p:A |:Tb @b Y- Cb(o)] Ty (cpb/<p$>
b by

= Y O [105 00 [ ((eperhy ~ tevedevge)]]) @39)

b/

where C?(0) = C4(0) is a variable for the outer operation ©, 4, and C¥ (b) = C¥, (D) is & variable
for the inner operation Oy b iCh(0)" For 7 > 1, we define

(J) (0) (1) . (-1 () -
bz @O b17 |: @bl,b CO|: @ j lvijéj 2 |:Tb ®b]7x c] 1:| :|:|, (239)
L1yeeey
() — (0) (1) (-1 _ _
Ry (z) = bzb 9, bl,A[ oy @El,g2;60 [ @JJ 120Gy [Tbj (<90bj%>A - <¢bﬁox>é§fl)] ”’
15.-4505
(2.40)

where the operation ©® determines the variable C; = Cnfj_n (b;) (provided that by = o). Then,
we can rewrite (2.38)) as

RY (z) = 7l (2) + > 7y ) 7 (0 0a) y, — RY (). (2.41)
b/
As a result,
(Popa)p = (w4 (@) =y () + Y (7 (0) = 7 (1) 7 (w5pa) 5 + RY (). (2.42)
b

By repeated applications of ([2:35) to the remainder RY’(x), we obtain (ILII)-(TI2]) in Proposi-
tion [[11

For the ferromagnetic case, 7, and w4(n) for any A C A and n € Z{Bﬁ"‘ are nonnegative. This
proves the first inequality in (II3]) and, with the help of Proposition [Z2] the nonnegativity of
R{™(x) . To prove the upper bound on RY*"(z), we simply ignore (gob gpz> in (240) and

] 1

replace j by j + 1, where b;j ;1 = {u,v}. This completes the proof of Proposition [Tl O

2.3 Comparison to percolation

Since we have exploited the underlying percolation picture to derive the lace expansion (LII]) for
the Ising model, it is not so surprising that the expansion coefficients (2.36]) and (239) (also recall
[230)) are quite similar to the lace-expansion coefficients for unoriented bond-percolation (cf.,

II7):
Eg’) []l{oﬁz}] =Pp(o < x) (1 =0),
") = . .
’ > B Lo PE | Ly o)+ PES | L Gty | (G2 D).
(2.43)

where p = )" p,, is the bond-occupation parameter, and each Eg) denotes the expectation with
respect to the product measure [ [, (pp L{nilp=1}+(1—pp) L{n;,=0}). In particular, the events involved

in (236]) and (239) are identical to those in (2:43]).
Hoever, there are significant differences between these two models. The major differences are
the following:

14



(a) Each current configuration must satisfy not only the conditions in the indicators, but also its
source constraint that is absent in percolation.

(b) An operation © is not an expectation, since the source constraints in the numerator and
denominator of © in (2.30) are different.

(¢) Ineach © for i > 1, the sum m;+n; of two current configurations is coupled with m; _;+mn;_;
via the cluster C;_; determined by m;_; + n;_;. By contrast, in each IEI(J) in (2:43]), a single
percolation configuration n; is coupled with n;_; via C~,~_1 = Cf’fi_l(gi_l). In addition, m; is
nonzero only on bonds in Béf,l’ while the current configuration n; has no such restriction.

These elements are responsible for the difference in the method of bounding diagrams for the
expansion coefficients. Take the 0™-expansion coefficient for example. For percolation, the BK
inequality simply tells us that

7 (2) < Ppo —— ). (2.44)

For the ferromagnetic Ising model, on the other hand, we first recall (Z1I0), i.e.,

WA N
WX)) (x) = Z %(A ) ]l{o<?$}, (2.45)

on=oAx

where wy(n)/Zx > 0. Due to the indicator, every current configuration n € Z]EA that gives
nonzero contribution has at least two bond-disjoint paths (1, (s from o to x such that n; > 0 for
all b € {1 U (s. Also, due to the source constraint, there should be at least one path ¢ from o to
x such that ng is odd for all b € (. Suppose, for example, that ( = {; and that n for b € (o
are all positive-even. Since a positive-even integer can split into two odd integers, on the labeled
graph Gy, with 9G,, = o A z (recall the notation introduced above (2.25])) there are at least three
edge-disjoint paths from o to x. This observation naturally leads us to expect that

T (%) < (Poa)i (2.46)

holds for the ferromagnetic Ising model. This naive argument to justify ([2.46]) will be made rigorous
in Section M by taking account of partition functions.

The higher-order expansion coefficients are more involved, due to the above item (c). This will
also be explained in detail in Section [l

3 Bounds on II{(x) for the ferromagnetic models

From now on, we restrict ourselves to the ferromagnetic models. In this section, we explain how
to prove Proposition assuming a few other propositions (Propositions B.IH3.3] below). These
propositions are results of diagrammatic bounds on the expansion coefficients in terms of two-point
functions. We will show these diagrammatic bounds in Section @l

The strategy to prove Proposition is model-independent, and we follow the strategy in
[14] for the nearest-neighbor model and that in [I5] for the spread-out model. Since the latter is
simpler, we first explain the strategy for the spread-out model. In the rest of this paper, we will
frequently use the notation

<l = fa] v 1. (3.1)

We also emphasize that constants in the O-notation used below (e.g., O(p) in (3.3])) are indepen-
dent of A C Z%.
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3.1 Strategy for the spread-out model

Using the diagrammatic bounds below in Section [, we will prove in detail in Section [5.1] that the
following proposition holds for the spread-out model:

Proposition 3.1. Let J,, be the spread-out interaction. Suppose that
T<2 G(x) < 0oz + o]~ (3.2)

hold for some 6y € (0,00) and q € (%l,d). Then, for sufficiently small 0y (with gL being
bounded away from zero) and any A C Z2, we have

A= 00 el (i>2), 33)

<%@<{m%wm+0@ww*qu=an,
The exact value of the assumed upper bound on 7 in (3.2]) is unimportant and can be any finite
number, as long as it is independent of 6y and bigger than the mean-field critical point 1. We note
that the exponent 3¢ in (33)) is due to (248]) (and diagrammatic bounds on the higher-expansion
coefficients), and is replaced by 2¢ with ¢ € (%d, d) for percolation, due to, e.g., (Z44]).

Sketch proof of Proposition [I.2 for the spread-out model. We will show below that, at p = pe,

T<2, G(2) < Gop + O(LTF) =2, (3.4)

for some small € > 0. Since 7 and G(x) are nondecreasing and continuous in p < p. for the
ferromagnetic models, these bounds imply ([B.2)) for all p < p,, with g = cL™27¢ > 0 and ¢ = d— 2,
where ¢ € (g, d) if d > 4 and 0yL?7 = cL¢ > 0. Then, by Proposition B.I], the bound (33) with
0o = O(L=2%¢) and ¢ = d — 2 holds for d > 4 and 0y < 1 (thus L >> 1). Therefore, by (LI3) with
{(opr) A <L

0<R{™M(2) <7y (w)=0() =0  (j1o0) (3.5)

and by (LI12]) for j > 0,

TP () — do.0] < O(00)0 +L63)_09)5 +
A (1’) o,x| = ( O) 0, ”’1‘”‘3(d_2) - ( 0/)%,x

0(03)(1 - 50,3[:)
ST (3.6)

where p = 2(d—4). This completes the proof of Proposition for the spread-out model, assuming
(BE) at p = pe.

It thus remains to show the bounds in (4] at p = p.. These bounds are proved by adapting the
model-independent bootstrapping argument in [I5] (see the proof of [15, Proposition 2.2] for self-
avoiding walk and percolation), together with the fact that G(z) decays exponentially as |z| T co
for every p < pc [23,30] so that sup, G(z) is continuous in p < p. [28]. We complete the proof. [

3.2 Strategy for the nearest-neighbor model

Since 02 = O(1) for short-range models, we cannot expect that 6y in ([B3.2) is small, or that

Proposition 3.1l is applicable to bound the expansion coefficients in this setting.
Under this circumstance, we follow the strategy in [14]. The following is the key proposition,
whose proof will be explained in Section .2k
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Proposition 3.2. Let J,; be the nearest-neighbor or spread-out interaction, and suppose that

2
7 —1< 0o, sup(D * G*?)(z) < 6, sup (x—lz v 1>G(m) < 6o (3.7)

1'5(1'17...7$d)7£0 g

IR}

hold for some 0y € (0,00). Then, for sufficiently small 0y and any A C Z%, we have

2 7 = . i

Furthermore, in addition to (3.77) with 6y < 1, if

x x

G(z) < Aofl] ™ (3.9)

holds for some Ao € [1,00) and q € (0,d), then we have for i > 0

, ‘ 3(s 3¢+2 (i—2)V0
WX)(HU) < 0(60)2503[: + AO(Z + 1) 0(90)

7 o (1= o). (3.10)

Sketch proof of Proposition [L.2 (primarily) for the nearest-neighbor model.  First we claim that
the assumed bounds in (3.7) indeed hold for any p < p if d > 4 and 6y < 1, where §y = O(d~!)
for the nearest-neighbor model and 6y = O(L~%) for the spread-out model. The proof is based on
the orthodox model-independent bootstrapping argument in, e.g., [24] (see also [21] for improved
random-walk estimates; bootstrapping assumptions that are different from, but philosophically
similar to, (37) are used in [20]). Therefore, ([B.8]) holds for p < p. and hence ensures the existence
of an infinite-volume limit TI(x) = lim 74 lim;jjoo Y (x) that satisfies

> (@) =1+ O(6), >zl (z)| = do”O(67). (3.11)

xT

As a byproduct, we obtain the identity in (L2I]) for 7(p.) for both models. Suppose that
G(x) < Aollaf| =+ (3.12)

holds at p = p.. Then, by Proposition[3.2, we obtain (3.10) with ¢ = d—2. Using this in ([B.5)—(3.6),
we can prove Proposition

To complete the proof, it thus remains to show (B12]) at p = p.. To show this, we use the
following proposition:

Proposition 3.3. Let

G = sup |z|°G(z), W = SUPZ ly'G(y) G(z —y), (3.13)
T T Yy

and suppose that the bounds in ([3.7) hold with 6y < 1.
(i) If 3, M(z) = 771 and [I(z)| < O([l|~*+2)), then we have

G(.%') Zx H(x) aq

N IS aR(D @) pE2 el T (3.14)

(1t) If >, |z|"[II(x)| < oo for some r > 0, then, for s,t > 0 which are not odd integers, we have

{G(S) <oo if s<r and s<d—2, (3.15)

W® <oo if t<|r] and t<d-—4.
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(iii) If W® < oo for some t > 0, then Y |z|T2|I(x)| < oo.

The above proposition is a summary of key elements in [I4, Proposition 1.3 and Lemmas 1.5—
1.6] that are sufficient to prove (8.12)) in the current setting. The proofs of Propositions B.3)(i) and
B3I(ii) are model-independent and can be found in [14] Sections 2 and 4], respectively. The proof of
Proposition B3[(iii) is similar to that of the first statement of Proposition 3.2} ([B.7) implies (3.8]).
We will explain this in Section

Now we continue with the proof of (3.12]). Fix p = p.. Since the asymptotic behavior (B.14]) is
good enough for the bound ([B12]), it suffices to check the assumptions of Proposition B.3|(i). The
first assumption on the sum of II(x) is satisfied at p = p., as mentioned below ([B.I1]). The second
assumption is also satisfied if G < oo, because of the second statement of Proposition
(33) implies (B.I0). By Proposition B.3(ii), it thus suffices to show that ) 2| “F2|TI()| is finite
if d > 4.

To show this, we let

ro = 2, Ti+1 = <(d - 2) A (LTZJ + 2)) — €, (316)

where 0 < € < 2(d — 4). Note that, by this definition, r; for i > 1 equals ((d —2) A (i +3)) — € and

increases until 1t reaches d — 2 — e. We prove below by induction that ) |z|"|II(x)| is finite for
a+42

all ¢ > 0. This is sufficient for the finiteness of ) |z|73 |[II(x)], since
}gn_dn_od 2—2(d—4) =42 (3.17)

Note that, by B.II), >_, |z["[II(z)] < oco. Suppose >_, |z["|II(z)| < oo for some i > 0.
Then, by Proposition B3|(ii), W® is finite for ¢ € (0, |r;]] N (0,d — 4). Since |[rg] = 2 and
7] = (d=3)A(i+2) fori > 1, WP with T = (i +2) A (d — 4 — ¢€) is finite. Then, by
Proposition B3(iii), >°, |z|TF2|I(z)] is finite. Since

TH+2=>G0+)N(d-2—¢€) > ((d=2)A(i+4)) — €= rit1, (3.18)
we obtain that ) |z|"*+'|II(z)| < co. This completes the induction and the proof of BI2). The
proof of Proposition is now completed. O

4 Diagrammatic bounds on 7' (r)

In this section, we prove diagrammatic bounds on the expansion coefficients. In Section E1l we
construct diagrams in terms of two-point functions and state the bounds. In Section [£2] we prove
a key lemma for the diagrammatic bounds and show how to apply this lemma to prove the bound
on 74’ (x). In Section I3}, we prove the bounds on 7{’(z) for j > 1.

4.1 Construction of diagrams

To state bounds on the expansion coefficients (as in Proposition [£1] below), we first define dia-
grammatic functions consisting of two-point functions. Let

é/\(y’x) = Z <Q0ySDQ>ATb, (41)
b:b=x
which satisﬁesﬁ
w w
<S0y80:1: < 6ym + Z Z A y zt+ Z Tb Z A z T GA(ya ) (42)

b:ib=g On=yAz bib=z On=yLb
ny odd ng even

3Repeated applications of ([2) to the translation-invariant models result in the random-walk bound: (@,@.) A<
S.(z) for ACZ% and T < 1.
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() v (w) (»)
PO =, N, PO ) = PO (o1,05) =
Vi Vi Vi (4) Vi v

M) (W)

\

vi

Figure 5: Schematic representations of P/(\j)(vl,vg-) for j = 1,2,3, P//\(;i(vl,v'l), PX(;)U(vl,vl)
PAu(y, x) and quv(y, x). The labels in the parentheses represent vertices that are summed
over, each sequence of bubbles from v; and vj represents ¢ (vi,v;) — 6, ./, and the sequence of
bubbles from v’ to v represents ¥ (v, v).

Let
00 ~ 00 i ~
)= (GR)7(4,2) = bye + Z > IIGatrwy?, (43)
i=0 I=1 oy e =1
and define (see the first line in Figure [
P/(\l) (v1, ’Ui) = 2(T,Z)A(U1, vll) - 61)1,1/1) (Pu; SDU1>A7 (4.4)

J
P/(\J)(vl’ U;) = Z (H (TzZ)A(vi’ U;) - 6vl,v )) <Q0v1 SDUQ> <9002Q0v£>A
v2,.. 7 Vj i=1
”17 v ] 1

j—1
X < H <<Pv271@0i+1>A<(Pvi+1 (Pv;>A> <90v;.71()0v;>A (] > 2), (4.5)
i=2
where the empty product for j = 2 is regarded as 1
Next, we define P, ”(vl, ) by replacing one of the 25 — 1 two-point functions on the right-
hand side of (£.4])— (Im) by the product of two two-point functions, such as replacing (¢,¢.), by

(©20u) A {Pup2) s, and then summing over all 2j — 1 choices of this replacement. For example, we
define (see the second line in Figure [{))

P (v1,01) = 2(a(v1,01) = 4y 0 ) (Pur Pu) A (Puput) (4.6)

and

2
P/\(11(7}17U2 Z <H wA UZ? i _51),,1) )) <<<Pv1()0u> <(Pu<pv2>A<¢v2@vi>A<@vi¢vé>A
1)271)1 =1

+{Pv1 P ) p (P2 Spu>A<80u80vi >A<80vi P, >A

o Pua)a(Pug) (P 00) (Pupy), ) (A7)
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We define PA(ZL) ,(v1,v ) similarly as follows. First we take two two-point functions in Py )(vl, ])
one of which (say, (gozl g021> for some 21, z]) is among the aforementioned 2j—1 two-point functlons

and the other (say, G (2o, 25) for some 29, 25) is among those of which 1 (v, v)) — Oy; 0 for i =

1,...,j are composed. The product (¢, goZ£>AC~?A(z2, z4) is then replaced by

(X tapmaloves) a(w'0)) ({ompdaGatin ) + Galea ) )

U/

+ <90Z1 SDu>A<90u90zi >A Z (<Q022 SDU’>AGA (UI, Zé) + é/\(z2’ Zé) 5v/,zé) P (v,’ U)' (4'8)

UI

Finally, we define PX,(Z)U(vl,v;) by taking account of all possible combinations of (¢, ¢.;), and

G (22, 7). For example, we define PA(u)v(vl, v}) as (see Figure [

Pt (v1,0)

= Z <2¢A (7}17 u/) é/\ (u/7 u”) <<‘~Pu’ <Pu>AGA (uv ul/) + é/\(u/7 u”) 5u,u”) 1/1/\(?/', Ui)

/ sy

uu v

X {Puy P ) A (Por %3>A¢A(U/a v) + (permutation of v and v')>, (4.9)

where the permutation term corresponds to the second term for P, (v1,v}) in Figure Bl
In addition to the above quantities, we define (see the third line in Figure [

POy, %) = (0ypu) A {0y u) p (Pua)n, (4.10)
P (4, %) = (0y0a) p (PyPu) p (Pua)dn Y (Pypur ) p (P pa) g Ya (v, 0), (4.11)
"
and let
Phu(y,2) =) P{(y,x), Pllu(ysm) = PA2 (v, ), (4.12)
=20 j>0

where P\")(y,z) and P\ (y,z) are the leading contributions to P}, (y,z) and P oy, T), re-
spectively.
Finally, we define

Q/A;u(yv 1‘) = Z (531,2 + é/\(y7 Z))P//\,u(zv 1‘), (4'13)

z

Qx;uw(y, 1’) = Z (5y,z + éA(:% Z))P/I\/;u,v(z7 .%')

z

+ ) (S + Galy, ) Ga(V, 2) Phoy(z,2) ¥a (v, 0). (4.14)

vz
The following are the diagrammatic bounds on the expansion coefficients (see Figure [6)):

Proposition 4.1 (Diagrammatic bounds). For the ferromagnetic Ising model, we have

P[/\(,Oo) (0,2) = <‘~Po‘10x>?\ (j=0),
G) it
i (x) < - - ) 4.15
A (@) < Z P/l\(oqil 0 bl) (H TbiQI/I\;Ui,Ui+1 (bi7bi+1)> Tijx;vj (bj7x) (] > 1), ( )
Qb)}: :v] =

where, as well as in the rest of the paper, the empty product is regarded as 1 by convention.

20



(by) (b (by)
k X X
SCENAVANE CEVAVAVAV EN AV,
o X [0} (0]
(b)

(k)

Figure 6: The leading diagrams for 7\ (z) and 7’ (x). The segments that terminate with b; for
i = 1,2 represent § + G (cf., (II3)—(@I4])). The labels in the parentheses represent bonds that
are summed over. There are artificial gaps in the figures to distinguish different building blocks.

4.2 Bound on 7\’(z)

The key ingredient of the proof of Proposition [£.1]is Lemma [.2] below, which is an extension of the
GHS idea used in the proof of Lemma 2.3l In this subsection, we demonstrate how this extension
works to prove the bound on WX))(QJ) and the inequality

wp(n
Z Z(A ) ]l{o<f>x}ﬁ{o<T>y} < P//\(:)y) (07'%')7 (416)

on=oAx

which will be used in Section 3] to obtain the bounds on 7{’(z) for j > 1.

Proof of (4.15) for j = 0. Since the inequality is trivial if x = o, we restrict our attention to the
case of x # o.
First we note that, for each current configuration n with on = {0, r} and 1{o<=<} = 1, there

are at least three edge-disjoint paths on G, between o and x. See, for example, the first term on
the right-hand side in Figure 2l Suppose that the thick line in that picture, referred to as ¢; and
split into (11 U (12 U (13 from o to x, consists of bonds b with n, = 1, and that the thin lines,
referred to as (o and (3 that terminate at o and x respectively, consist of bonds b’ with n, = 2.
Let ¢/, for i = 2,3, be the duplication of ¢;. Then, the three paths (2 U (13, ¢5U 12U s and (11U
are edge-disjoint.

Then, by multiplying 7}’ () by two dummies (Z5/Zx)? (= 1), we obtain

wp (n) wp(m') wp(m”)

On={o,x}
Om’'=0m" =g
wp (N) Ny!
= Z 73 Z E{O‘T’m}H el m/’ (4.17)
ON={o,z} A On={o,x} R M

Om’'=0m’" =2
N=n+m'+m"

where the sum over n,m’,m” in the second line equals the cardinality of the following set of
partitions:
Gy = {(SQ,Sl,Sg) :Gn = U SZ’, 0Sy = {0,.%'}, 0S1 = 0Sy = T, 0<= x in So}, (4.18)
i=0,1,2

where “0 <= x in Sy” means that there are at least two bond-disjoint paths in Sg. We will show
60| < |Sp], where

&% = { 60.5180) s On = U 8, 080 = 081 =08, = (0,01 . (4.19)
i=0,1,2
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This implies (4.15)) for j = 0, because

N,
I _—
S0l = > 11 nyl i mlV (4.20)

On=0m’'=0m"={o,z} b
N=n+m’'+m"”

and
wp (N N! wa(n))?®
AZ( ) 3 Hnb! m;f!—mg! - < 3 —AZ(A )> . (4.21)

3
} A On=0m’'=0m" ={o,z} b On={o,z}
N=n+m’'+m"”

2
ON={o,z

It remains to show |Sg| < [&p|. To do so, we use the following lemma, in which we denote
by QN the set of paths on Gn from z to 2’ and write w Nw’ = @ to mean that w and W’ are
edge-disjoint (not necessarily bond-disjoint).

Lemma 4.2. Given a current configuration N € ZE“, k>1,V C A and z; # 2z, € A for
i1=1,...,k, we let

GN:U?:OSZ‘, 0So =V, 08, =@ (i=1,...,k),
S =14(S0,S1,...,S): HwiGQN (i:1,...,]{7) such that w; C So US;

and w; Nwj =@ (i # j)

and define &' to be the right-hand side of ([{.23) with “0So = V, 0S; = @” being replaced by
“0So =V A{z1,21} A -+« ANz, 2.}, 0Si = {zi, 2} 7. Then, |6] = |&'|.

We will prove this lemma at the end of this subsection.

Now we use Lemma with & = 2 and V = {21, 2]} = {29,25} = {0,z}. Note that & in
(ZI8) is a subset of &, since & includes partitions (Sp,S1,S2) in which there does not exist two
bond-disjoint paths on Sy. In addition, &’ is trivially a subset of &f in ([AI9). Therefore, we have
|60| < |6&(|. This completes the proof of [@I5) for j = 0. O

Here, we summarize the basic steps that we have followed to bound 715{)) (z) and which we
generalize to prove (ZI6) below and the bounds on 7§’ (x) for j > 1 in Section 3.2

(i) Count the (minimum) number, say, k+ 1, of edge-disjoint paths on Gy, that satisfy the source
constraint (as well as other additional conditions, if there are) of the considered function f(x).
For example, k = 2 for 74’ (z) = ZLA > on={oz} WA(M) L{os=a}.

(ii) Multiply f(z) by (%)k = Hf:l(% > om;—z WA(mM;)) (= 1) and then overlap the k dummies
my,...,my on the original current configuration n. Choose k paths wq,...,w among k +

1 edge-disjoint paths on Gn+zk

pmg’

(iii) Use Lemma to exchange the occupation status of edges on w; between G, and G, for
every i = 1,...,k. The current configurations after the mapping, denoted by n,my, ..., mg,
satisfy On = 0n A Owy A -+ - A Qwg, and Om,; = Jw; for i =1,... k.

Proof of (4.16]). If y = o or x, then (£10)) is reduced to the inequality for WX))(x). Also, ify # 0 = x,
then the left-hand side of (AI6) multiplied by Za/Zx =) 5,_ o wa(m)/Zx =1 equals

wa(n) wh(m) wa (n) wy(m)
1 0+— < 1 0
81’1%1@ ZA ZA { " y} an;g ZA ZA { n+my}
- ¥ wa(n) wa(m) (Gopy)?., (4.23)
On=0m={o,y}

22



where the first equality is due to Lemma 2.3l Therefore, we can assume o # x # y # o.
We follow the three steps described above.
(i) Since y ¢ On = {o,x} and T{o<=as}n{o——y} = 1, it is not hard to see that there is an

edge-disjoint cycle (closed path) o — y — z — o. Since a cycle does not have a source, there
must be another edge-disjoint connection from o to x, due to the source constraint On = {o,z}.
Therefore, there are at least 4 (= k+ 1) edge-disjoint paths on Gy: one is between o and y, another
is between y and x, and the other two are between o and x.

(ii) Multiplying both sides of ([@I6]) by (Zx/Z4)? is equivalent to

N N!
Z wAZ(4 ) Z ]1{0?96} N{o—y} 1;[ - 1(73)!

np! m !t mPm
ON={o,z} A On={o,x} b b b
om;=2 Yi=1,2,3
N:n+zg’:1 m;

wp(N) N
Z Z4% Z H el mO @1 3 (4.24)
ON={o,x} A On=0msz={o,z} b b Moy = Ty - b
8m1:{07y}7 3m2:{y,x}

N:n+2?:1 m;

IN

where we have used the notation ml(f) = m;|,. Note that the second sum on the left-hand side
equals the cardinality of

Gn = 2,S;, 0So = {o,7}, 0S; = 8Sy = 0S3 = &
N 0 o= {o0,z}, 0S; 2 3 } (4.25)

{(SOaSIaS%S?J: 0 < x in SO, 0<—>yin SO

and the second sum on the right-hand side of (4.24]) equals the cardinality of
{(SO,Sl,Sz,Ss) :GN = U?:o Si, 0Sg = 0S3 = {0, x}, 0S1 = {o,y}, OS2 = {Z/,x}}- (4.26)

Therefore, to prove ([£.24)), it is sufficient to show that the cardinality of (£.23]) is not bigger than
that of (Z.26]).

(iii) Now we use Lemma with £ = 3 and V = {z3,25} = {o,z}, {z1,2]} = {o,y} and
{z2,25} = {y,z}. Since (£20)) is a subset of & in the current setting, while &’ is a subset of (4.26]),
we obtain (£24]). This completes the proof of (£I6]). O

Proof of Lemma [{.2 We prove Lemma by decomposing &) into U@k Ggi (described in detail
below) and then constructing a bijection from &, to 6}% for every ;. To do so, we first introduce
some notation.

1. For every i = 1,...,k, we introduce an arbitrarily fixed order among elements in QZN ,. For

— 2z
z i

w,w' € QE_)Z,, we write w < w’ if w is earlier than ’ in this order. Let Qle_)Z, be the set of
? 1 1

paths ¢ € QZNlHZi such that there are k — 1 edge-disjoint paths on Gn \ ¢ (= the resulting
graph by removing the edges in () each of which connects z; and 2/ for every i = 2,... k.

=N;w1
Tro—zh

2. Then, for wy € Qle—m” we define
1

that ¢ 5 £ for any £ € Ql\i

to be the set of paths { € QZN2_> , on Gn \ wy such

%2

, earlier than wy. Then, we define QZNQiIz/ to be the set of paths
1 2

Z1—Z2
¢ e EZNfoZ, such that there are k — 2 edge-disjoint paths on GN \ (w1 U ) each of which is
2
from z; to 2} for i =3,... k.
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N
Qo

29 —>z2

on Gn \ UZ | w; such that

3. More generally, for I < k and & = (wi,...,w;) with wy € QZNl—LZi’ wo €
ON¥1 e define 2N to be the set of paths ¢ € QN

/) /
Zlﬂzl 2141 "ZH—I Zl+ 1H2l+

¢ P& for any € € Q Ni@i1 oarlier than wy, for every i = 1,...,1. Then, we define Q™"

2i 2 ZH,1*>ZZ+1

to be the set of paths ( € = =N such that there are k — (I + 1) edge-disjoint paths on

Tat1—E

oo, Wl €

G\ (UZ L wi U () each of which is from z; to 2} for i =1+ 2,... k.

4. If Il = k — 1, then we simply define Qz i’; ' = El;ii’;jl We will also abuse the notation to
k k
denote QN _, by QN
z21—2] z1—2)"

Using the above notation, we can decompose &) disjointly as follows. For a collection w; €
O w; "fori=1,...,k, we denote by 6@ the set of partitions Sy, = (So,S1,...,S;) € 6 such

27—
that, for every ¢ = 1,...,k, the earliest element of QNiZz/‘I contained in So US; is w;. Then, G0

is decomposed as

") = U U U & (4.27)

ON ~N;w ~ N;&
w1eQ Ly w2€)’” 1/ wre k71
1 1 2 22y

To complete the proof of Lemma 2] it suffices to construct a bijection from &g, to 6:31@ for

every . For Sy € Sy, , we define
F@k (gk) = (Fc(ﬁ(: (SQ), ces ’Fc(ﬁlz) (Sk)) = <S0 A Ui‘c:l Wi, Sl Awl, e ,Sk Awk), (428)

where BFLO)(S ) = VA{z1, 1} A - Az, 2} and OFY ( i) z} for i = 1,...,k. Note

= {2,
that, by definition using symmetric difference, we have Fw (ﬁgk (§ )) Sk. Also, by simple
combinatorics using w; Nw; =S;NS; = & and w; C SpUS; for 1 < j < k and i # j, we have

9(S) NEY(S)) = 2, O (So) UFY)(S;) = (SO A Uiy wi) US;. (4.29)

Wk

Since w; C SoUS; and w; N UZ#] w; = &, we have w; C F(O)(S yu F@(Sj).
It remains to show that w; is the earliest element of Q WJZ,.I in F(O) (So) U ng) (Sj). To see this,
J

ij 1

we first recall that Q "~V is a set of paths on GN \ U
J
in (So A U,

i<j Wis SO that its earliest element contained

iciwi) U S is still w;. Furthermore, since each Q S for i > J is a set of paths that
J —2z

do not fully contain w; or any earlier element of Qz_fz L asa Subset, wj is still the earliest element
iTE

of
((SO N wl-> U Sj> A (UD]. wi) - (SO N wl-> US; = FY(So) UEY(Sy).  (4.30)

Therefore, ﬁ@k is a bijection from Gy, to 6(’7%. This completes the proof of Lemma U
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4.3 Bounds on 7{’(z) for j > 1

First we prove (@10 for j > 1 assuming the following two lemmas, in which we recall ([2.30) and
use

B (z,33A) = {z << 2} N {z <= a}, Bfy (23,03 A) = Biy(z,2;.4) N {z — v},
(4.31)
w4e(m) wy (n) w4e(m) wy (n)
{z,m;A = Z 7 1 7 ]1E1’n+n(z7aﬂ;./4)7 @,z/,x,v;.A = Z 7 1c N ]1E1’1’1+n(z z,v;A)-
om=g om=g
on=zAx on=zAx
(4.32)
Lemma 4.3. For the ferromagnetic Ising model, we have
®y,:v;.A < Z (5y,z + é/\(ya Z)) @{z,m;A’ (433)
z
@y,x;A[l{y‘%v}] < Z (6y =+ G/\(y’ )) 92/1 A
z
+ ) (Syr + Galy,v)) Gav',2) O 4 4 a (v, v). (4.34)
vz
Lemma 4.4. For the ferromagnetic Ising model, we have
@/ A<ZPAu Yy, T )7 @/ylmv.A<ZPAuv ya ) (4'35)

ueA ueA

We prove Lemma [£.3] in Section 131l and Lemma [£4] in Section
Proof of (4-13) for j > 1 assuming Lemmas [{.-3H4-4} Recall (239). By @33), (A35) and @I3)),

we obtain
G-1) €2 i—1) _ (D !
®Ej,1,éj;éj,2 |:Tbj GEj,z;C},J S @ j— 1,bj 7CJ 2 |:Z Tbj (517]'72 + GA(b]’ Z)) Z PA?”j (Z’ ,I):|
2 v;€Cj—1
(G-1) — 7
<> ST (15,13 7o, Qe (B 7). (4.36)
vj
For j =1, we use ({.I6]) and (4.36]) to obtain
m (@ Z 0% [ 0 | < D7 00 A [Lo—un] T @y (B, ) (4.37)

b1,v1

w
= Z < Z A ]].{o<:>b1}ﬁ{o<—>v1}>7'b1QAU1 bl, Z P 0) O b )TleAvl(bl? )

bi,v1 " On=o0Ab;

b1,v1
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For j > 2, we use ([@.34)-(435]) and then ([@I3)-(£.I4) to obtain

G-1) )
9é1b€12[b®] d } Z:GJI) 5 MQI**WﬂTbQA%(J’)

—1,055C5— J,$CJ 1 j 17]7

SZTij;\§Uj(Ej"{E)<Z(6J 1,2 +GA(b.] 172)) Z PAUJ 1v](zabj)

Z vj_1€C5_2

+ 3 (5, + Gabjo1, ) Galv2) Y P/I\;vjl(z7bj)¢/\(vlavj)>

Ujfleéj72
S Z ]l{vjfl Géjfg} QI[/X;Ujfl,UJ’ (Ej—17 b]) Tbj QIA;UJ' (5J7 ‘T) (438)
Vj—1,V
We repeatedly use (£34))-(£35) to bound @b b iCo []l{Ei%viH}] fori=7—2,...,1asin (£38),

124410

and then at the end we apply (410) as in (£37) to obtain (415). This completes the proof. [

4.3.1 Proof of Lemma [4.3

Proof of (4.33). Recall (Z30)) and (£32). Then, to prove ([£33]), it suffices to bound the contribu-

tion from 1g_ . (y.a; ANEL o (1,33A) by >, G’A(y, 2) @/z,:v;.A'
First we recall ([2.28]) and (4.31]). Then, we have

Ewin (Y, 75 A) \ By (v, 23 A) = Eman(y, 23 A) N {{y < 2} \ {y < }}. (4.39)

m-+n

On {y o z}\ {y = x}, there is at least one pivotal bond for y o from y. Let b be

the last pivotal bond among them. Then, we have b = off b, my + np > 0, and y N b in
CY  n(z)°. Moreover, on the event Ep,n(y, z;A), we have that y — bin A and b % z. Since

{b = off b} N {b <—> z} = {EL n(b,x;A) off b} on the event that b is pivotal for y o

from y, we have

Eern(y, x; -’4) \ E;n—i—n(y, x; -’4)
= U {{Em+n (b, z; A) off b} N {my, +ny, > 0} N {y e bin A° ﬁCfIl+n( )C}} (4.40)

Therefore, we obtain

/
nyA_an:A

_ wAc wa(n)
E > Ligr,, \Gaid) off b} Limy+ny>0} Liy—bin acnct, (@)} (441)
om=go A mn
on=yAx

It remains to bound the right-hand side of (£41l), which is nonzero only if my is even and n,
is odd, due to the source constraints and the conditions in the indicators. First, as in ([2Z31]), we
alternate the parity of n; by changing the source constraint into dn = y A b A x and multiplying
by 5. Then, by conditioning on C3,, ,(x ) as in (233) (i.e. condltlonlng on C4 ., n(z) = B, letting

" .
m' = mlg,, m” = mlg .z, 0 = nlg\Bue and n” = n|g,., and then summing over

\B acnpes
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B C A), we obtain

UJAC ZAcmBC UJA B( )ZB(:
> Dl (s ) oft By N {CL, ()=}
BCA Om’'=2

on'=bAzx

XTb]l{mg,n;) even} E

om'’ =&
on’ =ynb

W AcnBe (m”) WRe (n”)
ZACOBC ZB(:

l{y mnb in A°NB°}

/

. = <4Py<PQ>Acm Bc
_ wae(m) wa(m) 4 1 4.42
= Z T Z— { m+n(b$ A) off b} To L {my,n;y even} <S0y90b>Acme (@) ( . )
om=g A A
On=bAx
Since <903/3%>ACHCI’;,+H(:::)C =0on B, (b2 A)\{Elp (b, z;A) off b} € {b € Ch,(z)} and on the
event that my, or ny is odd (see below (Z.I5]) or above (2.34))), we can omit “off b” and 1{my,n; even}
in ([442]). Since <30y909>,4€mcb @) S < (@ypp), due to Proposition 2.2, we have

WAc(IM) WA (N
€D < (pypyn Y AT Dy = oy (43)
om=g A A
n=bAzx

Therefore, (A4I) is bounded by 37, (wyp) \ 7 O} oA = 2 Galy, 2) ©’, ,.4- This completes the
proof of (£33]). O

Proof of (4-37). Recall (Z30) and (@32]). To prove ([@34]), we investigate

L= {Em+n(y,x,A) N {y <m—+n> U}} \El/ +n(y7w v; A)

= {Bmn(y, 2 A) \ B in(y, 25 A)} 0 {y < 0}, (4.44)
where Oy a[l1] = Oy g a[l{y—}] — O] ., 4.

First we recall (d.40), in which b is the last pivotal bond for y o from y, and define

Ri(b) = {Epn(b,z,v; A) off b} N {my, +ny >0} N {y — bin A°NCE (x )t (4.45)

Ro(b) = {El1n(b,z; A) offb}ﬂ{mb+nb>0}ﬁ{y<—>blnACﬁCm+n( )¢, y<m—>+nv}, (4.46)

where v € Cl,, () on Ry(b), while v € C% . (y) on Ry(b). Since

L= U{R1 ) U Ry(b)}, (4.47)

we have

Oy, Liy—v}] — O s = Z( A LR )] +®y,x;A[1R2(b)]>- (4.48)
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Following the same argument as in (£42)—(4.43]), we easily obtain

OyzialLr, )] = Z wae(m) wa(n )H{E

(b,z,v;A) off b} Tb]l{mb,nb even} <S0y30b>Acme

- lhin er
P Z 4 Z + m+n ¥
On=bAzx
wge(m) wp(n)
< (yPn) A To Z e I Lgr ., (bowA) = (PyPb) \Tb @/g,,x,v;A- (4.49)
om=g
on=bax
Similarly, we have
’LUAC
@y,x A le(b) Z Z ( ) ]l{ m+n(b z;A) off b} N{Ch, , , (x)=B} Tb]l{mb,ng7 even}
BCA dm=o Za
on=bax
’U)_Acch U]Bc (k)
X Z 7 sene Ze {ymé in A°NBS, ye—ov (in B)}
P yAb
wac(m) wp(n)
< Z Za 7 H{Em+n(b z;A) off b} 7_b]l{mb ng even} y,b,v; Acb a(z) (450)
om=g
On=bAzx
where
W Acn Be (h) WpRe (k)
v . = Teye— 4.51
y7Z7v7A7B Z ZAcm Be ZBC {yh+kv} ( )
Ooh=g
Ok=yAz

We note that, by ignoring the indicator in (A51), we have 0 < W, . .. 458 < (@y2) ge, Which is zero
whenever z € B. Therefore, we can omit “off b” and 1{ms,n; even} in (L50) to obtain

we(m) wy(n)
Oyaialrypy)] < D T 7n Le b)Yy pocach (2 (4.52)
om=g
On=bAzx

Substituting (£49) and (£52)) to [A.48), we arrive at

@y,x;A[]]-{y<—>U}] < Z 5y 2+ éA(ya )) Z$ A

’LUAC ( )
b Om=g
n=bAzx

The proof of (A34]) is completed by using

Uy oud s < O (9y00) (00 02) Ua (0, 0), (4.54)

UI

and replacing (py @y ), in ({54) by 0y, + Ga(y,v'), due to [@2).
To complete the proof of ([£.34]), it thus remains to show ([L.54]). First we note that, if A C B,
then by Lemma 2.3 we have

Z wpe(h) wpe (k)

Wy 2 vaB = = Ze Ze ]l{yﬁv} = <80y90v>30 (SDvsz>Bc < <80y90v>A<SDUSDZ>A- (4.55)
Ok=ynrz

28



However, to prove ([4.54]) for a general A that does not necessarily satisfy A C B, we use

lyepot={y o O{{y v\ {y i}, (4.56)

h+k

and consider the two events on the right-hand side separately. The contribution to ¥, . .. 4 5 from
{y — v} is easily bounded, similarly to (£23]), as

wpe (k) wpe (k) wpe (k')
> Ly—np < D Ly} = (PyPo) pe (Pop:) e
Ok=yAz Zpe 8 Ok=yAz Zp Zpe etk

ok'=2

S <90y<pv>A<(PU(Pz>A' (4'57)

Next we consider the contribution to Wy, ; .. 4.5 from {y P~ vI\{y — v} in (L56). We denote

by Ck(y) the set of sites k-connected from y. Since v € Chk(y)\Ck(y), there is a nonzero alternating
chain of mutually-disjoint h-connected clusters and mutually-disjoint k-connected clusters, from
some ug € Cx(y) to v. Therefore, we have

Ly oh\ () > ¥ ]l{y<—>uo}<H l{uw—»umﬂ}) <H ]l{um_lT»um}>

j=1 U0,-.-,Uj >0 >1
wFuy VA

Uj;=v

><< H L4Cy (uzy) N Ch (ugy )=2} ﬂ{ck(ml)mck(uQI,):z}), (4.58)
11'>0

1AV

where we regard an empty product as 1. Using this bound, we can perform the sums over h and
k in (£5]) independently.
For j = 1 and given ug # u; = v, the summand of (458) equals L{y——uo} L{uo——v}, which

is simply equal to 1{y—wv} if ug = y. Then, by (@51) and ([@2), the contribution from this to

Uy 2 04,8 18

’U)Bc( w.ACﬂ Bc ~ 2
akZA Zpe ]l{y<—>uo} Z Z.ACOBC H{UOTU} < <(Py90u0>/\<90u0 90z>A GA(UO7 U) : (4'59)
=yAz

Fix j > 2 and a sequence of distinct sites uo,...,u; (= v), and first consider the contribution
to the sum over k in (£51]) from the relevant indicators in the right-hand side of (£58]), which is

U]Bc(k)
Z e ﬂ{yTuo}<H1{u2l1Tu2l}> H ]l{Ck(um)ﬂCk(Uzz/):@} (4.60)

Ok=yAz >1 LU'>0
|

'LUBC
= Z <H]1{u2z 1‘—’U2l}>< H l{ck(um)ﬂck(um/):@}) l{yT’uo}ﬂ{Ck(uo)ﬂng:@}’

Ok=yAz >1 LI'>1
1A
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where Uy, = Ul>1 Ck(ug;). Conditioning on Uy.;, we obtain that

'LUBC
(@60) = Z (Hl{um 1‘—*%1})( H l{ck(um)ﬂck(ugz/):@})

>1 LU>1
1A
wgenyg,, (K')
x> 7 n{yﬁ,uo}. (4.61)
Ok'=yAz ﬂZ/l k
4D

< Py Pug) p{PugP2) 5

Then, by conditioning on U,z = Ul>2 Cx(ug;), following the same computation as above and using
([@2)), we further obtain that

’U)Bc
EBD) < (9yPuo)p (PLuo)n D (H Ly, l%um})( 11 ]l{ckmmmck(ugm:ra})

k=2 1>2 1L,I'>2
141
/
wpenyg ., (K')
x> — s} (4.62)
K —o Bcﬁlxlk;2 K

/

< G (u1,u2)?

We repeat this computation until all indicators for k are used up. We also apply the same argument

to the sum over h in ([A5]]). Summarizing these bounds with (£57)) and ([459]), and replacing ug
in (£58)-(&S6T) by v/, we obtain ([£54]). This completes the proof of (£34). O

4.3.2 Proof of Lemma [4.4]

We note that the common factor l{ynﬁlm} in Qé,x;A and @va;fl can be decomposed as
]l{yxﬁm} = ]l{y?x} + l{yﬁlw}\{%?w}. (4.63)

We estimate the contributions from 1{y<==} to @ 2.4 and O . .4 in the following paragraphs (a)

Y,2,0;

and (b), respectively. Then, in the paragraphs (c) and (d) below, we will estimate the contributions

from Iy = r}\lyspe} in (IEB]) to @ym 4 and G)y 04> Tespectively.

(a) First we investigate the contribution to ©; ,. 4 from 1{ye=a}:

we(m) wy(n)
> Liy Ay nyema) (4.64)
o A ZA mn "
on=yAzx
For a set of events FEi,...,En, we define Ej o--- o Eyx to be the event that Eq,..., En occur
bond-disjointly. Then, we have
Ly Aoy nyesa) < Hydoo)nyessa) < D Lyl o fuea)o (vl (4.65)
ueA

where the right-hand side does not depend on m. Therefore, the contribution to @;7 zA 18 bounded
by

U]A
@) <>, >, ﬂ{yTu}o{uTm}o{mi}SZPXIZ(W), (4.66)

u€A On=yAzx ueA
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where we have applied the same argument as in the proof of (4I6]), which is around @23])-

(@25). O

(b) Next we investigate the contribution to O , . 4 from 1{y<=a} in ([€E3)):

> wae(m) wy(n)

7 7 Mt =z — ) 4.
om=9o Z-AC ZA {ym+n 3y n }ﬂ{ym+n } ( 67)
On=yAzx

Note that, by using (£.56]) and ]l{y%x} < ]]_{y%»m}, we have

l{y;ﬁqw}ﬂ{yﬁw}ﬂ{yﬁv} < Lydha)n {yema) <]l{y<7>v} + l{ymv}\{yTv}>' (4.68)

We investigate the contributions from the two indicators in the parentheses separately.
We begin with the contribution from I{y——v}, which is independent of m. Since

{y<bain{y<=a}n{y v} cly < atoly ez, y v}, (4.69)
{y%x}c U{yTu}o{uTaz}, (4.70)
ucA

the contribution to (GT) from 1{y——wv} in (@GS is bounded by

Z Z wA ]l{yTu} ° {UT:B} o {yT:v, yTv}- (471)

u€A In=yAzx

We follow Steps (i)—(iii) described above ([@.23]) in Section Without loss of generality, we can
assume that y, u,z and v are all different; otherwise, the following argument can be simplified. (i)
Since y and z are sources, but u and v are not, there is an edge-disjoint cycley - v —z — v — g,
with an extra edge-disjoint path from y to x. Therefore, we have in total at least 5(= 4 + 1)
edge-disjoint paths. (ii) Multiplying by (Zx/Z)*, we have

Np!
@ = Z Z wA Z l{y%u} o{ucato{y—w, y<—>v}H—(1)!,

|
ue A ON=yAz On= yAa: np Hz m
om;=2 Vi=1,....4
N= n+z g
(4.72)
where we have used the notation m;” = mylp. (iif) The sum over n,my, ..., my in (@72 is bounded

by the cardinality of & in Lemma A2 with k =4, V = {y,x}, {21, 2]} = {y,u}, {22, 25} = {u, z},
{z3,25} = {y,v} and {z4,2)} = {v,z}. Bounding the cardinality of & in Lemma for this
setting, we obtain

w N,
@y E % L o

ueA ON=yAz On=yAzx b
omi=yAu, Oma=ulzx
Omz=yAv, Omyg=vAx

NZ“"’Z?:l m;

< Z @y‘par @y‘pu> <¢u@x>A<¢y@v>A<@U¢$>A- (4'73)
ucA
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Next we investigate the contribution to (A67]) from l{yTv}\{yTU} in (L68). On the event
{y = ztn{{y o v}\{y < v}}, there exists a vg # v such that {y «— x}o{y «—z, y «—

vo} occurs and that vy and v are connected via a nonzero alternating chain of mutually-disjoint
m-connected clusters and mutually-disjoint n-connected clusters. Therefore, by (£58]) and (.70])
(see also (AT1)), we obtain

Liy2a) n{yea}n Hyoy—ooh}

<Y D D Lyemupofummayo fymon, o) (H ]l{vmwvzm})

UE.A ]21 V0.4, Vj lZO

vFvy V1A
V=0
X (H ﬂ{vulTvgl}) ( IT Licam@a nCamtea=2) ]l{cn(vmmcn(vm/):ra})- (4.74)
>1 LI'>0
1Al

For the three products of indicators, we repeate the same argument as in (£59)—(462]) to derive
the factor 15 (v, v) — 6y v- As a result, we have

Yo (m) wa(n)

X e Zy LyZoa}n v} n {{y s ool
Bn:;Ax
wj (n)
< Z (T;Z)A (UOa ’U) - 61)0,1)) Z Z 7 l{yTu} o{uTx}o {mi7 yTUO}- (475)
) u€A On=yAzx

Following the same argument as in (L71)-(@.73]), we obtain

@) < Z (1/}/\(”077}) - 5110,1)) <‘Py‘P$>A<‘Py‘Pu>A<(Pu<Pm>A<‘Py‘on>A<‘on‘Px>A

u€A, v

< 3 (PRD. 0, 0) = (pyen) A (reud s usr) s (0000 s (Pupad ) (4.76)
ueA

Summarizing (£68), (E7T3) and (ET6), we arrive at
@8 < > Py, 2)- (477)

ucA
This completes the bound on the contribution to Gg,x,v;fl from 1{y<==} in (L63). O

(c) The contribution to @;,m;A from l{yxﬁlx}\{@ﬂ?l‘} in ([463]) equals

wae(m) wa(m)
8ng ZAC ZA l{yﬁm}ﬁ{{yﬁx}\{y?x}}. (4.78)
on=yAx

Note that, if 1{on=yaz}\{y<>=} = 1, then y is n-connected, but not n-doubly connected, to =,
and therefore there exists at least one pivotal bond for y «— z. Given an ordered set of bonds

by = (b1,...,br), we define

T

H, 5 (y,x) = {y = b} N ﬂ {{El b1} N {ny, > 0, b; is pivotal for y «— x}}, (4.79)
i=1
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Figure 7: An element in ﬁfé)gp which consists of s1t; = {0,3}, sato = {2,4}, sst3 = {4,6} and
S4t4 = {5, 8}.

where, by convention, by, = z. Then, by ]l{y:niﬂ:gg} < ]l{y%x}, we obtain

(Im) ZZ Z wAc ()]l{y;]iﬂ:m}ﬂngT(y,x)ﬂ{yﬁ]x}

A
T>1 0 %)
bT BgnyAx
’U)_Ac ( )
<2202 Ly oa) 0, () P {50 (4.80)
A n o m+n
T>1 b om=g
on=yAzx

On the event HnET (y,x), we denote the n-double connections between the pivotal bonds
bi,...,by by ’

Cbl( ) (i =0),
Dpii = { CoH () \Cli(y) (i=1,...,T —1), (4.81)
Ca)\COT(y)  (i=T).

As in Figure[7] we can think of Cy(y) as the interval [0, T'], where each integer i € [0, 7] corresponds
to Dy and the unit interval (i — 1,47) C [0, 7] corresponds to the pivotal bond b;. Since y =,

we see that, for every b;, there must be an (m + n)-bypath (i.e., an (m + n)-connection that does
not go through b;) from some z € Dy,s with s < i to some 2’ € Dy, with ¢ > i. We abbreviate
{s,t} to st if there is no confusion. Let EE&?T] = {{0T}}, EES?T} = {{0t1,5T7} : 0 < 50 < t; <T}
and generally for j < T (see Figure[T),

£(J)

01 = {{Siti}gzl 0=51<s9<t1 <s3<--- < tj_g < 8j < tj_l < tj = T}. (4.82)

For every j € {1,...,T}, we have [ cp[s,t] = [0,T] for any I' € L'Eéfﬂ, which implies double
connection. Conditioning on Cn(y) = |JL; Dn;i = B (and denoting k = n|g,., h = n|g,\B,. and
Dh;i = Dny = B;) and multiplying by Zge/Zp-, we obtain

W Ac (m) ’U~)A7B(h) ZBC WpRBe (k)
@& = Z Z Z Z Z s 7 T l{y%w}ﬁHh;gT(yw)ﬁ{Ch(y):B}

BCA T>1 g, Om=0k=
ah—yAm

T
X Z Z Z <H ]l{zleBSZ, z;€By; }ﬂ{zz‘—’zl}> H {Cmik(2:) N Conyxc (21)=2}- (4.83)

= 21,4525
R O I e e A i1
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Reorganizing this expression and then summing over B C A, we obtain

@ - Y B, e

T>1 b on=yAzx

DD > [RIEEm——

=1 gg.4.17 (G)  FLye®
I stk E[(]) T] 2} Z;

J
’U)Ac( WA c
% Z ZAC D (H {Zl<—>zl}> H ]]'{Cm+k(zz) ﬂCm+k(zl) @}, (484)

Om=0k=0 17l

where we have denoted Cy(y) by D. In the rightmost expression, the first line determines D that
contains vertices z;, 2} for all ¢ = 1,...,j in a specific manner, while the second line determines the
bypaths Cmk(zi) joining z; and z, for every ¢ = 1,...,j. We first derive n-independent bounds
on these bypaths in the following paragraph (c-1). Then, in (c-2) below, we will bound the first
two lines of the rightmost expression in (4.84)).

(c-1) For j =1, the last line of the rightmost expression in ([{84]) simply equals

Z wae(m) whe (k)

T 7n Meiey (4.85)

om=0k=92

Since 21,2, € D and z; # 2, these two vertices are connected via a nonzero alternating chain
of mutually-disjoint m-connected clusters and mutually-disjoint k-connected clusters. Moreover,
. ~ Bxc . . .

since z1,2] € D and k € Z,"°, this chain of bubbles starts and ends with m-connected clusters

(possibly with a single m-connected cluster), not with k-connected clusters. Therefore, by following
the argument around (A.58)—(4.62]), we can easily show

@) < > (GR) V(e 2. (4.86)

>1

For j > 2, since Cpyik(2i) for i = 1,...,j are mutually-disjoint due to the last product of the
indicators in (£84), we can treat each bypath separately by the conditioning-on-clusters argument.
By conditioning on Vimik = ;59 Cm+k(2:), the last line in the rightmost expression of (4.84)) equals

Z w?ic ch (H Iz, «—»z/}> ( H ]l{cm+k(zi)mcm+k(zl):g}>

Om=0k=2 i>2
il
/ /
waenve,,, (M) Wpeaye (k)
% Z Z 7~ ]]'{Zl — Z1} (4.87)
Om’'=90k'=g ANVE DNV, 1k m’ +k’

By using (@3X6) (and replacing A° and D¢ in @3] by A°N Ve ik and DN Ve, 4k respectively),
the second line of [@XT) is bounded by 3,5,(G%)*@ 1 (2, 21). Repeating the same argument
until the remaining products of the indicators are used up, we obtain

@EZ7) < HZ HAE 2, (4.88)

i=11>1
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Figure 8: Schematic representations of I1(y, z,x), I2(y, 2, x) and I3(y, z, 2/, x).

We have proved that

=)<y Y (H (@) U(a,zé)) > w%(n) Liytooy

7>1 215525 Ni=11>1 on=yAx A
/ ’
252
J
X: :: : : : ]]'Hn;gT(yyx)H]]'{ZiEDn;siyzQGDn;ti}' (489)
723 Br (st el -

(c-2) Since (489) depends only on a single current configuration, we may use Lemma to
obtain an upper bound. To do so, we first simplify the second line of (Z.89), which is, by definition,
equal to the indicator of the disjoint union

U U U {Hn;l;T(y7x) n ﬂ {ZZ € Dn;sw Zz/ € Dn;ti}} (4.90)

T2j pp {sﬁi}{ﬁeﬁg,)ﬂ -

. . . . J
U { U U U {Hn;I;T(y’m) n ﬂ {Zl € Dnys;, Zé € Dn;ti}}}a
€1,..€ T>j pr {sits }z 1€£((]))T] i=1

bt, +1=€it+1 ¥i=0,...,j—1

where tg = 0 by convention. On the left-hand side of ([@390), the first two unions identify the
number and location of the pivotal bonds for y «— =z, and the third union identifies the indices

of double connections associated with the bypaths between z; and 2, for every i = 1,...,j. The
union over ei,...,e; on the right-hand side identifies some of the pivotal bonds b1,...,br that
are essential to decompose the chain of double connections Hn;ET (y,x) into the following building
blocks (see Figure [):

L(y,z,2) ={y =z, y < z}, Ly, 7, ) U{{y<—>u} Li(u, 7 2)}, (4.91)

I3(y, 2,2 ,x) = U {{Ig(y, z,u)o Ir(u, 2’ 2)} U {{y — u}o{l(u,z,x)NI(u,z ,ﬂ:)}}} (4.92)

u
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For example, since EES)T} = {{0T'}}, we have

@@ tor j=0)=JU U {Hup 50 {21 € Duo. 2 € Dur}}

e1 T>1 jp e,
C U {{Il(y, z1,€1) 0 Is(€1,21,2)} N {ne, >0, e is pivotal for y — x}} (4.93)
€1

It is not hard to see in general that

(@E90) for j > 2)

- U {{Il y,21761) 13(5172’2,2’1,§2) 013(6] 1,25, % ] 1 ])OIZ(eJ7z]7 )}

€1;..-,€

N ﬂ {nei > 0, e; is pivotal for y «— x}} (4.94)

i=1
To bound (4.89) using Lemma [4.2] we further consider an event that includes (4.93)—(£94) as
subsets. Without losing generality, we can assume that y # e, €,_1 # ¢; for i = 2,...,j, and

€; # x; otherwise, the following argument can be simplified. We consider each event I; in (£93])-
(£94)) individually, and to do so, we assume that y and e; are the only sources for I;(y, z1,¢;),
that €, and e; are the only sources for I3(€;_1, zj, 2,_,¢;) for every i =2,..., 7, and that €; and
x are the only sources for I»(€;, z], x). This is because y and z are the only sources for the entire
event (L.94)), and every e; is pivotal for y «— .

On I (y, z, z) with y, z being the only sources, according to the observation in Step (i) described
below (4.23]), we have two edge-disjoint connections from y to z, one of which may go through z,
and another edge-disjoint connection from y to x (cf., I;(y, z, ) in Figure {). Therefore,

L(y,z,x) C { wi,wz € O, g € Qy_., such that w; Nw, = & (1 # l)} (4.95)
Similarly, for Is(y, 2/, x) with y, z being the only sources (cf., Is(y, 2/, x) in Figure §),
Ly, 2 x) C {Swl,wg cQr e Qp ., such that w;Nw; =@ (i #1)}. (4.96)

On I5(y, 2, 2',x) with y, z being the only sources, there are at least three edge-disjoint paths,
one from y to z, another one from z to 2/, and another one from 2’ to x. It is not hard to see
this from |J,{I2(y, z,u) o Is(u, ', z)} in ([@E92)), which corresponds to the first event depicted in
Figure Bl Tt is also possible to extract such three edge-disjoint paths from the remaining event in
([£92]). See the second event depicted in Figure 8 for one of the worst topological situations. Since
there are at least three edge-disjoint paths between u and x, say, (1, (2 and (3, we can go from y
to z via (1 and a part of (5, and go from z to 2’ via the middle part of (o, and then go from 2’ to
x via the remaining part of (o and (3. The other cases can be dealt with similarly. As a result, we
have

I3(y, 2,2 ,x) C {le ey ., Fwo € OB Fws € 08 such that w; Nw; = @ (i # 0} (4.97)
Since

U {{{% e Yoffwe® 3}n{n > 0}} cPweqr ), (4.98)

e

we see that (£.93)) is a subset of

I(l) ( ) _ 3(,01,(4)2 S Qzlﬂy w3 € Q w4,w5 S Qx—w;l (4 99)
S such that w; Nw; =@ (1 #1) ’ '
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zZ Z Z z, X

y Z Z z z

Figure 9: A schematic representation of I(ﬁ)ﬂ,(y, x) for j > 2 consisting of 2j + 3 edge-disjoint
paths on Gy,.

and that (£.94]) is a subset of (see Figure [])

B 3(,01,(,()2 S Qzlﬂy w3 € Qyﬂzg Wy € sz—>z ws € Q? g
I?%)E’- (yal') = WQ] S Q? =2, 3w2]+1 S Qz; — 3w2j+2,WQJ+3 S Qxﬂz; , (4.100)
k) J —_
such that w; Nw; =@ (i #1)
where Eﬁ/) = (z§l), cey ](I)) Therefore,

(m)<z Z (HZ *(20-1) “zg)> Z w%(An) l{y%ﬂn@g{(w). (4.101)
g

j>1 z1, 72 § = 11>1 on=yAx
2], %5

Now we apply Lemma to bound (LI0I)). To clearly understand how it is applied, for
now we ignore ]l{yéx} in (40T and only consider the contribution from 1 I(J) (y z)- Without

losing generality, we assume that y,z,z;, 2, for i = 1,...,j are all dlfferent. Slnce there are

2j + 3 edge-disjoint paths on Gy, as in (£99])— (IIHKII) see also Figure [@)), we multiply (4101 by
(Zn/Zp)%12, following Step (ii) of the strategy described in Section Overlapping the 25 + 3

current configurations and using Lemma with V = {y,z} and k = 2j + 2, we obtain

WA
> 110, () < P ou)aleapsy )y (4.102)
on=yAzx A 7
Y
<‘Py(Px>A ‘ (] = 1)7
X i1 _
<¢y@022>/\<4p22§021>/\ < ]]2 <QDZ szi+1>A<(pzi+1 (pz{>A> <(‘OZ§-_1(‘%>A (j > 2)
1=

Note that, by ([@.2]), we have

Zl>1( )* @=1) (y,x)
> <(Pz(Py> Zl> (G )*(2l 2 (z,x) < YAy, ) — Oy.as (4.103)
Y (aa)y X1 (GR)* P (y,2)
(

S (e ileeei S (GR) PV (2, 2) < 2(0aly ) — by0). (4.104)
>1

!

2
A
2
A

2,2
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Therefore, (LI0I) without 1{y-2-x} is bounded by

<%0y801>/\ Z <SDZ1 @y>i<@x@zg>i Z (é?\)*(m_l)(zl, Zi)

21,24 >1
+ Z Z <H ,l/}/\ Ziy % z) - 5zi,zg)> <Z <Q0y(pzl>i Z (é?\)*@l*l) (217 Zi))
J22 P2 Ni=2 21 =1

Zl77]1

X (Z RS (@i)*(m_l)(%w}))(s%s%)A(sozm;)A

I>1

(H L Pripn) (P 2) A) (0o a), <D P (y,2). (4.105)

=2 7>1
If ]l{y<i>x} is present in the above argument, then at least one of the paths w; fori =3,...,2j+1

has to go through A. For example, if w3 (€ Qy_,ZQ) goes through A, then we can split it into two

edge-disjoint paths at some u € A, such as wj € 2y, and wy € Q7. The contribution from
this case is bounded, by following the same argument as above by EI02) with (py¢.,), being
replaced by >, - 4 (cpy<pu> A{Pupz,) - Bounding the other 2j —2 cases similarly and summing these

bounds over j > 1, we obtain
EIOD) < ) Y POy, ). (4.106)
ucA j>1
This together with (£.60]) in the above paragraph (a) complete the proof of the bound on ©; . 4
0

in (4.35).

(d) Finally, we investigate the contribution to Gg,x,v;fl from ﬂ.{yﬁ]x}\{y?x} in (L63)):

we(m) wy(n)
ar;g T Zn Mnm 0l e (4.107)
on=yAzx

Using H, 7 (y,x) defined in (@.79), we can write (L107) as (cf., (£.80))
wAc wa ()
(m) ZZ Z ]]-{y<—>x}ﬁH - (y,m)ﬁ{yﬁx}ﬁ{y;ﬂ—#}v}' (4108)

T>1 ;. Om=0@ ZA
on=yAzx
To bound this, we will also use a similar expression to (4.84), in which k = n[p_ with D = Ch(y).
We investigate (LI08]) separately (in the following paragraphs (d-1) and (d-2)) depending on
whether or not there is a bypath Cp 1k (2;) for some i € {1,..., 7} containing v.
(d-1) If there is such a bypath, then we use ]l{ynﬁ;m} < ]l{y%»a:} as in (£80) to bound the

contribution from this case to (£I08]) by

T
ZZ Z wA l{y%x}ﬂHmaT(y,x)Z Z Z (Hl{zzepnsw zeDnt}>

> i—1 ; Z1yeees%
T>1 p.. dn=yAzx J {sit:}] 16£E(]))T] z) Z;

x Z wAc e wDC <H ]]-{z1<—>z > <H L{Comi(z) N Conpc(22) Q}) Z LiveCm x (=)}

om= Q 1#£l =
k=

(4.109)

38



Note that the last sum of the indicators is the only difference from (4.84)).
When j = 1, the second line of (£I09]) equals

Z w e (m) wpe (k)

7 e Zpe ]1{21;:}:2{} ]l{zlmv}- (4.110)

Om=0k=02
As described in (L85)-(Z86), we can bound (LII0) without I{z1c—e} by a chain of bubbles
leI(é?\)*(Ql*l)(zl,zi). If T{z1c—v} = 1, then, by the argument around (458)—-(4.62), one of

the bubbles has an extra vertex v’ that is further connected to v with another chain of bubbles
¥a(v',v). That is, the effect of ]l{z1<—>v} is to replace one of the Gz’s in the chain of bubbles, say,

Ga(a,d’), by > ({(Papur >AGA(U a') + Gala,a)dy @) VAV v). Let

201

gny(z,2") Z Z Z (z,a) Ga(a,d’) (éi)*(m*l*i) (d,2))

>1 i=1 a,a’
X ((cpacpy>AéA(y, a) + éA(a, a’) 5y7a/). (4.111)

Then, we have

EII) < gawr(21,21) ea (v, v). (4.112)

Let j > 2 and consider the contribution to (AI09) from 1{veCm xk(z1)}; the contribution
from 1{v€Cmik(z)} With ¢ # 1 can be estimated in the same way. By conditioning on V1 =
Ui>2 Cmik(z;) as in ([@L8T), the contribution to the second line of (AI09) from L{veCmiw(z1)} =
]l{z_lmv} equals

Z ngc ch (H ll{zﬂ_w'})( H ]l{Cm+k(z¢)ﬂCm+k(zi,):g}>

Om=0k=2 i,i'>2
i
/ W= k/
wasnve,,, (M) Wpenye | (K) . . s
% A 7 - {z1 & 21} Hz «— v} (4. )
om’' =0k =& Acn Vfthk Den V§n+k m’ +k’ m k!

where the second line is bounded by ({II2) for j = 1, and then the first line is bounded by

[Ti—s X121(GR)* 'V (24, 27), due to (@.ET)-(ELSS).
Summarizing the above bounds, we have (cf., ([ZI01]))

J
<3 3 (2 Conetan a0 I @) )
]>1Z1, wZj Nh=1 o' ith I>1
Zl, ,Z‘7

wA
x Z 1{y<—»x} 111“) , () (4.114)
on=yAx
to which we can apply the bound discussed between (A80) and (ZI06]).

(d-2) If v ¢ Cimyk(%) for any ¢ = 1,..., 7, then there exists a v € Dy, for some [ € {0,...,T}
such that v «— v and Cy 4k (V) NCmyk(2:) = @ for any i. In addition, since all connections from

m+k
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y to z on the graph DU ngl Cm+x(z;) have to go through A, there is an h € {1,...,j} such that
2n A, z;. Therefore, the contribution from this case to (£I08]) is bounded by

m-+k
wA
DI R SN SINED VI | | (TEENHESEY D et
T>1 p,. On=yAz j= I{Sztz EEEJ) ]v 202 =0
Zl’ ,ZJ
wAc wDC
X Z - <Z ]]-{zh<—>zh}1_[ Ly, — ) (H l{Cm+k(zi)ﬁCm+k(zi/)®}>
om= Z 14!
k=
Loy I Licmint) nCmirtz=2 (4.115)
i=1

where, by conditioning on Sy,1x = ngl Cm+k(zi), the last two lines are (see below (4.87]))

Z wgic wDC <Z ]1{2,“—%, } H {z“—'zl}> ( H l{cm+k(zi) ﬂcm+k(2i')=@}>

Om=0k=0 i
w_AC Sc m// w'f)c Se (k//)
% Z N m+k( ) N m+k ]]-{v (_) U} (4116)
Om" =0k =2 ZACmsﬁwk Z’[Dcm Se ik m" +k
< da (v’ )
When 5 =1, we have
. w e (m) wae (k)
() for j=1) <o) 3 A0y Ly
— k— Ac Pe m+k
Om=0k=0

If we ignore the “through .4”-condition in the last indicator, then the sum is bounded, as in (£.86]),
by a chain of bubbles 3,5,(G3)*® 1 (21,2]). However, because of this condition, one of the

GA’s in the bound, say, Ga(a,a’), is replaced by ZueA(<4pa4pu>AéA(u,a’) +Ga(a,d')d, q). Using
(£111)), we have

EIIT) < Ya(v',0) Y gay(21,21)- (4.118)

yeA
Let j > 2 and consider the contribution to (£I16) from 1{21%;21}; the contributions from
1{zp ﬁzg} with h # 1 can be estimated similarly. By conditioning on Vi1 = UZZQ Cm+k(zi), the

contribution to (AIT6]) from 1{z, %»(zi} equals

Z wgﬁc wDC (H]l{zz<—>z )( H 1{Cm+k(zi)ﬁcm+k(zi,)g}>

Om=0k=02 i1 >2
i
/
waenve, , (') Wpenye | (K)
X Pa(v',v) Z 7 Tk - Ly A (4.119)
om’=0k'=92 'Acmvxcn-uc DCOVICn_H( m’+k’

where the second line is bounded by (AIIS8)) for j = 1, and then the first line is bounded by
Hz 221>1(G2)*(21 1)(,2, 1), as described below (LIT3]).
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As a result, (£I15) is bounded by

J
YD DIRACRSIO D) DPIWEREAL | DI (GHRSIEHE)
i#h 1>1

J21v21,..,25 h=1ycA
zi,...,z;.
wA
% Z Z Z Z ]lH o (U:) <H Ltz €Dnis,, /€D, }> Z Lo epn, ) (4.120)
On=ysz T2J b (st} L)y,

The second line can be bounded by following the argument between (£89]) and ([£.I05)); note that
the sum of the indicators in ([AI20]), except for the last factor lezo 1{v'€Dpn,}, is identical to that
in (AR9)). First, we rewrite the sum of the indicators in (AI20]) as a single indicator of an event &£
similar to (£90). Then, we construct another event similar to I (J ) e (y, x) in (£99)—(.100), of which
€ is a subset. Due to ZJT:O 1{v'eDP,,} in ([{I20), one of the paths in the definition of L 2 (y,x),
say, w; € Q2 , for some a,a’ (depending on i) is split into two edge-disjoint paths w} € Qaﬂv, and

wl e Qn_ ,, followed by the summation over i = 3,...,2j + 1 (cf., Figure [). Flnally, we apply

v —a

Lemma [£.2] to obtain the desired bound on the last line of (ZI20]).
Summarizing the above (d-1) and (d-2), we obtain

EI0S) <> > Py, ). (4.121)
j>1ueA
This together with (L77) in the above paragraph (b) complete the proof of the bound on

Oy 2.4 10 (E35). O

5 Bounds on 7{'(z) assuming the decay of G(z)

Using the diagrammatic bounds proved in the previous section, we prove Proposition Bl in Sec-
tion [5.1] and Propositions B.2] and B.3|(iii) in Section 5.2

5.1 Bounds for the spread-out model

We prove Proposition BT for the spread-out model using the following convolution bounds:

Proposition 5.1. (i) Leta>b >0 and a+b > d. There is a C = C(a,b,d) such that

1 C
< . 5.1
2= ool = oo o)

(ii) Let q € (%,d). There is a C' = C'(d,q) such that

1 1 1 1 '
> < ¢ : (5.2)
ol 4

=2l =" =zl Iz = ylle Iz = y'lle ~ Nz = yllefle” — o'l

Proof. The inequality (5.I)) is identical to [15, Proposition 1.7(i)]. We use this to prove (5.2). By
the triangle inequality, we have gllz —y[| < o — 2]l V |z = yll and glla’ —y/'l| < 2" = 2} v ]z = /Il
Suppose that |z — z|| < ||z — y|| and ||z’ — 2|| < ]z — ¢/||. Then, by (EI) with a = b = ¢, the

contribution from this case is bounded by

229

3 1 2l — 2']|2
Il = yllellz" =yl = llw = 207 o’ = 217~ flz =yl 2=’ — o'l

(5.3)
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Figure 10: (a) A schematic representation of Proposition 5.I{i), where each segment, say, from z
to y represent ||z — y||~9. (b) A schematic representation of (.19, which is a result of successive
applications of Proposition B.II(ii) with z = 2’ or y = ¢/.

for some ¢ < 0o, where we note that [lz —2/[|472¢ < 1 because of $d < ¢. The other three possible
cases can be estimated similarly (see Figure[I0Ola)). This completes the proof of Proposition5.1l [

Before going into the proof of Proposition 3.1, we summarize prerequisites. Recall that (E13)-
(£14) involve Gp, and note that, by (£.2),

<Q00QDI> < 501 + GA(O x)g (5.4)
We first show that
~ O(fo) - O(8)
Galo,z) < , Tp(05, + Ga(b, 7)) < 5.5
( ) |||x|||q b;O ( b, ( )) |||$|||q ( )

hold assuming the bounds in (3.2)).

Proof. By the assumed bound 7 < 2 in (3:2]), we have

Galo,x) =7D(x) + > _7D(y) (pypa)y < 2D(x) + > 2D(y) G(z —y), (5.6)
y#FT y#w

where, and from now on without stating explicitly, we use the translation invariance of G(z) and
the fact that G(z — y) is an increasing limit of (¢yp,), as A T Z%. By (I14) and the assumption
in Proposition Bl that 6o L%~9, with ¢ < d, is bounded away from zero, we obtain

O(L~"1) _ O()

D(z) < O(L™) 1 {oc|jufuzr} < < . (5.7)
Ol 2B =T e = ale
For the last term in (5.6)), we consider the cases for |z| < 2v/dL and |z| > 2v/dL separately.
When |z| < 2V/dL, we use (5.7), (3:2) and (5.1) with 3d < ¢ < d to obtain
O(LidJrq) 0o O(@oLidJrq) 0(00)
D(y)G(z —y) < < —— < : (5.8)
2. 2 Iyl fle —wlle = faf*e? [l

y#x y

When |z| > 2V/dL, we use the triangle inequality |2 — y| > |z| — |y| and the fact that D(y) is
nonzero only when 0 < ||y[les < L (s0 that |y| < vVd||yllec < VAL < %|z[). Then, we obtain

S D) Gl —y) < 3 D(y) 2o _ 2 (5.9)

2 el ~ Tl

This completes the proof of the first inequality in (5.5]). The second inequality can be proved
similarly. U
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By repeated use of (0.5 and Proposition B.Ii) with a = b = 2¢ (or Proposition B.1I(ii) with
x =2 and y = ¢), we obtain

O(65)

") < by — 5.10
e T 10
Together with the naive bound G(z) < O(1)||z| =4 (cf., B2)) as well as Proposition B.I|(ii) (with

x =2’ or y =1v'), we also obtain

/ , / 0(63)
26 —y) Gz =) Ualv) < Glo—y) Gz =) + )y

z = v'||7flv = o']?e
o)
= o —wlllz —vlle

(5.11)

The O(1) term in the right-hand side is replaced by O(fp) or O(#%) depending on the number of
G’s on the left being replaced by Gp’s.

Proof of Proposition m Since (5.4)—(5.5) immediately imply the bound on 74’ (), it suffices to
prove the bounds on 7' A V(z) for i > 1. To do so, we first estimate the building blocks of the

diagrammatic bound @IH): 3, T QA;u(b, z) and Y, T QAW,U(b, x).
Recall (I10)—-@I4). First, by using G(z) < O(1)||z|~? and (5I1]), we obtain

o)

Py, x) < (5.12)
A Iz —yl2allw — yllellz — ufj?’
o(1)
P (y,2) < (5.13)
A Iz = yllollu = yllellz — ul|2flo — yll*)lz —v]|*°
We will show at the end of this subsection that, for j > 1,
0(j) O(63)
PNy, 0 , 5.14
e e ] P T P (314
0(j2) O(62)7
Py (y,x) < U™) O(o) (5.15)

=z = ylllu =yl — ull9flo = yllef)lz — vl

As a result, P/,\(;(Z(y,x) (resp., PA(Z)U( z)) is the leading term of Py, (y,x) (vesp., P{,, ,(y,)),
which thus obeys the same bound as in (5I2) (resp., (5.13)), with a different constant in O(1).
Combining these bounds with (&.5]) and (5.11) (with both G in the left-hand side being replace by

G'a) and then using Proposition BIN(ii), we obtain

1 O(6)
§ b Qs § < (5.16)
“ W—ywmm—ﬁmw—aww—uw lz =yl — ul*’

b:b=y

and

1
> nhualbn) <3
el mz—ﬂqW—AWM—AWM—UWM—AWM—MW

b:b=y

Z O(6o) 1
HW—yWMz—vWMw—zWWu—%Mw—uW
O(o)

= Mo =yl = vllolle — ul*e

(5.17)
This completes bounding the building blocks.
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Now we prove the bounds on 7§ (z) for j > 1. For the bounds on 7§’ () for j > 2, we simply
apply (512) and (5.16)—(EI7) to the diagrammatic bound (£I5]). Then, we obtain

j—1

LOEDY o) 11 O(b)
TA ('I) = 2q q q . g . . q . |Il2g
iy N P9 lun = vi ]9\ 25 floiva = willlwirs = viga | lluien = vil
U}v 7UJ i=1
ISRV )

O(6o)

2 = wjllele — vj)*

(j >2). (5.18)

First, we consider the sum over u; and v;. By successive applications of Proposition [E.INii) (with
x =2 or y =1v'), we obtain (see Figure [I0(b))

)Y A Olth) 5.19)
o o Moy =il = vl ey —vjalP? e = uyllle — vyl
<3 O(bo) O(bb)
= v =il lvj-1 = villUllz — vicallflle — vill22 T e — w9l — v ]2
and thus
7.‘.(])(.%.) < Z 0(1) <J1_f 0(00) )
AT S TalPlodlellus = oalle \ 2 lvies — will?lwi — visa 7l — vil?
VlyeeyVj—1
2
x O(o) . (5.20)

e = w1 e — o1

Repeating the application of Proposition (.I(ii) as in (5.19), we end up with

O(1) O(6p)? O(6)’
7 < i 5.21
E;WMWWmMWn—mWWw—uwWw—qu‘Wﬂ@ (5:21)

For the bound on 7§’ (z), we use the following bound, instead of (E.I2):

O(0%)

P'(O)(o u) = 6pu000 + (1 = 60u000) Pro 0 (0,1) < 8oubop + . (5.22)
A lul? ol — vl
In addition, instead of using (5.16]), we use
> Qo) < }:mz_iw<@v@m (1= 06.40.0) PO(z,0) + > PO >
b:b=u 7>1
o O(63)
S 'U s +
HW—|W zhk—ﬂwm—ﬂmw—4WM—ﬂW
o(6 o603
_——LQ—@@ (%) =, (5.23)
llz = wll? Iz = ullllz — o]

due to (5.3), (5.I14) and (5.22). Applying (5.22)-(E23) to (£I5) for 7 = 1 and then using Propo-

sition [BIN(ii), we end up with

o o(63) O0) e o
A (0) < O0) dos + ey + Zruum%mvm H\u—vmq< ’ )

o —ulle flz - ulleflz — v]*

O(05)
e

< 0(90) 50,:1: + (5'24)
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To complete the proof of Proposition B.1] it thus remains to show (L.I14)—(GE.I5]). The inequality
(5I4) for j = 1 immediately follows from the definition (4.6]) of P//\(;lqi (see also Figure [d]) and the
bound (EI0) on 1y — 6. To prove (BIF) for j = 1, we first recall the definition @9) of P\
(and Figure [). Note that, by GI1), >, G(v —y) G(z — v') ¢¥a(v',v) obeys the same bound on
Yo G —y)G(z — ') (with a different O( ) term). That is, the effect of an additional 5 is not
significant. Therefore, the bound on PA 18 identical, with a possible modification of the O(1)
multiple, to the bound on P, (or P}»)) with v (resp., u) “being embedded” in one of the bubbles
consisting of ¥y — §. By (Ej:(]), Q,Z)A(é/,x) — 0y With v being embedded in one of its bubbles is
bounded as

Z Z S (G) TV wy) Gal 2 ((py e Ga(0,2) + Galy 2 00 ) (GR) ()

k=11=1 y'a’

—Zm 5.9 Ca(y's2) {0y 00) \Ca0:)) + Gy 2') S ¥ ()

O(t) 0(0) o() 0(63)
21 —yur?q w < (5.25)

o =y o —yllefla’ — ol flz =2/~ Jz = yllollo - yl2llz - oll*

By this observation and using (8.2) to bound the remaining two two-point functions consisting of
11(1) : -
Py ;u’v (recall (£9)), we obtain (515 for j = 1.
r (BI4)—(EI5) with j > 2, we first note that, by applying (8:2]) and (5.10) to the definition
(IZE) of P (y, ), we have

: 0(43) 0(95)
P(J)(y w) < 0 0
AT 2 v} = yllP?llvz — yll2flvy — val|e 1;[2 v = villP9fvir — vi_q [20lv; — visa ]|

V2,...,Vj
v’l,...,v;71
0(63)

. (5.26)
l = vjlIP9lle — v;_; ]|

By definition, the bound on Pj/\(ﬁ(y, x) is obtained by “embedding u” in one of the 2j — 1 factors of
Il--- 119 (not || - - - ||*%) and then summing over all these 2j — 1 choices. For example, the contribution
from the case in which |Jvg — y||? is replaced by |u — y[|%||ve — u||? is bounded, similarly to (5:21I),
by

Z O(05) 0(03)7*
vy = ylPlle — yll9llve — wl|flvy — 2|9 flz — Vi |9)le — val?

0(62) 062y
< < . 9.27
DI e ' (5:27)

ylellz — ullellz — w1l = o — ylPeflu — ylleflz - ull

The other 25 — 2 contributions can be estimated in a similar way, with the same form of the bound.
This completes the proof of (B.14]).

By (5.25]), the bound on PX,(ZZv(y,x) is also obtained by “embedding u and v” in one of the
2j — 1 factors of ||--- || and one of the j factors of || ---[|?? in (5.286]), and then summing over all
these combinations. For example, the contribution from the case in which [|v —y||? and |Jv} —y]|*?
in (5.26)) are replaced, respectively, by [|u—y||?]|Jve —u||? and |Jv] —y||?]|v — y||?||v} —v]|9, is bounded
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Z 0(03) 0(03)" !
= vt =yl v = yll9llvy — vll9lle = yll9llve — ull vy — v2ll? 2 = vill2llz — val|*

=47 oy = yllllo = ylllley — vlelle — yllle — ull?lle — vy

0(63)’
< .
Iz = yll9llv — yllelle — ull?lv — yllllz — vl

(5.28)

The other (25 —1)j — 1 contributions can be estimated similarly, with the same form of the bound.
This completes the proof of (5.I5]) and thus Proposition 3.1 O
5.2 Bounds for finite-range models

First, we prove ([8.8]) and Proposition B.3[(iii) assuming ([3.7). Then, we prove ([B.10]) assuming (B.7])
and ([3.9) to complete the proof of Propositions 3.2l

Proof of (3.8) assuming (37). By applying (2] to the bound @IH) on 7\’ (z), it is easy to show
that, for r =0, 2,

Dol @) < dro+ 3 el gl <o+ (suplal"G(@)) 37D ¢ G)(w) G(@)
r#o r70 TF#0
< 60 4 (do?)°r20(09)?. (5.29)

For i > 1, by using the diagrammatic bound (4.I5]) and translation invariance, we have
i—1
Z V(z) < (Z P/'\(;O;(o, :U)) <sup Z Ty 2 Q0.0 (%, x)) (supZTy,zQﬁ\;O(z, x)) . (5.30)
x v,T Z,0,T Y z,T
The proof of the bound on ), WX)(x) for ¢ > 1 is completed by showing that
(Z P;f?g(o, x) — 1) v (sup Z Ty,zQx;o,v('Z, x)) \Y (supz Ty,zQIA;O(Z, x)) =0(6y). (5.31)
V,T Z,0,T Y Z,T

The key idea to obtain this estimate is that the bounding diagrams for the Ising model are similar
to those for self-avoiding walk (cf., Figure [f]). The diagrams for self-avoiding walk are known to
be bounded by products of bubble diagrams (see, e.g., [24]), and we can apply the same method
to bound the diagrams for the Ising model by products of bubbles.

For example, consider

ZTy,ZQIA;O(Z,$) = Z (Z’Ty,z (6.0 + Gal(z, Z/))>P/I\;o(z/,x)- (5.32)

The factor of f is due to the nonzero line segment 3" 7, (... + Ga(2,2')), because
Z’Toz 0.2+ Galz, z)) =7D(x —|—7'ZD )Gz, x <O(90)—|—TsquA(0 x), (5.33)
Ga(o,z) < 7D(zx) + TZ G(y —vy) < O0(0y) +7supG(y) = O(by), (5.34)

y#o y#o
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where we have used translation invariance, (8.17) and sup, D(z) = O(6p). By (@12,

B3 < 060) S Pho(2s2) = 0(00) (Pﬁfg@',x) ns PXQ(zxx)). (5.35)
zlx z'x 7j>1

Similarly to (529) for r = 0, the sum of P,/ (2',z) is easily estimated as 1 + O(f). We claim

that the sum of P\? (2, x) for j > 11is (25 — 1) O(6p)?, since P\ (2',z) is a sum of 2j — 1 terms,

each of which contains j chains of nonzero bubbles; each chain is 15 (v,v") — d,, for some v, v’

and satisfies

Z (Q,Z)A(v,v’) _ 5%”/) < Z (7—2 (D * (D x G*Q))(o)>l = Z O(Ho)l = O(6p). (5.36)

v >1 >1

For example,

+ 6 other possibilities, (5.37)

v) y p @)
su z
Y,
[0} (0]

4
< (Z (¢ (0,9) _504,)) (7O) = 08", (5.38)

)

where W® is given by (B.13)).
The sum of 7, .Q}., ,(2,7) in (5.3]) is estimated similarly [29]. We complete the proof of the
bound on Y 7{’(z) for j > 1.

To estimate >, |z|>7{’(z) for j > 1, we recall that, in each bounding diagram, there are at
least three distinct paths between o and x: the uppermost path (i.e., 0 — by — vy — b3 — -+ —
in ([AI5); see also Figure [f]), the lowermost path (i.e., 0 — v — by — v3 — .-+ — x) and a middle
zigzag path. We use the lowermost path to bound |z|? as

J J
2 =) Tl +2 > aman <G+ lanl, (5.39)
n=0 n=0

0<m<n<jy
where ag = v1, a1 = by —v1 ,a2 = v3 — by, ..., and a; = x —v; or z — b; depending on the parity of
j. We discuss the contributions to 3°_ |z[>7¥ (z) from (i) |a;|2, (ii) |ao|? and (iii) |an|? for n # 0, j,
separately (cf., Figure [IT]).
(i) The contribution from |a;|? is bounded by

j-1
(Zrew) (s 3 n@%0.6.2)
v,y

b,v,z
b=y
X <Slylpz (|$|2]].{] odd} + |,I - b|2]]-{] even}> TbQ?\;o(Ea ,I))
b,x
b=y
< O(eo)jil sup Z (‘.%"21“ odd} + ’1‘ - y‘Q]l{j even}) Ty,z (5z,z’ + é/\(27 Z/))P[/\;o(z/a 1‘) (5'40)
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Figure 11: One of the leading diagrams for ) |x|27rﬁ\3) (z) and its decompositions depending on
whether the assigned weight is (i) |as|?, (ii) |ag|?> and (iii) |a,|? for n = 1,2, respectively.

By (410)), the leading contribution from Pl/\(o O)(z’ ,x) for an odd j can be estimated as

sup Z |x|27'y7z (6Z,Z/ + éA(z,z'))P (0)(2 x)

=sup ¥ 7y (0o + Ga(2,2)) (92 0o0) g (02 02)3 |22 (o) s
Y 2,2 x

< sup <(7’D *G)(y) + (1D * G)*Q(y)> G**(0) G® = do?0(6y)?, (5.41)
Y

where G is given by (.I3]). The other contributions from Pll\(g(z’ ,x) for i > 1 and from the even-j
case can be estimated similarly; if j is even, then, by using |z — y|? < 2|2/ — y|? + 2|z — 2/|> and
estimating the contributions from |2/ — y|? and |z — 2’| separately, we obtain that the supremum
in (5.40) is do?0(6y). Consequently, (5.40) is daQO(HO)QLJHJ

(ii) To bound the contributions to 3__ |z|?7{’(z) from |a,|? for n < j, we define (cf., Figure [[Z])

Qy\;u,v(y’ 'I) = Z (PA JU,U ya b) + Z GA(ya y/) P/,\;u(y,,b) ¢A(ya ’U)> Th (5571 + é/\(g’ x)) : (542)

b y’

By translation invariance and a similar argument to show (5.31), we can easily prove

SUPZQAOU y,v +Z ZQAUO y, (90) (543)

Therefore, the contribution from |ag|? to 3°, |z[>7§’ () is bounded by

o . J—1
(supz WP B (0, )7 (8, + Ga G y>>) (sup S Qo z>) (Z Pho(z, x>)
y,v 2,T

Y v,b
< do?0(hy)’ . (5.44)

(iii) By translation invariance and (5.42)—(5.43]), the contribution from |a,|? for an n # 0,7 is
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(D)

u I X u | ———
b) (b)

Figure 12: The leading diagrams of QX;U,U(y,m), due to PX;(Z)’U(y,Q) and P[/X(:Z(y’,b) in (5.42)), re-
spectively.

bounded by
n—1 j—1-n
<ZP“°) ><SUPZ%QAOU )> <SUPZQAUO Y,z )) <ZPA;O(Z,:6))
bU \Z 2,x
=Y
X <Sup (|b,|2]1{n odd} + |U - b|2]1{n even}> TbQ;/\;o,v(E’ b/) Ty (55’,v+z + GA(EI’ v+ Z))>’ (545)
Y,z b.b
b=y

where the first line is O(6p)7 2. The leading contribution to the second line from P, and P,
in QY. , for an odd n is bounded, due to translation invariance, by

y . y N
G? sup Nz 4 Nz
Y,z “\ “
< do?0(6y) sup< V "2 + 04 ) < do*0(6y)3. (5.46)

/1(2)

The other contributions from P, gy AN nd P/(Z()) for i > 1 and from the even-n case can be esti-

mated similarly; if n is even, then the second supremum in (B48) is O(bp). Therefore, (.47 is
do20 ()25,

Summarizing the above (i)—(iii) and using 2| | > j V 2 for j > 1, we have
— Z 227 (2) < do? <30(90)2L%J + 0(90)1“) < do?(j + 1) O(6p)7V2. (5.47)
This together with (5.29]) complete the proof of (B.8]). O
Proof of Proposition [3.3(iii) assuming (3.7). It is easy to see that
> e PP (x) < Z lz[F2G(x)? < G? Z 2['G(x)? < do?0,W @, (5.48)
m
We show below that, for j7 > 1,

Z 27 (2) < do®W O (j + 1) 20012, (5.49)

where the bound is independent of A. Due to these uniform bounds, we conclude that the sum of
|z|tT2|I(z)] is finite if 6y < 1.

Now we explain the main idea of the proof of (5.49]). First we recall that, in the proof of the
bound on Y, |z|?7{’(x), we distribute |z|? along the lowermost path of each bounding diagram.
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To bound Y, |2["*27’(x), we again use the lowermost path in the same way to distribute |z|?,
and use the uppermost path to distribute the remaining |x|’. More precisely, we use

[z < (j+1) max |ag], (5.50)
n=0,1,...,j
where ag,aj,...,a} are the displacements along the uppermost path: ap = by, ay = v2 — by,
ahy = by — va,..., and a; =z —vj or z — b; depending on the parity of j. Let m be such that
|a, | = maxy |a,|.

For the contribution to 3°, |2[**27{(z) from |a,|? in (39) for n # m, we simply follow the
same strategy as explained above in the paragraphs (i)—(iii) to prove the bound on " |z|?7{ (z).
The only difference is that one of the bubbles W contained in the bound on the m™ block is
now replaced by W®.

The contribution from \am\Q in (539) can be estimated in a similar way, except for a few
complicated cases, due to PA and P"(Z) for i > 1 contained in the m' block. For example, let j
be even and let m = j (cf., the second Tine of (IBEIII)) The following are two possibile diagrams in
the contribution from P/(;O)(f, z)to ), |l — y|? |x|tTy,ZQ’A;O(z,x):

® N O/
ot @ (O ® A 9 @ ©
(i) 0 (ii) 0 (5.51)
o\ w o\

where, for simplicity, ¥a(f,9) — 64 and a(u,2) — 6,,. are reduced to Ga(f,9)? and GA(f,9)?,
respectively. We suppose that |v| is bigger than |w —v| and |z — w| along the lowermost path from
o0 to z through v and w, so that |x|* is bounded by 3!|v|'. We also suppose that |z — u| in (G.511i)
(resp., |g — f| in (B511ii)) is bigger than the end-to-end distance of any of the other four segments
along the uppermost path from y to  through f,g,u and 2. Therefore, we can bound |z — y|? by
52|z — u|? in (BEILi) (resp., 5%|g — f|? in (5.51lii)) and bound the weighted arc between u and z
(resp., between f and g) by 52G®. By translation invariance, the remaining diagram of (5.511i) is
easily bounded as

u'+v

Y g \ l QT
o = sup < W 00) )

(5.52)

where the power 4 (not 3) is due to the fact that the segment from «’ in the last block is nonzero.

To bound the remaining diagram of (5.51lii) is a little trickier. We note that at least one of
lul,|z — ul,|w — 2| and |v — w| along the path from o to v through u,z,w is bigger than %|v|.
Suppose |v —w| > 1|v], so that |v]* < 2¢|v —w[*/2|v[*/2. Then, by using the Schwarz inequality, we
obtain

y
@)
yi © 1/2 ) 1/2
s () () e
) v)

where the two weighted arcs between o and v in the second term is |[v[!G(v)? = (|v|"/?G(v))?. By
translation invariance and the fact that the north-east and north-west segments from g in the first
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term are nonzero, we obtain
y

ST

(2

< 0(6p)°. (5.54)

With the help of (W®/2)2 < WOW® (due to the Schwarz inequality), we also obtain

a\ 2
0 _ _ _
?i < WOW® <Sup > < (W®)20(6y)*. (5.55)
v v

Therefore, (5.53) is bounded by W®O(6,)%/2.
The other cases can be estimated similarly [29]. As a result, we obtain

Z |x|t+2 J) Z dUZW(t)(j + 1)t+20(9 )jVQ—l, (5.56)
T m=0
which implies (5.49]). This completes the proof of Proposition B.3((iii). O

Proof of (310) assumz'ng (Z7) and (Z9). If © = o, then we simply use the bound on the sum in
B38) to obtain 7}’ (0) < O(fp)? for any i > 0. It is also easy to see that 7}’ (z) with = # o obeys
BI10), due to (BZZI) and the diagrammatic bound (@IF)). It thus remains to show (B.I0) for 7§’ ()
with £ £ o0 and j > 1.

The idea of the proof is somewhat similar to that of Proposition B3((iii) explained above. First,
we take |a,| = max,, |a,| from the lowermost path and |¢;| = max,, |a;,| from the uppermost path
of a bounding diagram. Note that, by (5.50)), |a,,| and |aj| are both bigger than ]%]m\ That is,
lam| ™7 and |a;| =7 are both bounded from above by (j + 1)?|z|~9. If the path corresponding to a,
in the m'™" block consists of N segments, we take the “longest” segment whose end-to-end distance
is therefore bigger than #1)|x| That is, the corresponding two-point function is bounded by

AoN?(j + 1)?x|~2. Here, N depends on the parity of m, as well as on ¢ > 0 for P”(” (or P\
if m = 0 or j) and the location of u,v in each diagram, and is at most N < O(i + ) However,

the number of nonzero chains of bubbles contained in each diagram of P, and PX(;) , 1 O(i),

and hence their contribution would be O(60)°®. This compensates the growing factor of N9, and
therefore we will not have to take the effect of N seriously. The same is true for aj, and we refrain
from repeating the same argument.

Next, we take the “longest” segment, denoted a”, among those which together with a; (or a
part of it) form a “loop”; a similar observation was used to obtain (.53]). The loop consists of
segments contained in the I*® block and possibly in the (I — 1)** block, and hence the number of
choices for a” is at most O(4;_1 + i; + 1), where ; is the index of P//\(i” or PX(”) in the I*® block
(i—1 = 0 by convention). By (5.50), we have |a”| > O(i;_1 + i; + 1)"!]a]|, and the corresponding
two-point function is bounded by A\gO(i;—1 + i; + 1)%(j 4+ 1)?|z|~%. As explained above, the effect
of O(i;—1 + i; + 1)? would not be significant after summing over i;_; and 7.

We have explained how to extract three “long” segments from each bounding diagram, which
provide the factor A3(j + 1)3?|z| ™3¢ in (BI0); the extra factor of (j + 1)? in BI0) is due to the
number of choices of m,l € {0,1,...,j}. Therefore, the remaining task is to control the rest of the
diagram.
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Suppose, for example, 0 < m < [ < j (so that j > 3). Using QX defined in (0.42]), we can
reorganize the diagrammatic bound (ZI5) on 7% (z) as (cf., (5.45))

m—1
WX)(x) < Z < Z PA O’QI) H TbiQX;vi,v¢+1 (Ei’biJrl))
i=1

b, um b1, ,bm—1
Yi4+1,V141 V1, Um—1

X Z < Z H Tb; QA Vi, Vi1 “—l+1)>7—bz+1 (51_71+1,yl+1 + GA(BI+17yl+1))

bit1 " bmtt,..bp i=m

Um+1,--,01
( ) (H Dl yz,yHl))Pij(yj,x)). (5.57)
Yi+25--Y5 Ni=l+1
Vi425--4yUj

As explained above, we bound three “long” two-point functions contained in the second line of
(E.57); let Y, be the supremum of what remains in the second line over b, Uy, Y141, v141. Then
we can perform the sum of the first line over b,,, v, and the sum of the third line over y;y1,v;11
independently; the former is O(6p)™~! and the latter is O(6y)' 7!, due to (5.31) and (IBI{I)

respectively. Finally, we can bound Y;,; using the Schwarz inequality by O(0p)' =™, where [ —

is the number of nonzero segments in the second line of (.E7) (i.e., 3, 7,(d, . + Ga(bi,y:)) for
SOME Ypy, - - -, Y1) Minus 2 (= the maximum number of those along the uppermost and lowermost
paths that are extracted to obtain the aformentioned |z|-decaying term). For example, one of
the leading contributions to Y, ;,+4 is bounded, by using translation invariance and the Schwarz
inequality, as

®)

S%%UI /% = /g\ﬂ Fvy < 0(6)) sup F//§>L/7<L/§Fz (5.58)

0(60) 3/2 @ < 0(90)2 Sgp(:’m < 0(60)4

The other cases can be estimated similarly [29]. This completes the proof of (3.10)). O
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