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Critical points for spread-out self-avoiding walk, percolation
and the contact process above the upper critical dimensions

Remco van der Hofstad∗

Akira Sakai†

December 1, 2003‡

Abstract

We consider self-avoiding walk and percolation in Zd, oriented percolation in Zd×Z+, and
the contact process in Zd, with p D( · ) being the coupling function whose range is denoted
by L < ∞. For percolation, for example, each bond {x, y} is occupied with probability
p D(y−x). The above models are known to exhibit a phase transition when the parameter p
varies around a model-dependent critical point pc. We investigate the value of pc when d > 6
for percolation and d > 4 for the other models, and L ≫ 1. We prove in a unified way that
pc = 1 + C(D) + O(L−2d), where the universal term 1 is the mean-field critical value, and
the model-dependent term C(D) = O(L−d) is written explicitly in terms of the random walk
transition probability D. We also use this result to prove that pc = 1 + cL−d + O(L−d−1),
where c is a model-dependent constant. Our proof is based on the lace expansion for each of
these models.

1 Introduction and main results

Self-avoiding walk, percolation, and the contact process are well-known models that exhibit critical

phenomena. For percolation in two or higher dimensions, for example, there exists a percolation

threshold ppe
c such that there is almost surely no infinite cluster for p < ppe

c , while for p > ppe
c there

is almost surely a unique infinite cluster. As p ↑ ppe
c , the average cluster size and the correlation

length diverge. The precise value of ppe
c depends on the details of the model, and is only explicitly

known in a few cases, such as for two-dimensional nearest-neighbor bond percolation [20].

In this paper, we will consider self-avoiding walk, percolation, oriented percolation and the

contact process, where the interaction range L is taken to be large. When L≫ 1, the interaction

in the considered models is relatively weak, and therefore the critical values can be expected to be

close to the critical value 1 of the respective mean-field models, i.e., random walk and branching
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random walk. We study the difference of the critical values and 1 for the above four models as

L → ∞. It turns out that, above the respective upper critical dimensions, we can write this

difference to leading order as simple functions of the underlying random walk.

1.1 Models

First, we define the models. A self-avoiding walk is a path ω in the d-dimensional integer lattice

Zd with ω(i) 6= ω(j) for every distinct i, j ∈ {0, 1, . . . , |ω|}. We also take the zero-step walk into

account. We define the weight of a non-zero path ω by

Wp(ω) = p|ω|
|ω|
∏

i=1

D
(

ω(i)− ω(i− 1)
)

, (1.1)

where D is a probability distribution on Zd, and let Wp(ω) = 1 if |ω| = 0. We suppose that D

is symmetric with respect to the lattice symmetries and that D(o) = 0, where o is the origin in

Zd. A more detailed definition will be given below. The self-avoiding walk two-point function is

defined by

τ sa

p (x) =
∑

ω:o−→x
saw

Wp(ω), (1.2)

where the sum is over all self-avoiding paths from o to x. It is known (see, e.g., [23]) that there is

a critical value psa
c such that

χsa

p =
∑

x∈Zd

τ sa

p (x) (1.3)

is finite if and only if p < psa
c and diverges as p ↑ psa

c .

For percolation, each bond {x, y} is occupied with probability p D(y−x) and vacant with prob-

ability 1−p D(y−x), independently of the other bonds, where p ∈ [0, ‖D‖−1
∞ ]. Since

∑

x D(x) = 1,

the percolation parameter p is the expected number of occupied bonds per site. We denote by

Pp the probability distribution of the bond variables. We say that x is connected to y, and write

x ←→ y, if either x = y or there is a path of occupied bonds between x and y. The percolation

two-point function and its sum over Zd are denoted by

τ pe

p (x) = Pp(o←→ x), χpe

p =
∑

x∈Zd

τ pe

p (x). (1.4)

Similarly to self-avoiding walk, there is a critical value ppe
c such that χpe

p is finite if and only if

p < ppe
c and diverges as p ↑ ppe

c (see, e.g., [8]).

Oriented percolation is a time-directed version of percolation. Each bond ((x, t), (y, t + 1)) is

an ordered pair of sites in Zd × Z+, and is occupied with probability p D(y − x) and vacant with

probability 1− p D(y − x), independently of the other bonds, where p ∈ [0, ‖D‖−1
∞ ]. We say that

(x, s) is connected to (y, t), and write (x, s) −→ (y, t), if either (x, s) = (y, t) or there is an oriented
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path of occupied bonds from (x, s) to (y, t). Let Pp be the probability distribution of the bond

variables. The oriented percolation two-point function and its sum over Zd × Z+ are denoted by

τ op

p (x, t) = Pp((o, 0) −→ (x, t)), χop

p =
∑

t∈Z+

∑

x∈Zd

τ op

p (x, t). (1.5)

Also oriented percolation exhibits a phase transition such that χop
p <∞ if and only if p is less than

the critical value pop
c , and that χop

p ↑ ∞ as p ↑ pop
c (see, e.g., [9]).

The contact process is a model of the spread of an infection in Zd, and is a continuous-time

version of oriented percolation in Zd × R+. We now describe a graphical representation for the

contact process. Along each time line {x} × R+, where x ∈ Zd, we place points according to a

Poisson process with intensity 1, independently of the other time lines. For each ordered pair

of distinct time lines from {x} × R+ to {y} × R+, we place oriented bonds ((x, t), (y, t)), t ≥ 0,

according to a Poisson process with intensity p D(y − x), independently of the other Poisson

processes, where the parameter p ≥ 0 is the infection rate. We say that (x, s) is connected to

(y, t), and write (x, s) −→ (y, t), if either (x, s) = (y, t) or there is an oriented path in Zd × R+

from (x, s) to (y, t) using the Poisson bonds and time-line segments traversed in the increasing-

time direction without traversing the Poisson points. Let Pp be the corresponding probability

distribution. We denote the contact process two-point function and its integro-sum over Zd ×R+

by

τ cp

p (x, t) = Pp((o, 0) −→ (x, t)), χcp

p =

∫ ∞

0

dt
∑

x∈Zd

τ cp

p (x, t). (1.6)

Again there is a critical value pcp
c such that χcp

p is finite if and only if p < pcp
c and diverges as p ↑ pcp

c

(see, e.g., [21]).

We will omit the superscript referring to the precise model, and write pc when referring to the

critical values in all models simultaneously. The goal in this paper is to study pc when the range

L of D is sufficiently large. In the proofs, we will have versions of D in mind which are such that

LdD(Lx) is a discrete approximation of a function on Rd. We will formalize this assumption on

D in the following definition:

Definition 1.1. Let h be a probability distribution over Rd\{o}, which is invariant under rotations

by π/2 and reflections in the coordination hyperplanes. We suppose that h is piecewise continuous,

so that
∫

Rd h(x) ddx ≡ 1 can be approximated by the Riemann sum L−d
∑

x∈Zd h(x/L). Then, we

define

D(x) =
h(x/L)

∑

y∈Zd h(y/L)
. (1.7)

We will make heavy use of results proved elsewhere for the models under consideration. For

these results, some further assumptions are made on D, of which we now list the most important

ones. We require that there exist c > 0, C <∞, η ∈ (0, 1) such that

sup
x∈Zd

D(x) ≤ CL−d, η ∧ (cL2|k|2) ≤ 1− D̂(k) ≤ 2− η, (1.8)
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where D̂(k) =
∑

x∈Zd D(x) eik·x and |k|2 =
∑d

j=1 k2
j . There are a few more minor requirements

that depend on the precise model under investigation. For details, see [11] for percolation and

[14, 15, 16, 17] for the other three models, for which the requirements are virtually identical. A

simple example of D, where all the above assumptions are satisfied, is

D(x) =
1{0<‖x‖∞≤L}

(2L + 1)d − 1
, (1.9)

for which h(x) = 2−d if 0 < ‖x‖∞ ≤ 1 and h(x) = 0 otherwise.

We denote by D ∗ G the convolution of D and a function G in Zd, and by D∗n the n-fold

convolution of D in Zd, where we define D∗0(x) = δo,x. We will frequently use

D∗n(x) ≤ δ0,nδo,x +
O(β)

(1 ∨ n)d/2
, (1.10)

where

β = L−d. (1.11)

The inequality (1.10) is a consequence of (1.8), as we will show in Appendix A.

1.2 Main results

Let dc denote the respective upper critical dimensions, i.e., dc = 6 for percolation and dc = 4 for

the other three models. In this paper, we investigate the respective critical values when d > dc

and L≫ 1, in a unified fashion.

Theorem 1.1. For each model with d > dc, as L→∞,

psa

c , pcp

c = 1 +

∞
∑

n=2

D∗n(o) + O(β2), (1.12)

pop

c = 1 +
1

2

∞
∑

n=2

D∗2n(o) + O(β2), (1.13)

ppe

c = 1 + D∗2(o) +
1

2

∞
∑

n=3

(n + 1) D∗n(o) + O(β2). (1.14)

The universal term 1 is the critical value for the mean-field models (random walk and branching

random walk). Note that, by (1.10), the model-dependent terms in (1.12)–(1.14) are O(β). In

Section 1.3, we will intuitively explain why the model-dependent terms have the above respective

forms.

We next compute the dependence on β more explicitly, and compute the coefficients of β in

pc− 1 explicitly. For this, we let U be the uniform probability distribution over [−1, 1]d ⊂ Rd, i.e.,

for x ∈ Rd,

U(x) = 2−d1{‖x‖∞≤1}, (1.15)

and denote by U⋆n the n-fold convolution of U in Rd. Then, the leading order coefficient in β for

pc is given in the following theorem:
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Theorem 1.2. Fix D as in (1.9), and let d > dc. As L→∞,

psa

c , pcp

c = 1 + β

∞
∑

n=2

U⋆n(o) + O(βL−1), (1.16)

pop

c = 1 +
β

2

∞
∑

n=2

U⋆2n(o) + O(βL−1), (1.17)

ppe

c = 1 + β

[

U⋆2(o) +
1

2

∞
∑

n=3

(n + 1) U⋆n(o)

]

+ O(βL−1). (1.18)

We now comment on the relation between the asymptotics in Theorems 1.1–1.2. The advantage

of Theorem 1.2 is that it is more concrete, and the continuum limit of the critical points appears

explicitly. However, the error term in Theorem 1.1 is O(β2), while in Theorem 1.2 it is equal to

O(βL−1), which is much larger. In order to compute the critical value more precisely, Theorem 1.1

gives a much more powerful result, at the expense of having to compute the random walk terms

appearing in its statement. In principle, it should be possible to compute the coefficients of

βL−1, βL−2, . . . , βL−d+1, but this requires a substantial amount of work. Finally, it should be

possible to compute the random walk sums in Theorem 1.1 for other examples than the one in

(1.9), but we refrain from doing so.

We now summarize previous results on the critical values. We start with self-avoiding walk.

Penrose’s result in [25] implies that the critical value for self-avoiding walk defined by (1.9) with

L≫ 1 satisfies

1 + c β2/7 log β−1 ≥ psa

c ≥











1, if d ≥ 3,

1 + c′β log β−1, if d = 2,

1 + c′′β4/5, if d = 1,

(1.19)

for some β-independent constants c, c′, c′′. For spread-out lattice trees, a related result with a

different leading term, namely = e−1, was also obtained in [25]. For d > 4, Madras and Slade [23,

Corollary 6.2.7] improved (1.19) to psa
c = 1 + O(β). In [15, 17], this result was extended to more

general D as defined in Definition 1.1. We will rely on the results in [15, 17], whose proof is based

on the lace expansion and a generalized inductive approach. We will also use the lace expansion

to derive the expression of the O(β) term in (1.12).

For percolation, the best previous result is ppe
c = 1 + O(β2/d−ǫ) for d > 6 and L ≫ 1, where

ǫ > 0 is an arbitrarily small number [10]. However, if we combine Lemma 3.1 proved below and

the estimates for the lace expansion in [11], then we obtain the better estimate ppe
c = 1 + O(β).

The result in (1.14), which is also obtained by an application of the lace expansion, identifies the

expression of this O(β) term.

When d > 4 and L ≫ 1, both pop
c and pcp

c were proved to be 1 + O(β) [14, 15, 16]. Similarly

to self-avoiding walk, the proofs of these results rely on the lace expansion and an adaptation of

the inductive approach. The contact process defined in terms of D of (1.9) was first considered by
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Bramson, Durrett and Swindle [4], and they proved that, as L→∞,

pcp

c − 1 ≍ f(β) ≡











β, if d ≥ 3,

β log β−1, if d = 2,

β2/3, if d = 1,

(1.20)

where pcp
c − 1 ≍ f(β) means that the ratio (pcp

c − 1)/f(β) is bounded away from zero and infinity.

Later, Durrett and Perkins [7] proved that

lim
L→∞

pcp
c − 1

f(β)
=

{

∑∞
n=2 U⋆n(o), if d ≥ 3,

3/(2π), if d = 2.
(1.21)

Our result (1.16) in Theorem 1.2 is stronger when d > 4 in the sense that not only the coefficient

of β, but also the speed of convergence in (1.21) is identified. In [14], we also obtained certain lace

expansion results for a local mean-field limit, where the range and time grow large simultaneously,

for the contact process in d ≤ 4, and we expect that these results could be used to prove a stronger

version of (1.21) for d = 3, 4, as well as for oriented percolation. However, this will need serious

work using block constructions as used in [7].

We expect that (1.12)–(1.14) remain valid for d = dc − 1 and dc when we change O(β2) to

o(β). As mentioned above, this is the case for the contact process [7]. When d ≤ dc − 2, the

second terms in (1.12)–(1.14) diverge, so that Theorem 1.1 cannot hold. However, we expect that

the asymptotics of the critical point will, as for the contact process, again be described by the

divergence of the sums in (1.12)–(1.14).

When d > dc, we expect that the O(β2) terms could be identified in terms of D as well, using

a similar method as in this paper, but to do so will require a serious amount of work.

A related problem is to obtain the asymptotics of the critical points for the nearest-neighbor

models, when D(x) = (2d)−11{|x|=1} and d → ∞. In [12], psa
c was proved to have an asymptotic

expansion into powers of (2d)−1, and the first six coefficients were obtained. For unoriented perco-

lation, the first three coefficients were computed in [12] and [18], but the proof of the asymptotic

expansion only appeared in [19]. The proofs of these results are again based on the lace expansion.

For nearest-neighbour oriented percolation and the nearest-neighbour contact process, it is proved

that pop
c = 1 + O(d−2) (see [6]) and pcp

c = 1 + O(d−1) (see, e.g., [22]), using different methods.

1.3 Overview of the proof

To prove Theorem 1.1, we will apply the lace expansion (see, e.g., [11, 14, 17, 23, 24]). For example,

the lace expansion for self-avoiding walk gives the recurrence relation

τ sa

p (x) = δo,x +
∑

v

[p D(v) + Πsa

p (v)] τ sa

p (x− v), (1.22)

where Πsa
p (x) is a certain expansion coefficient. It was proved in [15, 17] that Π̂sa

p ≡
∑

x Πsa
p (x) =

O(β) for p ≤ psa
c , if d > 4 and L ≫ 1 (see Section 2). Summing both sides of (1.22) over x ∈ Zd

6



and solving the resulting equation in terms of χsa
p , we obtain

χsa

p = (1− p− Π̂sa

p )−1, (1.23)

and thus

psa

c = 1− Π̂sa

psa
c
. (1.24)

To estimate psa
c , we thus need to investigate Π̂sa

psa
c
. We will prove that, since psa

c = 1+ O(β), we can

replace Π̂sa
psa
c

by Π̂sa
1 up to an error of order O(β2). When p = 1, the exponentially growing factor

p|ω| in (1.1) does not play any role, and Π̂sa
1 can be investigated in terms of random walks. This is

the key ingredient for the proof of Theorem 1.1.

The strategy for percolation models is the same as above. There is a similar recursion relation to

(1.22), with some model-dependent expansion coefficient Πp(x). Therefore, to obtain the formulae

in Theorem 1.1, we will have to investigate Π̂1 =
∑

x Π1(x), again in terms of random walks.

As we will explain in Sections 2–3, Π̂sa
1 and Π̂1 can be described by an alternating sum of a

model-dependent sequence π̂(N)

1 for N ≥ 0, where π̂(N)

1 for N ≥ 1 decays as βN for all models.

For self-avoiding walk, π̂(0)

1 equals zero, while π̂(0)

1 for percolation models is nearly a half of π̂(1)

1 .

(This is why we have the factor 1
2

in (1.13)–(1.14).) Therefore, roughly speaking, we only need to

investigate π̂(1)

1 to obtain (1.12)–(1.14). We will show later that the diagrammatic interpretation

of π̂(1)

1 for self-avoiding walk is a single random walk taking more than one step and going back to

the starting point (cf., (1.12)), while the diagrammatic interpretation of π̂(1)

1 for percolation models

is that two random walks, at least one of which is non-vanishing, meet at some point. Therefore,

the correction to the mean-field value 1 are related to random walk loops.

For loops in the time-oriented percolation models, the lengths in the time-increasing direction of

these two walks have to be equal (which explains the sum over even convolution powers in (1.13)),

while for unoriented percolation this is not the case (which explain the sum over all powers and

the factor n + 1 in (1.14)).

For the contact process, the two paths are continuous time random walk paths, for which the

number of convolution powers of D is equal to the number of spatial steps made by the random

walk up to a given time, which has a Poisson distribution. Therefore, the sum over the convolution

powers of D is not restricted to even powers, and we see that the correction to the mean-field value

for the contact process and oriented percolation are different. For the contact process, it will turn

out that also the factor 1
2

in (1.13) disappears, which is due to the fact that the two walks are

in fact avoiding each other, and which will be explained in more detail in Section 3.1. This is an

intuitive explanation of the model-dependent terms in (1.12)–(1.14).

We organize the rest of this paper as follows. We begin with self-avoiding walk in Section 2,

and explain the key steps to estimate psa
c . Following the same steps, we estimate pop

c and pcp
c in

Section 3.1, and ppe
c in Section 3.2. Finally, we prove an extension of (1.10) in Appendix A, and

Theorem 1.2 in Appendix B.
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2 Critical point for self-avoiding walk

In this section, we prove (1.12), using (1.24). Throughout this section, we will omit the superscript

“sa” and write, e.g., pc = psa
c and Π̂p = Π̂sa

p .

Before computing the asymptotics of Π̂pc in (1.24), we first note that pc ≥ 1. This is because

the removal of the self-avoidance constraint in (1.2) results in
∑

ω:o−→x Wp(ω), whose sum over

x ∈ Zd equals (1− p)−1 for any p ≤ 1. For self-avoiding walk,

Πp(x) =
∞

∑

N=1

(−1)Nπ(N)

p (x), (2.1)

where, e.g., π(1)
p (x) is a “1-loop diagram” at the origin [23]:

π(1)

p (x) = δo,x (pD ∗ τp)(o) = δo,x

∑

ω:o−→o
|ω|≥1

Wp(ω) I(ω), (2.2)

where I(ω) = 1 if there are no self-intersection points except for ω(0) = ω(|ω|), otherwise I(ω) = 0.

For d > 4 and L≫ 1, it was proved in [17] that, for π̂(N)
p =

∑

x π(N)
p (x), we have

π̂(N)

p ≤ O(β)N , p ∂pΠ̂p ≤ O(β), (2.3)

for all p ≤ pc and N ≥ 1. Together with (1.24) and (2.1), we immediately obtain that pc = 1+O(β).

Moreover, by the mean-value theorem, there is a p ∈ (1, pc) such that

pc = 1− Π̂1 − (Π̂pc − Π̂1) = 1− Π̂1 − (pc − 1) ∂pΠ̂p = 1 + π̂(1)

1 + O(β2), (2.4)

where

π̂(1)

1 =
∑

ω:o−→o
|ω|≥1

W1(ω) I(ω) =
∞

∑

n=2

D∗n(o)−
∑

ω:o−→o
|ω|≥1

W1(ω) [1− I(ω)]. (2.5)

To complete the proof of (1.12), it thus suffices to prove that the second term in the right-hand

side of (2.5) is O(β2) if d > 4. We first note that I(ω) is an indicator function. If I(ω) = 0, so

that 1 − I(ω) = 1, then there must be a pair {s, t} 6= {0, |ω|} with 0 ≤ s < t ≤ |ω| such that

ω(s) = ω(t). Denoting the parts of ω corresponding to these three time intervals by ωi, i = 1, 2, 3,

respectively, we obtain

∑

ω:o−→o
|ω|≥1

W1(ω) [1− I(ω)] ≤
∑

x∈Zd

∑

ω1,ω3:o−→x
|ω1|+|ω3|≥1

∑

ω2:x−→x
|ω2|≥1

3
∏

i=1

W1(ωi) = (D ∗G∗2)(o) (D∗2∗G)(o), (2.6)

where G(x) =
∑∞

n=0 D∗n(x), and (D∗2 ∗ G)(o) =
∑∞

n=2 D∗n(o) = O(β) if d > 2. Moreover, by

(1.10),

(D ∗G∗2)(o) =
∞

∑

n=1

nD∗n(o) = O(β) (2.7)

if d > 4. This completes the proof of (1.12) for self-avoiding walk.
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3 Critical points for percolation models

In this section, we compute the asymptotics of the critical values for the other three models, and

thus complete the proof of Theorem 1.1.

To discuss oriented percolation and the contact process simultaneously, it is convenient to

introduce the following oriented percolation on Zd × εZ+, which is the time-discretized contact

process with a discretization parameter ε ∈ (0, 1]. A bond is a directed pair ((x, t), (y, t + ε)) of

sites in Zd × εZ+. Each bond is either occupied or vacant, independently of the other bonds, and

a bond ((x, t), (y, t + ε)) is occupied with probability

qp(y − x) =

{

1− ε, if x = y,

pεD(y − x), if x 6= y,
(3.1)

provided that supx qp(x) ≤ 1. In this notation, the model with ε = 1 is the usual oriented

percolation model as defined in Section 1.1, and the weak limit as ε ↓ 0 is the contact process [3].

Similarly to oriented percolation with ε = 1, for each ε ∈ (0, 1], there is a critical value p(ε)
c for

every ε ∈ (0, 1], such that p(1)
c = pop

c and limε↓0 p(ε)
c = pcp

c [26]. We will call the model with ε ∈ (0, 1]

the time-discretized contact process.

To summarise notation for percolation and the time-discretized contact process, we will write

Λ = Zd for percolation and Λ = Zd × εZ+ for oriented percolation. For notational convenience,

we will take ε = 1 for percolation. We will also use bold letters to represent elements of Λ. For

example, o = o, x = x for percolation, and o = (o, 0), x = (x, t) for the time-discretized contact

process. For a bond b = (u, v), we write b = u and b = v. We also omit the superscripts ε, pe, op

and cp, if no confusion can arise.

As mentioned in Section 1, the lace expansion for percolation models takes a similar form as

in (1.22), and reads (see, e.g., [11, 14])

τp(x) = [δo,x + Πp(x)] +
∑

u,v∈Λ

[δo,u + Πp(u)] qp(v − u) τp(x− v). (3.2)

In particular, qp(v−u) = p D(v−u) for percolation and oriented percolation for which ε = 1. (To

unify notation, we recall that we regard unoriented percolation as a model with ε = 1.) The lace

expansion coefficient Πp(x) equals

Πp(x) =

∞
∑

N=0

(−1)Nπ(N)

p (x), (3.3)

where π(N)
p (x), N ≥ 0, are model-dependent diagram functions. The result of the lace expansion

will be explained in Sections 3.1–3.2. For the time-discretized contact process with ε ∈ (0, 1], d > dc

and L ≫ 1, it has been proved [14, 16] that Π̂p ≡ ε
∑

x∈Λ Πp(x) is O(β) ε2 for all p ≤ pc. The

same estimate is proved to hold for unoriented percolation (with ε = 1), using the lace expansion

in [11] and Lemma 3.1 proved below in Section 3.2.
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As in the derivation of (1.23), solving (3.2) in terms of χp = ε
∑

x∈Λ τp(x) gives

χp =
1 + 1

ε
Π̂p

1− p− (1− ε + pε) 1
ε2 Π̂p

, (3.4)

and thus, equating the denominator to zero,

pc = 1−
1

ε2
Π̂pc − (pc − 1)

1

ε
Π̂pc. (3.5)

This expression holds uniformly in ε. We will use it to compute pop
c and ppe

c by taking ε = 1 and pcp
c

by taking the limit when ε ↓ 0 [26], respectively. In particular, the third term is O(β2) when ε = 1,

and it has no contribution in the limit ε ↓ 0. Therefore, we are left to prove that, apart from an

error term of order O(β2), the second term in (3.5) equals the second term in (1.12) when ε ↓ 0,

and equals the second term in (1.13) for oriented percolation and that in (1.14) for (unoriented)

percolation when ε = 1. We again note that p(ε)
c ≥ 1, since χp ≤ ε

∑∞
n=0

∑

x q∗np (x) = (1− p)−1 for

p ≤ 1. In addition, similarly to (1.10), when p = 1 and ε < 1, we have

q∗n(x) ≡ q∗n1 (x) ≤ (1− ε)n δo,x +
O(β)

[1 ∨ (nε)]d/2
. (3.6)

We will prove (3.6) in Appendix A. Note that when ε = 1, (3.6) reduces to (1.10).

To complete the proof of Theorem 1.1, we investigate Π̂pc for oriented percolation and the

contact process in Section 3.1, and for unoriented percolation in Section 3.2.

3.1 Asymptotics of pop

c and pcp

c

In this section, we investigate Π̂pc for the discretized contact process, and derive (1.13) for oriented

percolation (i.e., ε = 1) and (1.12) for the contact process (i.e., ε ↓ 0).

To describe the diagram functions π(N)
p (x), N ≥ 0, we need some definitions. We say that x

is doubly connected to y, if either x = y or there are at least two nonzero bond-disjoint occupied

paths from x to y. Following the notation in [16] as closely as possible, we denote this event by

x =⇒ y, and define

π̂(0)

p = ε
∑

x∈Λ

π(0)

p (x), where π(0)

p (x) = Pp(o =⇒ x)− δo,x. (3.7)

If o is connected but not doubly connected to x, there is a pivotal bond b = (b, b) for o −→ x such

that both o −→ b and b −→ x occur, and that o −→ x occurs if and only if b is set occupied. For

A ⊆ Λ, we say that y is connected to x through A when every occupied path from y −→ x has

at least one bond with an endpoint in A. We define E(b, x; A) to be the event that b is occupied,

that b −→ x through A, and that there are no pivotal bonds b′ for b −→ x such that b −→ b′

through A. Let C̃b(o) be the set of vertices in Λ connected from o without using b. Then,

π̂(1)

p = ε
∑

x∈Λ

π(1)

p (x), where π(1)

p (x) =
∑

b

Pp

(

o =⇒ b; E(b, x; C̃b(o))
)

. (3.8)
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The higher order diagram functions π(N)
p (x), N ≥ 2, are defined in a similar way, but are irrelevant

in this paper (see [14, Section 3] for a complete definition, with slightly different notation).

For d > 4 and L≫ 1, it was proved in [14] that, for π̂(N)
p = ε

∑

x∈Λ π(N)
p (x), we have

π̂(N)

p ≤ O(β)N∨1 ε2, p ∂pΠ̂p ≤ O(β) ε2, (3.9)

for all p ≤ pc and N ≥ 0. Together with (3.3) and (3.5), we obtain pc = 1 + O(β). Moreover, by

the mean-value theorem, there is a p ∈ (1, pc) such that

pc = 1−
1

ε2
Π̂pc − (pc − 1)

1

ε
Π̂pc = 1−

1

ε2
Π̂1 − (pc − 1)

1

ε2
∂pΠ̂p + O(β2) ε

= 1−
1

ε2
π̂(0)

1 +
1

ε2
π̂(1)

1 + O(β2). (3.10)

To prove (1.12)–(1.13), it thus suffices to investigate π̂(0)

1 and π̂(1)

1 .

Analysis of π̂(0)

1 . We prove

1

ε2
π̂(0)

1

{

= 1
2

∑∞
n=2 D∗2n(o) + O(β2), for ε = 1,

→
∑∞

n=2 D∗n(o) + O(β2), when ε ↓ 0.
(3.11)

Recall (3.7). To describe a double connection by a pair of two random walk paths, we order

the support of D in an arbitrary but fixed manner. For x, y in the support of D, we write x ≺ y if

x is lower than y in that order. For a pair of paths consisting of bonds in Λ, ω = (b1, . . . , bN) and

ω′ = (b′1, . . . , b
′
N
) with b1 = b′1 and bN = b′

N
, we say that ω is lower than ω′, denoted by ω ≺ ω′, if

at the first time n ∈ {1, . . . , N} when ω is incompatible with ω′ (therefore bi = b′i for all i < n) we

have bn ≺ b′n. We also say that ω2 is higher than ω1.

A path ω = (b1, . . . , b|ω|) is said to be occupied if all bonds along ω are occupied. We define

E≺(ω) to be the event that ω is the lowest occupied path among all occupied paths from b1 to b|ω|,

and that there is another occupied path ω′ from b1 to b|ω| which is bond-disjoint from ω (denoted

by ω ∩ ω′ = ∅). Given a path ω, we also define E≻(ω′; ω) to be the event that ω′ is the highest

occupied path among all occupied paths from b1 to b|ω| that are bond-disjoint from ω. Such an

occupied path ω′ exists on {b1 =⇒ b|ω|} ∩ E≺(ω) by definition.

Using the above notation, we have, for x 6= o,

{o =⇒ x} =
˙⋃

ω1,ω2:o−→x

ω1∩ω2=∅
ω1≺ω2

{

ω1, ω2 occupied; E≺(ω1) ∩E≻(ω2; ω1)
}

. (3.12)

We define the right-hand side to be empty if x = o. Then,

π̂(0)

1 = ε
∑

x∈Λ

∑

ω1,ω2:o−→x

ω1∩ω2=∅
ω1≺ω2

P1

(

ω1, ω2 occupied; E≺(ω1) ∩ E≻(ω2; ω1)
)

. (3.13)
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Since P1 is a product measure, if we ignore E≺(ω1) ∩E≻(ω2; ω1), then we obtain

∑

ω1,ω2:o−→x

ω1∩ω2=∅

ω1≺ω2

P1(ω1, ω2 occupied)

=
∑

u,v:u≺v
y,z:y 6=z

q(u) q(v) q(x− y) q(x− z)
∑

ω1:u−→y

ω2:v−→z

ω1∩ω2=∅

P1(ω1 occupied) P1(ω2 occupied), (3.14)

where u = (u, ε), v = (v, ε), y = (y, t − ε), z = (z, t − ε), and q(x) = q1(x) (cf., (3.6)). By an

inclusion-exclusion relation, the correction is bounded by

∑

ω1,ω2:o−→x

ω1∩ω2=∅

ω1≺ω2

[

P1

(

ω1, ω2 occupied; E≺(ω1)
c
)

+ P1

(

ω1, ω2 occupied; E≻(ω2; ω1)
c
)]

.

We will prove below that, for E equal to E≺(ω1) or E≻(ω2; ω1),

ε
∑

x∈Λ

∑

ω1,ω2:o−→x

ω1∩ω2=∅

P1(ω1, ω2 occupied; Ec) = O(β2) ε2. (3.15)

We investigate (3.14) to obtain the expression of O(β) from (3.13). If we ignore the restriction

ω1 ∩ ω2 = ∅, then we obtain

∑

u,v:u≺v
y,z:y 6=z

q(u) q(v) q(x− y) q(x− z) q∗(t/ε−2)(y − u) q∗(t/ε−2)(z − v), (3.16)

where t/ε ∈ [2,∞) ∩ Z+. We will prove below that the correction satisfies

ε
∑

x∈Λ

∑

u,v:u≺v
y,z:y 6=z

q(u) q(v) q(x− y) q(x− z)
∑

ω1:u−→y

ω2:v−→z

ω1∩ω2 6=∅

P1(ω1 occupied) P1(ω2 occupied) = O(β2) ε2. (3.17)

Therefore, we only need to consider the contribution to (3.13) from (3.16). By changing variables

as y′ = x− y and z′ = x− z and using the symmetry between u ≺ v and u ≻ v, the sum of (3.16)

over x ∈ Zd equals

∑

u,v:u≺v
y′,z′:y′ 6=z′

q(u) q(v) q(y′) q(z′)
∑

x

q∗(t/ε−2)(x− y′ − u) q∗(t/ε−2)(x− z′ − v)

=
1

2

∑

u,v:u 6=v
y,z:y 6=z

q(u) q(v) q(y) q(z) q∗(2t/ε−4)(v + z − y − u). (3.18)

Recall (3.1). Since there is at most one temporal (or vertical) bond growing out of every site in

Λ, we must have q(u) = εD(u) or q(v) = εD(v), so that we obtain at least one factor of ε. By the

same reason, we should have q(y) = εD(y) or q(z) = εD(z), so that we obtain a second factor of
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ε. Therefore, the number of combinations for the product of four factors of q in (3.18) is nine: one

combination is proportional to ε4, four others are proportional to (1 − ε) ε3, and the remaining

four are proportional to (1 − ε)2 ε2. Only the first case arises for oriented percolation for which

ε = 1 , while only the third case arises for the contact process for which ε ↓ 0, respectively.

We first complete the proof of (3.11) for oriented percolation. When ε = 1, and using inclusion-

exclusion on the restrictions u 6= v and y 6= z, the sum of (3.18) over t ≥ 2 equals

1

2

∑

u,v,y,z

D(u) D(v) D(y) D(z)

∞
∑

t=2

D∗(2t−4)(v + z − y − u) + O(β2) =
1

2

∞
∑

t=2

D∗2t(o) + O(β2),

(3.19)

where we use (1.8) to obtain an error of order O(β2) that comes from contributions where u = v

or y = z.

For the contact process, for which ε ↓ 0, the leading contribution is due to the four combinations

of order (1 − ε)2 ε2 mentioned above, where either u or v is o, and either y or z is o. Therefore,

the coefficient of (1− ε)2 ε2 in (3.18) is

1

2

[

∑

u,y

D(u) D(y) q∗(2t/ε−4)(−y − u) +
∑

u,z

D(u) D(z) q∗(2t/ε−4)(z − u)

+
∑

v,y

D(v) D(y) q∗(2t/ε−4)(v − y) +
∑

v,z

D(v) D(z) q∗(2t/ε−4)(v + z)

]

= 2
(

D∗2∗ q∗(2t/ε−4)
)

(o).

Summing this expression (multiplied by ε) over t/ε ∈ [2,∞) ∩ Z+ gives

2

∫

�π

ddk

(2π)d
D̂(k)2 ε

∞
∑

n=0

[

1− ε + εD̂(k)
]2n

=

∫

�π

ddk

(2π)d

2D̂(k)2

[1− D̂(k)][2− ε + εD̂(k)]

ε↓0
−→

∫

�π

ddk

(2π)d

D̂(k)2

1− D̂(k)
=

∞
∑

n=2

D∗n(o), (3.20)

where �π = [−π, π]d. This completes the proof of (3.11).

Analysis of π̂(1)

1 . We prove that 1
ε2 π̂

(1)

1 is asymptotically twice as large as the right-hand side of

(3.11):

1

ε2
π̂(1)

1

{

=
∑∞

n=2 D∗2n(o) + O(β2), for ε = 1,

→ 2
∑∞

n=2 D∗n(o) + O(β2), when ε ↓ 0.
(3.21)

For a bond b, let {b =⇒ x} be the event that b is occupied and b =⇒ x. We define {u −→ b}

and a joint event {u −→ b =⇒ x} similarly. For events E1 and E2, we denote by E1 ◦E2 the event

that E1 and E2 occur disjointly, i.e., using disjoint bond sets of bonds (see e.g., [8, Section 2.3]).

Recalling (3.8) and distinguishing between b = o and b 6= o, we can rewrite π̂(1)

1 as

π̂(1)

1 = ε
∑

u,x∈Λ

P1

(

{(o, u) −→ x} ◦ {o −→ x}
)

+ ε
∑

x∈Λ

∑

b:b6=o

P1

(

o =⇒ b; E(b, x; C̃b(o))
)

−ε
∑

u,x∈Λ

P1

(

{

{(o, u) −→ x} ◦ {o −→ x}
}

\ E((o, u), x; C̃(o,u)(o))
)

. (3.22)

13



We will extract the leading contribution from the first term. Note that {(o, u) −→ x}◦{o −→ x}

is almost identical to {o =⇒ x} = {o −→ x} ◦ {o −→ x}. However, the symmetry between

the two connections from o to x is lost in the former event, due to the bond (o, u). We will use

this symmetry breaking in a convenient manner. Recall that below (3.11), the support of D was

ordered in an arbitrary way. Now, instead, we choose the ordering such that, for u = (u, ε), the

element u in the support of D is minimal. This will ensure that the lowest occupied path ω1 from

o to x will use the bond (o, u). We also write Eu

≺(ω1) and Eu

≻(ω2; ω1) for E≺(ω1) and E≻(ω2; ω1)

in this u-dependent ordering. Therefore, (cf., (3.12)),

{(o, u) −→ x} ◦ {o −→ x} =
˙⋃

ω1:(o,u)−→x

ω2:o−→x

ω1∩ω2=∅

{

ω1, ω2 occupied; Eu

≺(ω1) ∩Eu

≻(ω2; ω1)
}

, (3.23)

and its contribution to (3.22) is

ε
∑

x∈Λ

∑

ω1:(o,u)−→x

ω2:o−→x

ω1∩ω2=∅

P1

(

ω1, ω2 occupied; Eu

≺(ω1) ∩ Eu

≻(ω2; ω1)
)

, (3.24)

where ω1 : (o, u) −→ x is a path from o to x starting by the bond (o, u). Ignoring the condition

Eu

≺(ω1) ∩ Eu

≻(ω2; ω1) as in (3.14) and following the same strategy as in estimating π̂(0)

1 , we obtain

the main contribution to (3.21). The leading term of 1
ε2 π̂

(1)

1 is twice as large as that of 1
ε2 π̂

(0)

1 ,

because the symmetry is broken and we do not obtain the factor 1
2

as in (3.18) (cf., (3.13) and

(3.24)).

To complete the proof of (3.21), it suffices to show that the second and third terms in (3.22)

are both O(β2) ε2. The event in the second term of (3.22) implies the existence of y ∈ Λ such that

{o −→ y −→ b} ◦ {o −→ b} and {y −→ x} ◦ {b −→ x} occur disjointly. Let ω1 denote a path

from o to x through y, ω2 denote another path from o to x via the the bond b with b = z, and

ω3 denote another path from y to z. Then, the second term in (3.22) is bounded by

ε
∑

x,y,z∈Λ
z6=o,x

∑

ω1:o−→y−→x

ω2:o−→z−→x

ω3:y−→z

ωi∩ωj=∅, i6=j

3
∏

i=1

P1(ωi occupied), (3.25)

since P1 is a product measure. The third term in (3.22) is also bounded by the above expression.

This is because the event in the third term in (3.22) implies existence of y ∈ Λ and a pivotal bond

b = (z, · ) for u −→ x such that {o −→ y −→ x}, {(o, u) −→ b −→ x} and {y −→ z} occur

disjointly. We thus obtain (3.25) by the same random walk representation.

Therefore, it is sufficient to prove that (3.25) is bounded by O(β2) ε2. When ε = 1, we simply

ignore the restriction ωi ∩ ωj = ∅, i 6= j, and apply the Gaussian bound (1.10) to the part of ω1

from y to x and to the part of ω2 from o to z. Since y 6= x and z 6= o, the term δo,x in (1.10)
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does not contribute, so that (3.25) is bounded by

∑

t,s,s′∈Z+

0≤s≤s′≤t

O(β)

[1 ∨ (t− s)]d/2

O(β)

(1 ∨ s′)d/2
≤

∞
∑

t=0

O(β2)

(1 ∨ t)d/2
≤ O(β2), (3.26)

where s, s′ are the time variables of y and z, respectively. When ε < 1, we use the restriction

ωi∩ωj = ∅, i 6= j, to extract factors of q with pairwise different arguments, as in (3.14), out of the

four intersection points o, y, z and x. As explained above (3.19), each pair gives rise to a factor

ε, and we obtain a total factor ε4. With the help of (3.6), (3.25) with ε < 1 is bounded by ε1+4

times the left-hand side of (3.26) with the region of summation being replaced by εZ+. This is

further bounded by O(β2) ε2, since the sum over t, s, s′ ∈ εZ+ eats up a factor ε3 for the Riemann

sum approximation. This completes the proof of (3.21).

Proof of (3.15). We only consider the case Ec = Eu

≺(ω1)
c, which is the event that there is an

η ≺ ω1 from o to x, which must share at least one step with ω1, such that Eu

≺(η) occurs; the other

case E = Eu

≻(ω2; ω1) can be estimated in a similar way. Let ω3 be the part of η from the point, say

y, where η starts disagreeing from ω1 until it hits ω1 or ω2 at z. Since P1 is a product measure,

(3.15) is bounded by

ε
∑

x,y,z∈Λ
z6=o,x

∑

ω1:o−→y−→x

ω2:o−→x

ω3:y−→z

ωi∩ωj=∅, i6=j

(1{z∈ω1\{y}} + 1{z∈ω2}
)

3
∏

i=1

P1(ωi occupied).

Since the contribution from 1{z∈ω2} is equal to (3.25), we only need to investigate the contribu-

tion due to the other indicator 1{z∈ω1\{y}}. We again discuss the case ε = 1 first, and then adapt

the argument to the case ε < 1, as done below (3.26). When ε = 1, we ignore the restriction

ωi ∩ ωj = ∅, i 6= j, and apply (1.10) to the probability of ω2 and ω3 being occupied. By denoting

the time variables of y and z by s and s′ respectively, the contribution from 1{z∈ω1\{y}} is bounded

by

∑

t,s,s′∈Z+

0≤s<s′≤t

O(β)

(1 ∨ t)d/2

O(β)

[1 ∨ (s′ − s)]d/2
≤

∞
∑

t=0

O(β2)

(1 ∨ t)(d−2)/2
≤ O(β2). (3.27)

When ε < 1, we use the restriction ωi ∩ ωj = ∅, i 6= j, along each of the four intersection points

and obtain the eight factors of q with pairwise different arguments. Following the argument below

(3.26), we obtain the desired bound O(β2) ε2. This completes the proof of (3.15).

Proof of (3.17). Since ω1 ∩ ω2 6= ∅, there is a sequence of bonds b1, . . . , bn such that ω1 and ω2

meet for the first time at b1, share b1, . . . , bn, and split at bn (ω1 and ω2 may share a bond again

after bn). This means that, together with q(u) q(v) q(x− y) q(x− z) in (3.17), the left-hand side of
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(3.17) is bounded by the convolution of two non-vanishing bubbles and
∏n

i=1 q(wi)
2, where each

wi is the spatial component of bi− bi. Using (3.6) and
∑

w q(w)2 ≤ ‖q‖∞, we can bound (3.17) by

ε
∑

t,s,s′∈εZ+

ε<s<s′<t−ε

O(β) ε2

(1 ∨ s)d/2

[

(1− ε) ∨ (ε‖D‖∞)
]

s′−s
ε

O(β) ε2

[1 ∨ (t− s′)]d/2
≤ O(β2) ε2, (3.28)

where, as before, ε3 is used up for the Riemann sum approximation. The above estimate can be

improved to O(β3) for oriented percolation, using (1.8). This completes the proof of (3.17).

3.2 Asymptotics of ppe

c

In this section, we compute the asymptotics of the critical point for (unoriented) percolation. We

follow the strategy in Section 3.1 as closely as possible. However, there are a number of changes

due to the fact that we have less control of the lace expansion coefficients. For example, the bounds

on the derivative of Π̂p with respect to p are not available in the literature, even though in the

unpublished manuscript [13], this derivative is computed. To make this paper self-contained, we

avoid the use of the derivative, which causes changes in the proof.

We start with some notation. Let

Tp = sup
x∈Zd

(pD ∗ τ ∗3
p )(x), T ′

p = sup
x∈Zd

τ ∗3
p (x). (3.29)

We will use the following bounds:

Lemma 3.1. Fix d > 6. For L sufficiently large, and all p ≤ pc,

Tp ≤ Cβ, T ′
p ≤ 1 + Cβ. (3.30)

We will defer the proof of Lemma 3.1 to the end of this section.

To compute the asymptotics of Π̂p, we use (3.3) and the bound (cf., [5, Proposition 4.1])

π̂(N)

p ≤ T ′
p(2TpT

′
p)

N∨1. (3.31)

Note that Lemma 3.1 together with (3.5) and (3.31) immediately imply

pc = 1 + O(β). (3.32)

We now start the proof to improve (3.32) one term further. Together with Lemma 3.1, (3.31)

proves that the contribution to
∑∞

N=2 π̂(N)
pc

is O(β2). Thus, we are left to compute π̂(0)
pc

and π̂(1)
pc

.

The goal of this section is to prove

π̂(0)

pc
=

1

2

∞
∑

n=3

(n− 1)D∗n(o) + O(β2), π̂(1)

pc
= D∗2(o) +

∞
∑

n=3

nD∗n(o) + O(β2). (3.33)

Using (3.5) and (3.33), we arrive at (1.14). Thus, we are left to prove (3.33).

16



We again investigate π̂(0)
pc

and π̂(1)
pc

separately. First, we compute π̂(0)
pc

. For percolation, we denote

by {w ⇐⇒ x} the event that w is doubly connected to x. By definition [11], π̂(0)
p =

∑

x∈Zd π(0)
p (x),

where

π(0)

p (x) = Pp(o⇐⇒ x)− δo,x. (3.34)

We wish to use Russo’s formula (see, e.g., [8]) to prove that π̂(0)
pc

= π̂(0)

1 + O(β2). However, Russo’s

formula is restricted to events that only depend on a finite number of bonds, so that we will first

show that Russo’s formula may be applied to π(0)
p (x).

Let Bℓ = {x ∈ Zd : |x| ≤ ℓ}. We note that, since π̂(0)
p is finite for any p ≤ pc, there is an r <∞

such that
∑

x/∈Br
π(0)

p (x) = O(β2) for any p ≤ pc. In fact, using the BK inequality (see, e.g., [8])

and the bound τpc(x) ≤ K|x|2−d for x 6= o [10, Proposition 2.2]1, we have
∑

x/∈Br

π(0)

p (x) ≤
∑

x/∈Br

τp(x)2 ≤
∑

x/∈Br

τpc(x)2 ≤ c
∑

ℓ>r

ℓ(d−1)+2(2−d) = O(r4−d) = O(β2), (3.35)

where we assume r = O(L2d/(d−4)). Let {E in BR} be the set of bond configurations whose

restriction on bonds {u, v} with u, v ∈ BR are in E. Similarly to (3.35), if R = O(L2d/(d−6)), then

for any p ≤ pc we have2

∑

x

Pp

(

{o⇐⇒ x} \ {o⇐⇒ x in BR}
)

≤ O(β2). (3.36)

By (3.35)–(3.36) and the mean-value theorem, there is a p ∈ (1, pc) such that

π̂(0)

pc
=

∑

x∈Br

π(0)

pc
(x) + O(β2) =

∑

x∈Br\{o}

Ppc(o⇐⇒ x in BR) + O(β2)

=
∑

x∈Br\{o}

P1(o⇐⇒ x in BR) + (pc − 1)
∑

x∈Br\{o}

∂pPp(o⇐⇒ x in BR) + O(β2)

= π̂(0)

1 + (pc − 1)
∑

x∈Br\{o}

∂pPp(o⇐⇒ x in BR) + O(β2). (3.37)

We will later identify π̂(0)

1 , and first show that the second term is O(β2). Since the event {o⇐⇒ x

in BR} depends only on finitely many bonds, we are now allowed to apply Russo’s formula to

obtain
∑

x∈Br\{o}

∂pPp(o⇐⇒ x in BR) =
∑

x∈Br\{o}

∑

(u,v)

D(v − u) Pp

(

(u, v) pivotal for {o⇐⇒ x in BR}
)

,

(3.38)

1In [10, Proposition 2.2], K is of order O(L−2+ǫ) with an arbitrarily small number ǫ > 0, and thus is small when
L is large. Here, we do not care about the dependence of K on L, and will take K = O(1).

2The event {o ⇐⇒ x} \ {o ⇐⇒ x in BR} implies the existence of y /∈ BR such that o ←→ x, x ←→ y and
y ←→ o occur disjointly. Therefore, by the BK inequality and Propositions 1.7(i) and 2.2 of [10], we obtain

∑

x∈Zd

Pp

(

{o⇐⇒ x} \ {o⇐⇒ x in BR}
)

≤
∑

x∈Z
d

y/∈BR

τp(x) τp(y − x) τp(y) ≤ c
∑

y/∈BR

|y|(4−d)+(2−d) = O(R6−d).
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where the factor D(v − u) arises from the derivative of the bond occupation probability of {u, v}

with respect to p, and where a bond is pivotal for o⇐⇒ x when o⇐⇒ x in the (possibly modified)

configuration where the bond is made occupied, while o ⇐⇒ x does not occur in the (possibly

modified) configuration where the bond is made occupied.

Since pc = 1 + O(β), and since, by the BK inequality, (3.38) is bounded by
∑

x,(u,v)

D(v − u) Pp

(

{o←→ u} ◦ {v ←→ x} ◦ {o←→ x}
)

≤
∑

x,(u,v)

D(v − u) τp(u) τp(x− v) τp(x) ≤ p−1Tp ≤ Tp, (3.39)

so that the second term in (3.37) is O(β2). We are left to analyse the first term π̂(0)

1 . We follow

the strategy around (3.12), but the details change somewhat.

Let Sx denote all self-avoiding paths from o to x, and order the elements in Sx in an arbitrary

way. Then we can write

π̂(0)

1 =
∑

x 6=o

∑

ω1,ω2∈Sx
ω1∩ω2=∅

ω1≺ω2

P1

(

ω1, ω2 occupied; E≺(ω1) ∩ E≻(ω2; ω1)
)

, (3.40)

where E≺(ω1) and E≻(ω2; ω1) were defined between (3.11) and (3.12). In words, the event E≺(ω1)

holds when ω1 is the lowest occupied self-avoiding walk path from o to x such that there is an

occupied bond disjoint path from o to x. The event E≻(ω2; ω1) holds when ω2 is the highest

occupied self-avoiding walk path from o to x that is bond disjoint from ω1. Since P1 is a product

measure, if we ignore E≺(ω1) ∩ E≻(ω2; ω1), we obtain
∑

ω1,ω2∈Sx
ω1∩ω2=∅

ω1≺ω2

P1(ω1, ω2 occupied) =
∑

ω1,ω2∈Sx
ω1∩ω2=∅

ω1≺ω2

P1(ω1 occupied) P1(ω2 occupied). (3.41)

We can then follow the rest of the argument between (3.14) and (3.19) to arrive at

π̂(0)

1 =
1

2

∑

x 6=o

∑

ω1,ω2∈Sx

|ω1|+|ω2|≥3

W1(ω1) W1(ω2) + O(β2), (3.42)

where we recall the definition of Wp(ω) in (1.1). Here the factor 1/2 has the same origin as the

one in (3.18), and the restriction that |ω1| + |ω2| ≥ 3 is due to the fact that the smallest cycle

in percolation has length 3. In (3.42), each ωj is a self-avoiding path from o to x. However,

as estimated in Section 2, the contribution in which ω1 or ω2 has a self-intersection is O(β2).

Therefore, we can remove the self-avoidance constraint in (3.42). Performing the sum over x 6= o

and writing ω = (ω1, ω2), which is a random walk path starting and ending at o of length at least

3, we obtain

π̂(0)

1 =
1

2

∑

ω:o−→o
|ω|≥3

(|ω| − 1) W1(ω) + O(β2) =
1

2

∞
∑

n=3

(n− 1) D∗n(o) + O(β2), (3.43)
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where |ω| − 1 = n− 1 is the number of vertices along ω, excluding the starting and ending point

of ω. This completes the computation of the leading asymptotics of π̂(0)
pc

.

We next derive the asymptotics of π̂(1)
pc

, following the strategy in [18, 19], where the first three

coefficients of the asymptotic expansion into powers of (2d)−1 of the critical value pc for nearest-

neighbour percolation were computed. The details of the argument are changed considerably

compared to [18, 19]. Indeed, since we are only interested in the leading order term, while in [18]

the first three coefficients are computed, many terms that need explicit computation in [18, 19] will

be error terms for us. On the other hand, since in [18, 19] the asymptotics in nearest-neighbour

models for large dimensions are considered, long loops lead to error term in [18, 19], whereas they

contribute to the leading asymptotics here. We follow the proof in [18, Section 4.2] as closely and

as long as possible, and indicate where the argument diverges.

To define π̂(1)
p , we need the following definitions. Given a bond configuration and A ⊆ Zd, we

recall that x and y are connected through A, and write x←
A
−→ y, if every occupied path connecting

x to y has at least one bond with an endpoint in A. As defined below (3.7), the directed bond

(u, v) is said to be pivotal for x←→ y, if x←→ u and v ←→ y occur, and if x←→ y occurs only

when {u, v} is set occupied. (Note that there is a distinction between the events {(u, v) is pivotal

for x←→ y} and {(v, u) is pivotal for x←→ y} = {(u, v) is pivotal for y ←→ x}.) Let

E ′(v, x; A) = {v ←
A
−→ x} ∩

{

∄(u′, v′) occupied & pivotal for v ←→ x s.t. v ←
A
−→ u′

}

. (3.44)

Then, by definition [11],

π̂(1)

p =
∑

x

∑

(u,v)

p D(v − u) E0

[1{o⇐⇒u} P1

(

E ′(v, x; C̃(u,v)

0 (o))
)

]

, (3.45)

where the sum over (u, v) is a sum over directed bonds. On the right-hand side, we use subscripts to

identify the different expectations. Thus, the subscripts do not refer to the percolation parameter

p. The cluster C̃(u,v)
0 (o) appearing on the right hand side of (3.45) is random with respect to the

expectation E0, but C̃(u,v)
0 (o) should be regarded as a fixed set inside the probability P1. The latter

introduces a second percolation model which depends on the original percolation model via the set

C̃(u,v)
0

(o). We refer to the bond configuration corresponding to the jth-expectation as the “level-j”

configuration.

By (3.31),

0 ≤ π̂(1)

p ≤ 2T ′
pTpT

′
p. (3.46)

We will use refinements of this bound in the following.

We first claim that the contribution to (3.45) due to u 6= o is an error term of order O(β2).

Indeed, if u 6= o then at level-0 the origin is in a cycle of length at least 3. Standard diagrammatic

estimates then allow for the replacement in (3.46) of a factor T ′
p by a constant multiple of Tp. This

improves the bound (3.46) from O(β) to O(β2), by (3.30).

We are left with the contribution to (3.45) due to u = o, namely
∑

x,v

p D(v) E0

[

P1

(

E ′(v, x; C̃(o,v)

0
(o))

)]

. (3.47)
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If x /∈ C̃(o,v)
0 (o), then to obtain a non-zero contribution to P1(E

′(v, x; C̃(o,v)
0 (o))), x must be in

an occupied cycle of length at least 3, in level-1 (in the language of [5, Section 3], the sausage

containing x must consist of a cycle containing both x and an endpoint of the last pivotal bond

for the connection from o to x). In this case, in (3.46), we may again replace a factor T ′
p by a

constant multiple of Tp, and again this contribution is O(β2). We are left to consider

∑

x,v

p D(v) E0

[1{x∈C̃
(o,v)
0 (o)} P1

(

E ′(v, x; C̃(o,v)

0
(o))

)

]

. (3.48)

This is as far as the analogy with the argument in [18, Section 4.2] goes. We now need to adapt

the proof there to compute the asymptotics of π̂(1)
pc

when L→∞.

If x ∈ C̃(o,v)
0 (o), and if v ←→ x, then v ←

C̃
(o,v)
0 (o)
−−−−−→ x. We next claim that the intersection with

the second event in (3.44) leads to an error term. We write

I0[x ∈ C̃(o,v)

0
(o)] I1[E

′(v, x; C̃(o,v)

0
(o))]

= I0[x ∈ C̃(o,v)

0
(o)] I1[v ←→ x]

×
(

1− I1

[

∃(u′, v′) occupied & pivotal for v ←→ x s.t. v ←
C̃

(o,v)
0 (o)
−−−−−→ u′

]

)

,

where we write I0 and I1 for the indicator functions on levels 0 and 1, respectively. The latter term

can be bounded by
∑

(u′,v′)

∑

z

I0[z ∈ C̃(o,v)

0
(o)] I1

[

{v ←→ z} ◦ {z ←→ u′} ◦ {(u′, v′) occupied} ◦ {v′ ←→ x}
]

, (3.49)

which, using the BK inequality, yields a bound of the form
∑

x,v,z

∑

(u′,v′)

p D(v) P0(o←→ x, o←→ z) τp(z − v) τp(u
′ − z) p D(v′ − u′) τp(x− v′). (3.50)

By the tree-graph inequality [1]

P0(o←→ x, o←→ z) ≤
∑

y

τp(y) τp(x− y) τp(z − y), (3.51)

so that we end up with
∑

x,z,y

(p D ∗ τp)(y) τp(x− y) τp(z − y) τp(z − v) (τp ∗ p D ∗ τp)(x− z) ≤ T 2
p = O(β2), (3.52)

which indeed is an error term. Thus, using the identity

{x ∈ C̃(o,v)

0
(o)} = {o←→ x without using (o, v)}, (3.53)

we end up with

π̂(1)

p =
∑

v,x

p D(v) τ (o,v)

p (x) τp(x− v) + O(β2), (3.54)
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where

τ (o,v)

p (x) = P(o←→ x without using (o, v)). (3.55)

Note that we can think of τ (o,v)
p (x) as the two-point function on Zd, where the bond (o, v) is

removed. We will denote the resulting graph with vertex set Zd and edge set
{

{x, y} : x, y ∈

Zd, {x, y} 6= {o, v}
}

by Zd
(o,v)

, so that τ (o,v)
p (x) is the two-point function on Zd

(o,v)
. We will use this

observation to compute τ (o,v)
p (x).

We investigate the main term in the right-hand side of (3.54) further. Russo’s formula, together

with the BK inequality, yields that

∂pτp(x) =
∑

(y,z)

D(z − y) P((y, z) pivotal for o←→ x) ≤ (τp ∗D ∗ τp)(x), (3.56)

∂pτ
(o,v)

p (x) =
∑

(y,z)

D(z − y) P((y, z) pivotal for o←→ x in Zd
(o,v)

) ≤ (τp ∗D ∗ τp)(x). (3.57)

Therefore, we obtain that for p = pc,

π̂(1)

pc
=

∑

x,v

pcD(v)τ (o,v)

pc
(x)τpc(x− v) + O(β2)

=
∑

x,v

D(v)τ (o,v)

1 (x)τ1(x− v) + O((pc − 1)Tpc) + O(β2)

=
∑

x,v

D(v)τ (o,v)

1 (x)τ1(x− v) + O(β2), (3.58)

since pc = 1 + O(β). Furthermore, an argument similar to the one for π̂(0)
p shows that

τ1(x) = G(x) + O
(

(G ∗ g ∗G)(x)
)

, (3.59)

τ (o,v)

1 (x) = G(x) (1− δv,x) + δv,x(D
∗2 ∗G)(x) + O

(

(G ∗ g ∗G)(x)
)

+ O
(

D ∗ (G− δo)(x)
)

. (3.60)

where we recall G(x) =
∑∞

n=0 D∗n(x) and define

g(x) = G(x)(D ∗G)(x). (3.61)

We will prove (3.59)–(3.60) in full detail below, and first complete the proof subject to (3.59)–

(3.60). Using (3.59)–(3.60), together with the fact that for u 6= o, we have G(u) = (D ∗G)(u), we

end up with

π̂(1)

pc
=

∑

x 6=v

G(x) D(v) G(x− v) +
∑

x

(D∗2 ∗G)(x) D(x) + O(β2) + O((D ∗G∗3 ∗ g)(o))

=

∞
∑

n=2

(n− 1)D∗n(o) +

∞
∑

n=3

D∗n(o) + O(β2) = D∗2(o) +

∞
∑

n=3

nD∗n(o) + O(β2), (3.62)

where we use

(D ∗G∗3 ∗ g)(o) ≤ ‖D ∗G∗3‖∞ ‖g‖1 ≤ O(β2), (3.63)

for d > 6, by (1.10).

This completes the proof subject to (3.59)–(3.60) and Lemma 3.1.
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Proof of (3.59)–(3.60). We start by proving (3.59), and then adapt the argument to prove (3.60).

To see (3.59), we recall the arbitrary ordering of the elements in Sx introduced above (3.40). Then

we have that

τ1(x) =
∑

ω∈Sx

Pp(ω occupied; F≻(ω)), (3.64)

where F≻(ω) is the event that ω is the lowest occupied path in Sx. Thus, we can write

τ1(x) =
∑

ω∈Sx

Pp(ω occupied)−
∑

ω∈Sx

Pp(ω occupied; F≻(ω)c). (3.65)

The former term equals

δo,x + (1− δo,x)
∑

ω∈Sx

|ω|−1
∏

i=0

D(ω(i + 1)− ω(i)). (3.66)

Clearly, by using inclusion-exclusion on the fact that ω is self-avoiding, as in (2.5), (3.66) equals

G(x) + O((G ∗G)(x)(G(o)− 1)), (3.67)

which is a contribution to the error in (3.59) when we note that G(o)− 1 = (D ∗G)(o). Similarly,

the second term in (3.65) is bounded by O
(

(G ∗ g ∗G)(x)
)

using the fact that there must exist a

u ∈ Zd such that there exist bond disjoint occupied paths from o to u, two occupied paths from

u to v (of which at least one is non-vanishing) and one from v to x. Thus, by the BK inequality,

this term is bounded by

∑

u,v

G(u) G(v − u) (D ∗G)(v − u) G(x− v) = (G ∗ g ∗G)(x).

The proof of (3.60) follows the same ideas. In (3.65) and (3.66), we only need to sum over

self-avoiding walk paths that do not use the bond (o, v). When x = v, this means that |ω| ≥ 2, so

that we obtain

τ (o,v)

1 (v) = (D∗2 ∗G)(v) + O((G ∗ g ∗G)(v)) + O(D(v)(G(o)− 1)). (3.68)

When x 6= v, we can use inclusion-exclusion on the fact that the bond (o, v) is not used, and obtain

τ (o,v)

1 (x) = τ1(x) + O(D(v)G(x− v)), (3.69)

and then use (3.59).

Proof of Lemma 3.1. We use [11, (5.20)], which states that uniformly in p ∈ [1, pc) and for L large

enough

τ̂p(k) ≤
1 + o(1)

1− D̂(k)
, (3.70)
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where o(1) tends to 0 when L→∞. We also use the standard bound (see e.g. [5]) that for x 6= 0,

τp(x) ≤ (pD ∗ τp)(x). (3.71)

We then follow the proof as in [5]. For Tp, we fix x and extract the term in (3.29) due to the case

where every argument of τp is o, which is pD(x) ≤ p Cβ (see (1.8)). This gives

Tp(x) ≤ p Cβ + p
∑

(u,y,z)6=(x,o,o)

τp(y) τp(z − y) D(u) τp(x + z − u). (3.72)

Therefore, by (3.71),

Tp ≤ p Cβ + 3p2 sup
x

(D∗2 ∗ τ ∗3
p )(x), (3.73)

where the factor 3 comes from the 3 factors τp whose argument can differ from o. In terms of the

Fourier transform, this gives

Tp ≤ p Cβ + 3p2 sup
x

∫

�π

ddk

(2π)d
D̂(k)2 τ̂p(k)3 e−ik·x = p Cβ + 3p2

∫

�π

ddk

(2π)d
D̂(k)2 τ̂p(k)3, (3.74)

where �π = [−π, π]d and we use τ̂p(k) ≥ 0 [1]. For L≫ 1, by (3.70) we obtain

Tp ≤ p Cβ + 4p2

∫

�π

ddk

(2π)d

D̂(k)2

[1− D̂(k)]3
. (3.75)

Let B̂1/L = {k ∈ �π : cL2|k|2 ≤ η}. Using (1.8), we estimate the contribution to the integral in

(3.75) from k ∈ �π \ B̂1/L by

∫

�π\B̂1/L

ddk

(2π)d

D̂(k)2

[1− D̂(k)]3
≤ η−3

∫

�π

ddk

(2π)d
D̂(k)2 = O(β). (3.76)

On the other hand, the contribution from k ∈ B̂1/L is, again using (1.8), bounded by

∫

B̂1/L

ddk

(2π)d

D̂(k)2

[1− D̂(k)]3
≤

∫

B̂1/L

ddk

(2π)d
(cL2|k|2)−3 = O(β). (3.77)

This proves the bound on Tp.

The bound on T ′
p is a consequence of T ′

p ≤ 1+3Tp. Here the term 1 is due to the contribution to

(3.29) where the arguments of the three factors of τp in T ′
p in (3.29) are equal to o. If at least one of

these arguments is nonzero, then we can use (3.71) for the corresponding two-point function.

A Bounds on D∗n(x) and q∗n(x)

In this appendix, we prove (3.6) for any ε ∈ (0, 1] assuming (1.8). The inequality (1.10) follows

by taking ε = 1.
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First, we note that

q∗n(x) = (1− ε)nδo,x +

n−1
∑

j=0

(1− ε)n−1−jε(D ∗ q∗j)(x), (A.1)

where we suppose that the empty sum equals zero. When n ≤ N ≡ ε−1, we use (A.1) to obtain

q∗n(x) ≤ (1− ε)nδo,x +
n−1
∑

l=0

(1− ε)lε ‖D‖∞ ≤ (1− ε)nδo,x + O(β) ≤ (1− ε)nδo,x +
O(β)

[1 ∨ (nε)]d/2
,

(A.2)

as required. On the other hand, when n > N , we use

q∗n(x) = (1− ε)nδo,x + (1− ε)n−1nεD(x) +

n−2
∑

j=0

(n− 1− j)(1− ε)n−2−jε2(D∗2 ∗ q∗j)(x), (A.3)

which is obtained by substituting (A.1) into q∗j in the right-hand side of (A.1). Since the second

term in the right-hand side is bounded by O(β)nεe−nε ≤ O(β)[1∨(nε)]−d/2, it suffices to investigate

the third term. Let S1 be the sum over j < N , and let S2 be the remaining sum, i.e.,

S1 =
∑

0≤j<N

(n− 1− j)(1− ε)n−2−jε2(D∗2 ∗ q∗j)(x), (A.4)

S2 =
∑

N≤j≤n−2

(n− 1− j)(1− ε)n−2−jε2(D∗2 ∗ q∗j)(x). (A.5)

For S1, we use (A.2) to obtain

S1 ≤ (1− ε)n−2ε2D∗2(o)
n−1
∑

l=n−N

l + O(β) ε2
n−1
∑

l=n−N

l (1− ε)l−1 ≤ O(β) (nε)2e−nε. (A.6)

For S2, we recall the definition B̂1/L = {k ∈ �π : cL2|k|2 ≤ η} below (3.75), and let B̂+
1/L = {k ∈

B̂1/L : q̂(k) ≥ 0}. Note that

(D∗2 ∗ q∗j)(x) ≤

∫

B̂+
1/L

ddk

(2π)d
q̂(k)j +

∫

�π\B̂
+
1/L

ddk

(2π)d
D̂(k)2|q̂(k)|j. (A.7)

Recall (1.8). For the first integral, we use

q̂(k) = 1− ε[1− D̂(k)] ≤ e−ε[1−D̂(k)] ≤ e−cεL2|k|2, (A.8)

while for the second integral in (A.7), we use, noting that without loss of generality, we may assume

that η ≤ 1,

|q̂(k)| ≤ |1− ε(2− η)| ∨ (1− εη) ≤ 1− εη. (A.9)
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Therefore, we have

(D∗2 ∗ q∗j)(x) ≤

∫

B̂+
1/L

ddk

(2π)d
e−cjεL2|k|2 + (1− εη)j

∫

�π\B̂
+
1/L

ddk

(2π)d
D̂(k)2

= O(β) (jε)−d/2 + O(β) (1− εη)j. (A.10)

Substituting (A.10) into (A.5) and separating the sum of the first term in (A.10) into the sum

over N ≤ j < n
2
− 1 and the sum over n

2
− 1 ≤ j ≤ n− 2, we obtain

S2 ≤ O(β) (nε− ε− 1) (1− ε)
n
2
−1 ε

∑

N≤j< n
2
−1

(jε)−d/2

+ O(β) (nε
2
− ε)−d/2 ε2

∑

n
2
−1≤j≤n−2

(n− 1− j) (1− ε)n−2−j

+ O(β) (1− εη)n−2 ε2
∑

N≤j≤n−2

(n− 1− j)

≤ O(β) (nε)e−nε/2 + O(β) (nε)−d/2 + O(β) (nε)2 e−ηnε. (A.11)

The proof of (3.6) is completed by combining (A.2)–(A.3), (A.6) and (A.11), and (nε)2e−nε/2 ≤

C[1 ∨ (nε)]−d/2 for all n ≥ 1/ε.

B Computation for the spread-out uniform model

In this appendix, we compute the model-dependent terms of pc − 1 in (1.12)–(1.14) when the

probability distribution D is defined as in (1.9). Recalling (1.15), we have

D∗2(o) =
1

(2L + 1)d − 1
=

β

2d
+ O(βL−1) = β U⋆2(o) + O(βL−1). (B.1)

This relation can be extended as follows:

Proposition B.1. Let D be the function defined in (1.9). For α = 0, 1, as L→∞,

∞
∑

n=3

(n + 1)α D∗n(o) = β

∞
∑

n=3

(n + 1)α U⋆n(o) + O(βL−1), (B.2)

∞
∑

n=2

D∗2n(o) = β

∞
∑

n=2

U⋆2n(o) + O(βL−1), (B.3)

where d > 4 + 2α in (B.2) and d > 4 in (B.3).

Theorem 1.2 is an immediate consequence of (B.1) and Proposition B.1. Note further that the

coefficients of β in (B.2)–(B.3) are bounded if d > 2 + 2α and d > 2, respectively, which suggests

that also for d = 3 + 2α and d = 4 + 2α the leading order contributions should be given by the

first terms in (B.2)–(B.3).
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Proof. For x ∈ Zd, define

Do(x) =
1{‖x‖∞≤L}

(2L + 1)d
, (B.4)

to be a regularized version of D in (1.9). It is obvious that D∗2
o (o) satisfies the same estimate as

in (B.1). We note that

D∗m(o)−D∗m
o (o) =

m
∑

j=1

(

(D −Do) ∗D∗(j−1) ∗D∗(m−j)
o

)

(o)

=
m

∑

j=1

[

∑

x:0<‖x‖∞≤L

(

D∗(j−1) ∗D
∗(m−j)
o

)

(x)

(2L + 1)d[(2L + 1)d − 1]
−

(

D∗(j−1) ∗D
∗(m−j)
o

)

(o)

(2L + 1)d

]

=
1

(2L + 1)d

m
∑

j=1

[

(

D∗j ∗D∗(m−j)
o

)

(o)−
(

D∗(j−1) ∗D∗(m−j)
o

)

(o)
]

. (B.5)

By this identity and the fact that D∗n
o (x) also satisfies (1.10), we can approximate the expressions

in the left-hand side of (B.2)–(B.3) by the corresponding expressions defined in terms of Do instead

of D, up to O(β2) when d > 4 + 2α and d > 4, respectively. For example, for (B.2) with α = 0,

we use (1.10) to obtain

∣

∣

∣

∣

∞
∑

n=3

D∗n(o)−

∞
∑

n=3

D∗n
o (o)

∣

∣

∣

∣

≤
1

(2L + 1)d

∞
∑

j=1

∞
∑

n=j∨3

[

(

D∗j ∗D∗(n−j)
o

)

(o) +
(

D∗(j−1) ∗D∗(n−j)
o

)

(o)
]

=
1

(2L + 1)d

(

(D + δo) ∗
(

D∗2
o + D ∗Do + D∗2 ∗G

)

∗Go

)

(o) = O(β2), (B.6)

where δo(x) = δo,x and Go(x) =
∑∞

n=0 D∗n
o (x). Therefore, to prove Proposition B.1, it suffices to

show that, for α = 0, 1,

∞
∑

n=3

(n + 1)α D∗n
o (o) = β

∞
∑

n=3

(n + 1)α U⋆n(o) + O(βL−1), (B.7)

∞
∑

n=2

D∗2n
o (o) = β

∞
∑

n=2

U⋆2n(o) + O(βL−1). (B.8)

We prove (B.7) for α = 0 by comparing the Fourier transform of the first term in the right-hand

side of (B.7), i.e.,

β

∞
∑

n=3

U⋆n(o) = β

∫

Rd

ddk

(2π)d

Û(k)3

1− Û(k)
, (B.9)
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with the Fourier transform of the left-hand side of (B.7), i.e.,

∞
∑

n=3

D∗n
o (o) =

∫

�π

ddk

(2π)d

D̂o(k)3

1− D̂o(k)
= βo

∫

�
(L+ 1

2 )π

ddk

(2π)d

D̂o

(

k
L+ 1

2

)3

1− D̂o

(

k
L+ 1

2

) , (B.10)

where �ℓ = [−ℓ, ℓ]d and

βo = (L + 1
2
)−d = β + O(βL−1), (B.11)

and also

Û(k) =

∫

Rd

ddx U(x) eik·x =
d

∏

j=1

sin kj

kj

, (B.12)

D̂o(k) =
∑

x∈Zd

Do(x) eik·x =
d

∏

j=1

sin[(2L + 1)
kj

2
]

(2L + 1) sin
kj

2

=
Û((L + 1

2
)k)

Û(k
2
)

. (B.13)

The simple product formula (B.13) is the main advantage of using Do instead of D. It follows

from (B.13) that D̂o

(

k
L+ 1

2

)

= Û(k)/Û( k
2L+1

), which approximates Û(k) for large L. We write

β
∞

∑

n=3

U⋆n(o)−
∞

∑

n=3

D∗n
o (o) = (β − βo)

∞
∑

n=3

U⋆n(o) + βo(I1 + I2), (B.14)

where, by (B.11), the first term is O(βL−1), and

I1 =

∫

Rd\�
(L+ 1

2 )π

ddk

(2π)d

Û(k)3

1− Û(k)
, I2 =

∫

�
(L+ 1

2 )π

ddk

(2π)d

[

Û(k)3

1− Û(k)
−

D̂o

(

k
L+ 1

2

)3

1− D̂o

(

k
L+ 1

2

)

]

. (B.15)

We prove below that each Ij is O(L−1) if d > 2. This suffices to prove (B.7) for α = 0. If fact, we

will prove that each Ij is O(L−2 log L) if d > 2, which also identifies the coefficient of βL−1.

To estimate each Ij, we use the following properties of Û(k) and D̂o

(

k
L+ 1

2

)

that follow from the

standard estimates for the trigonometric functions: for any k,

|Û(k)| ≤

d
∏

j=1

(1 ∨ |kj|)
−1, 1− Û(k) ≥ c1(1 ∧ |k|

2), (B.16)

and for k ∈ �(L+ 1
2
)π,

∣

∣D̂o

(

k
L+ 1

2

)
∣

∣ ≤ c2

d
∏

j=1

(1 ∨ |kj|)
−1, 1− D̂o

(

k
L+ 1

2

)

≥ c3(1 ∧ |k|
2), (B.17)

∣

∣Û(k)− D̂o

(

k
L+ 1

2

)
∣

∣ ≤ c4L
−2|Û(k)| |k|2, (B.18)
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where each ci ∈ (0,∞) is independent of L and k. To see the first inequality in (B.16), we only

need to use | sin r
r
| ≤ (1 ∨ r)−1 for any r. For the first inequality in (B.17), we recall D̂o

(

k
L+ 1

2

)

=

Û(k)/Û( k
2L+1

) and use sin r
r
≥ 2

π
for any r ∈ [−π

2
, π

2
], so that |Û( k

2L+1
)−1| ≤ (π

2
)d, and then use the

bound on |Û(k)| in (B.16). The second inequalities in (B.16)–(B.17) follow from (B.12) and (1.8),

respectively. Finally, for (B.18), we again use 2
π
≤ sin r

r
≤ 1 for any r ∈ [−π

2
, π

2
] to obtain

∣

∣Û(k)− D̂o

(

k
L+ 1

2

)
∣

∣ ≤
(π

2

)d

|Û(k)|

∣

∣

∣

∣

d
∏

j=1

sin
kj

2L+1
kj

2L+1

− 1

∣

∣

∣

∣

≤
(π

2

)d

|Û(k)|

d
∑

i=1

∣

∣

∣

∣

sin ki

2L+1
ki

2L+1

− 1

∣

∣

∣

∣

, (B.19)

which is bounded by |Û(k)|O(|k|2L−2), using 0 ≤ sin r
r
− 1 + r2

3!
≤ r2

5!
(π

2
)2 for any r ∈ [−π

2
, π

2
]. This

completes the proof of (B.16)–(B.18).

First, we consider I1. Using (B.16), we obtain

|I1| ≤ c

∫

Rd\�
(L+ 1

2 )π

ddk |Û(k)|3 ≤ c′
d

∑

i=1

[
∫ ∞

(L+ 1
2
)π

dki

k3
i

][

∏

j 6=i

∫ ∞

−∞

dkj

(1 ∨ |kj|)3

]

= O(L−2). (B.20)

For I2, we use
∣

∣

∣

∣

u3

1− u
−

d3

1− d

∣

∣

∣

∣

=
|u− d| |u2 + ud + d2 − ud(u + d)|

(1− u)(1− d)
≤
|u− d| (u2 + 3|ud|+ d2)

(1− u)(1− d)
, (B.21)

with u = Û(k) and d = D̂o

(

k
L+ 1

2

)

. Using (B.16)–(B.18), we obtain

|I2| ≤ cL−2

∫

�
(L+1

2 )π

ddk
|k|2

∏d
j=1(1 ∨ |kj|)

−3

(1 ∧ |k|2)2
= O(L−2 log L), (B.22)

for d > 2. The proof of (B.7) for α = 0 is completed by (B.14), (B.20) and (B.22).

The same strategy explained above also applies to the proof of (B.2) for α = 1 and (B.3), using

the following expressions:

∞
∑

n=3

(n + 1) D∗n
o (o) = βo

∫

�
(L+ 1

2 )π

ddk

(2π)d

D̂o

(

k
L+ 1

2

)3[
4− 3D̂o

(

k
L+ 1

2

)]

[

1− D̂o

(

k
L+ 1

2

)]2 , (B.23)

∞
∑

n=2

D∗2n
o (o) = βo

∫

�
(L+ 1

2 )π

ddk

(2π)d

D̂o

(

k
L+ 1

2

)4

1− D̂o

(

k
L+ 1

2

)2 . (B.24)

This completes the proof of Proposition B.1.
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