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Nonlinear generalized Langevin equation with memory due to thermal environment is equivalent
to a memoryless equation with increased dimensionality
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A framework recently developed for the extraction of a dynamic reaction coordinate to mediate reactions
buried in multidimensional Langevin equation is extended to the generalized Langevin equations without a priori
assumption on the forms of the potential (in general, nonlinearly coupled systems) and the friction kernel. The
equation of motion with memory effect can be transformed into an equation without memory at the cost of an
increase in the dimensionality of the system, and hence the theoretical framework developed for the (nonlinear)
Langevin formulation can be generalized to the non-Markovian process with colored noise. It is found that the
increased dimension can be physically interpreted as effective modes of the fluctuating environment. As an
illustrative example, we apply this theory to a multidimensional generalized Langevin equation for motion on
the Miiller-Brown potential surface with an exponential friction kernel. Numerical simulations find a boundary
between the highly reactive region and the less reactive region in the space of initial conditions. The location
of the boundary is found to depend significantly on both the memory kernel and the nonlinear couplings. The
theory extracts a reaction coordinate whose sign determines the fate of the reaction taking into account the
thermally fluctuating environments, the memory effect, and the nonlinearities. It is found that the location of
the boundary of reactivity is satisfactorily reproduced as the zero of the statistical average of the new reaction
coordinate, which is an analytical functional of both the original position coordinates and velocities of the
system, and of the properties of the environment.

I. INTRODUCTION Kramers under the existence of memory by using a general-
ized Langevin equation. In a generalized Langevin equation,
the acceleration of the position coordinate is determined by

Many chemical reactions and arrangements of the confort-he gradient of the potential of mean force, the friction, and

mation of biomolecules occur in condensed phase under t o . S
P ht e external force arising from the environment. The friction

influence of stochastic random forces and the friction exerte . ; .
. . ; depends linearly on the history of the velocity of the system,
by the surrounding solvent molecules. Since the pioneer:

ing work by Kramerd: the Langevin equation has been of- resulting in memory effects. If the friction kernel decays much

ten utilized to represent the dynamical processes in condensegr e rapidly than the typical timescale of the reaction, the

phase. The chemical reaction was originally modeled as gquation can be approximated by a Langevin equation with-

stochastic motion surmounting a barri -di [ qut memory.
g a barrier on a one-dimensiona

potential surface along a chosen coordinate considered to de- It was showd by using the projection operator method that
scribe the progress of the reaction. In his pioneering worlkany high-dimensional Hamiltonian system can formally be
Kramers found that the rate constant is proportional to the ineast into a generalized Langevin equation with a small number
verse of the friction constant in the case of high viscosity of variables. All the detailed dynamics of the “solvent” modes
whilst it is proportional toy in the case of low viscosity, re- that are projected out are reflected in a time propagation of
sulting in a turn over in the dependence of the rate constarihe external force and the friction kernel. The time evolution
ony. Later, Grote and Hynésreformulated the theory of of the external force is also given by a form of generalized
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Langevin equatioh which then contains an external force of  In this paper we generalize the thebry** to generalized

the next order. This procedure can be repeated until sufficieritangevin equations without postulating the forms of the po-

degrees of freedom have been taken and one can make soteatial or the friction kernel. We exploit the equivalence be-

approximation to the remaining “random force.” Zwarzig tween the generalized Langevin equation with memory ker-

showed that, if the solvent can be expressed as a collection okl and a memoryless equation of motion containing larger

harmonic oscillators and the coupling with the system is bilin-number of dimensions, which can be physically interpreted

ear, the random force can be regarded as a Gaussian randas a set of effective modes of the environment that affect the

variable. reaction dynamics. As an example, we analyze the reaction
Supposing the shape of the potential at the barrier top is alynamics represented by a generalized Langevin equation on

inverse parabola along the chosen reaction coordinate, theoMller-Brown potential” with an exponential friction kernel

by Kramerd and by Grote and Hynésan provide ana|ytica| with several different damplng timescales. It is found that

formula for the rate constant dependent on the friction. Rethe reaction coordinate and the reaction boundary determin-

cently, Grote-Hynes theory has been successfully applied tg the reactivity can be extracted from nonlinearly coupled

Comp|ex systems with many degrees of freedom, such as emultimode systems with thermal fluctuation even when there

zymatic reaction§.In particular, it was shown that Kramers 1S memory.

theory severely underestimates the transmission coefficient,

implying the necessity of including the memory term in the

generalized Langevin equation. The interplay of the multiple Il THEORY
vibrational modes in the environment with the naively chosen _ _
reaction coordinate was also pointed out, although the anal- A. Generalized normal mode transformation

yses were performed only at the normal mode level. When

the system contains multiple degrees of freedom, the effect In this paper we use a generalized Langevin equation to
of the nonlinear couplings within the system on the reactiordescribe chemical reactions under the effect of colored noise.
dynamics should also be taken into account. It is a nontrivial U . d

issue Wh”ether we can construct t_he concept of “reaction co- i = T _/ dr Z,V'j (T)G(t—1)+& (1), (1)
ordinate,” as a single one-dimensional coordinate (decoupled dj 0 i<

from other coordinates) that can describe the progress of thv?/hereql,qz, ... qg are position coordinates of the systet (

reaction and, in principle, predict the destination of the reac:
tion, that is, reactants or products. is the number of degrees of freedom of the systéhiy}) the

710 . , potential of mean forcey; (1) the friction kernel andj(t)
Bartschet al.”™ scrutinized the geometrical structure of the random force exerted by the solvent. The friction kernel
reaction in the framework of a multidimensional Langevin

) o . L ° and the random force are related to each other through the
equation within the harmonic approximation, that is, eaChquctuation-dissipation theorem

mode coupled bilinearly with each other. They introduced

a shifted coordinate system that can take into account time- (EM)E)) =2ke Ty (t—t')), 2
dependent fluctuating force. They showed that one can ex- S
tragt the reaction Coogrdinate decoZpIed from the other nonr where(-) denotes the ensemble average at equnl_brlktms .
active coordinates and hence extract the non-recrossing divi Soltzmann constant ang temp'erature. The potentlgl force '_S
ing surface (=transition state) in that shifted system. They alsgecomposed into the harmonic and the anharmonic terms:
extended the treatment to the case of a generalized Langevin 5 d @

equatiorf However, the existence of their reaction coordinate T Zaij a+ Z ek Z ajmai™---qa™, (3)
crucially depends on the harmonic approximation for the po- qi i= k=1 |m=k+1

tential, and therefore could be validated only at very low tem'whereaij anda; , are the expansion coefficients of the lin-

perature. ear and the higher order terms, respectively. The origin of the
Recently, in order to extract the reaction coordinate and thggordinate system is set to be at a stationary point on the po-
no-return transition state for nonlinearly coupled multimodetential U (). We introduce a formal parameterto employ
systems in a fluctuating environment, we have presented ghe so-called normal form perturbation theory as in our recent
theory'~!* based on the concept of normal fdffwith the  \ork on multidimensional Langevin formulatidd. The k-th
time-dependent formulatidh within the framework of the order perturbation consists of the polynomial of dedtee 1)
multidimensional LangeVin formulation. It was shown that, in g. The crux to handle the nonlinearity isto regard the non-

under certain conditions, a nonlinear coordinate transformatnear term as a function of time through the time dependence
tion can be performed to provide a new reaction coordinatef g s:

independent of all the other coordinates similarly to the case
of Hamiltonian systems in the region of saddlés*®The sign

of this reaction coordinate solely can determine whether the
reaction system proceeds to from the products or is reflected
back to the reactants. The nonlinear formulation, however, We also define

was so far restricted to multidimensional Langevin equations def

without memory effects. gj(t)=¢;(t) + (). (5)

HOE'S & S ajnm™)-qa™t). (@)
k=1 |m=k+1
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Then Eq. (1) can be expressed as The integration ovel is evaluated by a complex path in-
tegral using residues. The poles of the matid )~ =
Za”q. / dr Zy, )Git—T1)+g;(t). (6) {)\2+/\IA'()\)+A}71 coincide with the solutions of the non-
linear eigenvalue equation
Note that Eq. (6) is a generalized Langevin equation being

nonlinear ing;’s, since the terng;(t) includes the nonlinear [An2+/\nf(/\n) +A} vh=0. (15)
force, and the time dependencegparises fromé; and f;
where the time dependence originates frgys. To obtain the residues, we first diagonalize the matrix
We now follow the treatment of Bartset al® with a mod- T
ification which is necessary to include the nonlinearities. Let B(A) =3 BA)wi(A)wi(A)". (16)
us consider a formal solution of Eq. (6) by using Laplace :
transform The inverse matrix oB is then given by
+o00

”-/\:/ exp(—At)g; (t)dt, 7 1

qJ( ) 0 F( )ql() ( ) 71:2_7Wi(/\)wi()\)-r- (17)
and its inverse T B(A)

v 1 pote o At the eigenvaluest = A, in Eq. (15), one off3(A) be-

a(t) = 271 Jeieo eXPAL)G;(A)dA, ®) comes zero and the corresponding veeidA ) coincides with

where the real constastis taken on the right side of all the the eigenvec_tor/n. If the poles are simple, we can assume
singularities off;(A) on the complex plane. Eq. (6) is, then, B1(An) = O without loss of generality. We then make a Taylor

transformed into the following form, expansion around the pole= An:
A%4(A) — Aq;(0) — 4;(0) BLA) = Bi(An)(A —An)+O((A =An)?),  (18)
d d . .
== 3 @G -3 fi(A) AGA) -a@)+g(A).  andob@nheresidue
i& is 1 T
) I}?:e/\sn B(A) ™" =KnVnVy,
In matrix form, Kn 2B (An) 2. (19)

A%(A) ~ A9(0) ~4(0)
=—A4(A)~ (M) {A8(A) —a(0)} +8(A),  (10)

By using these residues, Eq. (14) is written as

whereA = (a&;j), ' = (%j), 4= (q;), g = (g;), and the hat a(t) =3 Va | exp(Ant)Knvi {G(0) — A "Aq(0) }
means Laplace transform as usual. By rearranging the terms, A
we have t
(A24AF (M) +AYE(A) + Kn /O dt’exp(An(t —t'))vag(t') |- (20)
={A+F(A)}a(0)+4(0) +8(A). (11) _ _ o
We defi We now define normal mode coordinatgsby the inside of
€ define []in this equation:
BA)EN2+AF (M) +A, (12) o -
and the formal solution fogj(A) is then given by Un = exp(Ant) KnVn {0(0) — Aq *Ac(0)}
4(A) =BA) L [{A +F (1)} q(0) +a(0) + (2] + Kn /O dt’ exp(An(t —t")vag(t). (21)
_y-1 -1 N
=2A"1q(0)+B(A) " [-A~ AQ( )+Q( ) +6(A)] - Thengandu are related by
(13)
By applying the inverse Laplace transformation, the formal a= ZV“U”' (22)
solution (13) is brought back to the time domain:
1 retie The inverse of Eq. (22) at= 0 (i.e., the initial condition ofu)
at) =5 [ drexp(At) is given by Eq. (21)
C—lo

0) = KnVp, {q lAq )} (23)

>From Eq. (21), it can be shown thatobeys the following
equation of motion:

A~1q(0)+B(A) a(0) — A B(A) *Aq(0)

dt’g( A
/ t'g(t’) exp(— t)l (14) Un = Anln + KnVi g(t).- (24)
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Hereg(t) = &(t) + f(q(t)) [Eq. (5)] andf is a polynomial of dom force, respectively. The equation of motion yeris in-
g;j's [Eq. (4)]. Sinceg;’s are now linear combinations of's  dependent of the other modgsys, ..., yn:
[Eq. (22)], we can expreskas polynomials ofi,’'s. Then we

have V1=~ {A1+ca(t)}y, (27)
Un = Anln + &n(t) + S e S Bimu™--u™, (25) with the coefficientcy(t) only depending ort and not on
k=1 |m=k+1 y2,...,Yn. Under a moderate condition fog(t), that is,
where N is the total number of the normal modes, 1
E,t)Z VI (t) is the random force projected onto thth lim —/ cy(t)dt'| < Aq (28)
normal mode, ang8j m's are the expansion coefficients ob- tote|t

tained by substituting Eq. (22) into Eq. (4). The equation of . )
motion (25) has the same form as the equationufam the ()\1_ arises from the zeroth ord_er of the perturbat_lon theory
case of a multidimensional Langevin formulattéd2 which ~ While the terme, is from the higher orders) the sign g

allows us to follow the same normal form procedré® as solely determines the direction of the motion departing from
presented in Refs. 11 and 12. the barrier, that is, whether the system undergoes the reaction

The only difference from the previous formulatidri? is to form the product or gets refle_ct_e_d back t_o_the reactant. The
the increase of dimension needed to describe the system, th4tlue ofy1 as a function of the initial conditiofq(0),q(0))
is, N can be larger thar2d for some friction kernels (In IS given by substituting Eq. (23) into Eqg. (26). The result can
Sec. I1B, we demonstrate a case in which the friction ker-2/S0 be expressed in the form of polynomials:
nel is expressed as a linear combination of exponential de- ~
cays). The number and the values of the eigenvalues depend Y1 =a101 + a2 — SA1, &1 (t) + Fo[&] (1)

on the specific form of the friction kernel and that of the po- Mg Mg+l gMed

tential of mean force. We assume here that, as in the iso- +Z‘m‘22qu1 % %

lated systent/36there is one eigenmode with a positive real + > Fm[§] (o™ ~gameg gy, (29)
eigenvalue (i.e., an unstable mode corresponding to the mo- Im>1

tion sliding down the barrier). We number this unstable mode

as1@i>0). The first two terms correspond to the linear combination in

The number of eigenmodes can be more t@nNote that ~ EQ. (23). When we introduce position space normal mode co-
the friction kernell arises from dynamical interactions be- ordinates, which diagonalize the Hessian matixand the
tween the system and the surrounding solvents. Such extfgiction kernel does not have off-diagonal elements, we have
eigenmodes can be regarded as normal modes of the extend@dy tx andda in the expression afs. In general cases, how-
system consisting of solute and solvent molecules. MoreovefVer, we should have a linear combination of all ¢hs and
the friction kernel does not necessarily contain all the motiondlj’s in the first parts of Eq. (29). The other terms in Eq. (29)
of the solvent molecules but includes those which affect th@riginate from the effects of nonlinearity, with the coefficients
motion of the solute. In Sec. Il C, it is shown that the numberFo[¢] (t) andFn [&] (t), both nonlinear functionals of the ran-
of the eigenmodes is finite if the friction kernel has a sim-dom force. The terms withvy, (i.e., without §) can be re-
ple form like cosines or exponential decays with integer pow-garded as intrinsic nonlinear effects of the system, while oth-
ers of time, which have been found in molecular dynamic<ers are combinations of the nonlinearity and the external ran-
simulations*142 Therefore the above procedure is a way ofdom force. The transformation Eq. (29) depends on each spe-

extracting the effective finite degrees of freedom from the vasgific instance of the random forgg(t). Since it is impossible
(practically infinite) dimensions of solvents. to know the instance of the random force for all the time

The equation of motion [Eq. (25)] for the normal mode advance, we have suggestktb take the ensemble average of
coordinatesu can be solved in terms of the time-dependenty1 With respect to all the possible realizations of the random
normal form perturbation theofy;38-40 which is a time- force:
dependent classical analog of the Van Vleck perturbation the- _
ory studied in molecular spectroscopy. The details of the pro- (Y1) =a101 + a0 + Fo(kgT)

cedure are shown in previous worksBriefly, we introduce + Wty ™ ... gy gTE+L L g Ted
a nonlinear coordinate transformation— y. The unstable Z'”“Z_Z et Gd " oy % _
modey; can be expressed as a polynomial expansian of + Y Fm(keT)a™--0a™d " 44>, (30)
~ Im>1
y1 =u1 — §A1,&1(t) _ _
> ®) whereFo(kBT) andFm(kBT) are the ensemble averages of the
+5 e Y W A E](0um™u™ - un™, corresponding coefficients in Eq. (29), and depend on the tem-

k=1 imi<k+1 perature through Eq. (2) instead of each instandg bt Note

(26)  that the transformations Eq. (29) and Eqg. (30) are valid only
_ o ~ fort = 0 because Eq. (23) is only foe= 0. For the purpose of
where the time-dependent coefficient§A;,&i](t) and  judging the reactivity for a given initial conditiom(0), §(0)),
Wi [A,€&](t) are linear and nonlinear functionals of the ran-these equations are sufficient.



B. Proof of invertibility and noninvertibility of the normal where

mode transformation

fo Po
. ) . . — a1 P1
In this subsection, we investigate an application of the a=| . |.p=1] . |,
present theory to a specific one-dimensional model coupled : :
bilinearly to a harmonic bath. For this system, the rela- an PN
tion between the total Hamiltonian (system + bath) and the N N
generalized Langevin description has been establi3fidw c1 w? 0 0
goal of this subsection is to clarify the relation between the )
method presented in Sec. Il A, which starts from the gener- K= C2 0 w? )
alized Langevin equation, and the normal modes of the total : .0
Hamiltonian system. ] i 2
cN 0 0 wn

It has been shownthat a generalized Langevin equation N
with Gaussian random force can be exactly derived if the “sol- Z
vent” modes are harmonic oscillators and the interaction with =
the “solute” is bilinear. In this case, the total system is de-
scribed in the region of a rank-one saddle by the followingTo find the relation between the method presented in Sec. Il A

(39)

s ‘

Hamiltonian: and this total Hamiltonian description, we first consider the
normal modes in th&(N + 1)-dimensional Hamiltonian sys-
1 1 tem. Lete, be eigenvectors of the matrik
Hiotal =5 po2 - *bZQOZ +Uni(do)

+Z

2
N
p; +5 (quj'+w’_qo) 1 (31)
]

wheregp andgj for j=1,2,...,N are the position coordinates
of the solute (= reactive mode) and the solvent (= nonreactiv
modes), respectivelyyg andp; their conjugate momenta. We
have divided the potential along the reactive mgglato the
quadratic ¢ Zb%go?, with b being a real number) and the non-

linear UnL (0p)) parts. The solvents are described as a set of

harmonic oscillators with frequencieg, interacting with the
solute with the coupling constants. Zwanzig showed that
this system is equivalent to a generalized Langevin equation

t
to = bPa0— U (do) — | (D)do(t = D)dT+& (1), (32

with the friction kernel given by

.2

coqwjT) (33)

Cj
2

and the prime irJ{, denotes the derivative with respect to
Jo. The purpose of this subsection is to prove that the ful
phase space of the system, which i&(&l + 1)-dimensional
space parametrized by, 1, ---, On, Po, P1, ---» Pn), CAN

be completely recovered from the generalized Langevin equa-

tion, Eq. (32), if we know the exact form of the friction kernel
of Eq. (33).

(n=0,1,...,N),
where we have written the eigenvaluesﬂasn2 for conve-
nience in the following Ay, is either pure imaginary (for non-
reactive or elliptic modes) or pure real (for reactive or hyper-
bolic mode). The eigenvalues are the solution to the following

Bquatioff®

N C'2 1
M1+ y L= b= (37)
5 Wi An” + wj?
The components of the eigenvectors are givett by
€on
€1n
éh=1] . |-
enn.
N o2 —1/2
en=q1+5 —5—ob |
]Zl (/\nz + O.)J 2)2
Cj .
e — 0 =1,...,N).
in )\nz"‘rwjz n (] )
(38)

[Since the matriXK is symmetric, the eigenvectors form an
orthonormal set

el em = dnm, (39)

whered is Kronecker's delta. By using these eigenvectors, we
define the phase space normal mode coordinates as

The harmonic part of the total Hamiltonian is expressed in

matrix form

1 1
Hiotal = é\p|2+§qTKQ+UNL(CI0), (34)

th =22 (e a+ A, "enp)
Ong1en =272 (eg p— /\nGIQ)
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whose inverse transformation is By defining the normal mode coordinates according to
N Egs. (22)-(24) in Sec. Il A, we then have
q=2"1/2 > en (O — Ag "On14n) 5 2N+1
n=0 qO = ZJ Un7
125 o Mot 41) -
p=2" €n (Unt14n+Anln) - 41
nZO Un —/\nUn‘i‘ e% { UNL qo)‘i’f( )} (47)

Substituting Eq. (41) into the Hamiltonian equation of motion

obeying Eq. (34) we obtain the equation of motionor In order to establish the equivalence of Egs. (42) and (47),

we first note that the random force in this case can be ex-
pressed as in Ref. 5:

d. - 1

aun =Anlin — 21/2)\ eOnUNL(QO) N .
d. ) 1 / &)= Zl(aj coswit +bj sinwjt) . (48)
aUNJrlJrn = — AnlNg14n — meOnUNL (Qo)- (42) I=

Then one can see that substituting the following transforma-

Here the argumert of Uy, is replaced by tion from G, to up into Eqgs. (42) and (43) gives Eq. (47):
Un =2~ Y 2epni
Go=2"1/2 Z)eo A HOns14n) (43) " N i
KL (—Ancoswit + wj sinait)
+ Zl At aj (—An jt+ W i

resulting in the coupled differential equation @bnly. The 1=
termsUy, (&) areO(G?). For a positive real value ofy, Tn
grows exponentially from the originlif = Cn+1+n = 0) while
On14n asymptotically converges to it. In the harmonic ap-
proximation, these two modes correspond to the motions de-
parting from and converging to the barrier top along the nor- N
mal mode reaction coordinate. On the other hand, for pure- Z
imaginary numbers oA, (, andly.1.n represent the mo- B
tions of oscﬂlgnon perpendicular to the reaction coordinate. +bj (Ansinwjt — wj coswjt)}. (49)
The question to be addressed here is whether these equa-
tions of motion in the full phase space can be reconstructe
solely from the generalized Langevin equation (32) with re-
spect to the single coordinatg. The method presented in
Sec. Il A can be applied to this system by substituting into
Eq. (12) the Laplace transform of the friction kernel Eqg. (33)
given by

+bj (=Ansinwjt — wj COSCO]'t)}7

—1/2 ~
UN414n = —2 / €onUN-+1+n

{a, (Ancoswjt + wj sinwjt)

fjn conclusion, we have proved that the whq@N + 1)-
dimensional phase space is recovered from the generalized
Langevin equation (32) if the friction kernel Eq. (33) is known
exactly. In many cases, however, the friction kernel is ap-
proximated by exponential functions, exponentially damped
trigonometric functions, or a sum of a small number of such
N o2 terms. The approximation is often satisfactory. As we will
= Z % (44)  seein Sec. Il C, the number of normal modes obtained by the
=1 2+ OJJ method in Sec. Il A is relatively small for such simple forms
of the friction kernel. The normal modes in this case can
Then we have be regarded as representative modes that effectively describe
the motion of the solvent with a certain small dimensionality.
5 Thus, if the friction kernel is given only approximately, we
B(A) 1+ z w2 A2+ w2 —b" (45) cannot, and do not need to, recover the true phase space that
) involves many (practically infinite) solvent modes, but can ex-
tract a small number of modes that describe the solvent dy-
namics effectively whenever the friction kernel exerted by the
Qolvent is approximated well.

The eigenvalue equatioB(A) = 0 coincides with Eq. (37).
Note that the eigenvalues appear in pairs of opposite sign b
cause Eq. (45) is symmetric for the sign of We number
the eigenvalues such thit,1,.n = —Asforn=0,1,... N so

as to be consistent with Eqg. (42). Since the system is one-

: ) . . - C. Dimensionality of the extended system
dimensional, the eigenvector ig = (1). We also find by

Eq. (19) In Sec. Il A, it was found that the generalized Langevin
dB(A) equation with memory [Eq. (1)] is equivalent with the mem-

Krjl =~ = 2/\ne5n2. (46)  oryless equation of motion [Eg. (25)], with an increase in di-

A=An mensionality. In Sec. II B, we showed an example of this in-



creased dimensionality for the case of a friction kernel bethe corresponding eigenvector is given by= (1,0,...,0),
ing a sum of cosine functions. In this subsection, we investiand if
gate how much the dimension increases in the case of multi-
exponentially decaying kernels. In the case of uniform friction
expressed by the sum of exponentials, the equation is reduced
to polynomials, for which we definitely know the number of
solutions for the nonlinear eigenvalue equation (15). Suppose i
the friction kernel has the following form: we havev, = (0,...,0,1,0,...,0).

The above can easily be extended to the case of exponential
decays multiplied by integer powets) of time:

L
1
AnZ 4+ A 2 ——— +w?=0, 55
n n:lgé)\n_’_u[ | ( )

L
yij (1) = &j /Zlge exp(— 1), (50)

L
) -5 ke _ 56
that is, a multi-exponentially decaying function. Hedg, is i (1) = 3 ,;g“ eXp(—HT), (56)

Kronecker’s deltal. a certain integer, angy andp, some con-

stants (complex in general). The constamtcan take com- whose Laplace transform is

plex values, so that Eq. (50) includes exponentially decaying

trigonometric functions as its special cases. As discussed in A L k!

Sec. Il A and Sec. II B, the expression by Eq. (50) may not Vi(A) =8y /Zlgf A+ )

be exact, but can be regarded as an approximate fit to the true -

friction kernel. It is expected that many functions that decayThe nonlinear eigenvalue equation gives a polynomial of de-
for larget can be fitted satisfactorily if the numbkiis taken  gree (2+ zlzzl(lJr kg)) d, which is the dimension of the ex-

sufficiently large. tended system.
The Laplace transform of Eq. (50) is

(57)

. L 1 . AMODEL SYSTEM
Vlj(A):dj;gim~ (51) '
(=1 ¢

) ] N ] . As an illustrative example to demonstrate our theory we an-
By introducing position space normal mode coordinates in ady|yze a model system with Miiller-Brown potentflwhich

vance, we can diagonalize the Hessian mairdf the poten-  has three minima and two saddle points. The detailed descrip-

tial function: tion of the potential surface can be found in Ref. 37 and also
. 2 in Refs. 11-14. For the friction kernel, we use a single expo-
A= d|ag(—o.>* ’(*)22’“’3’2""’“"’2)7 (52) nential function:
wherew*, anday, ..., ay are real numbers whose squares cor- Y (T) = &jyoexp(—uT), (58)

respond to the curvature of the potential at the saddle points,
and we have assigned the unstable direction as mode 1. {gfith y, = 900 and u = 30. Here, the value oft = 30 is set

order for Eq. (15) to have a solutiag # 0, we have to be of the same order as the normal mode frequency of the
5 R system. The valugp = 900= 3(? is also chosen to be of
det()\n +Anl"(A) +A) the same time scale as the system. [Note that the physical
L . dimensionality ofy, is square of inverse time, as seen from
—[(r2.2 —w? Egs. (1) and (58) ].
( " ngng/\nJrIJe In this paper we focus on the saddle with the higher en-
d L ergy, which was found to be subject to larger nonlinedgty.
% I_L ’\”Z_H‘”[Z o 1 +Ol)j2 To compare the pr_esent theory With the results of numeri-
= A Ant e cal simulations, trajectory calculations are performed by the

(53) method of Ref. 44. For calculating reaction probabilities, tra-
jectories are judged to have settled in the well region when the

energy (kinetic plus potential) becomes less tBigil above

the minima. The factor 2 corresponds to the fact that this sys-

tem has two degrees of freedom.

=0.

By multiplying (|‘|(F:1(/\n+ug))d on both sides, We have a
polynomial equation with degre + 2)d, with (L + 2)d so-
lutions in general. Without the effect of environmeht-£ 0),

the system ha2d dimensions corresponding to the positions
and the velocities. The addition of one exponential term in IV. RESULTS AND DISCUSSION
Eq. (50) increases the effective dimension of the systeih by

If the eigenval tisfi . . .
e eigenvaluel, satisfies Figure 1 shows the reaction probabil®Bg,ctionas a func-

L ) tion of the initial value ofy; with the initial values of the other
An2+/\n; g[/\ —w* =0, (54)  coordinates(dy,qs,02) fixed to zero. In the casksT = 0,
= AntHe the random force is zero because of Eqg. (2). Therefore the



trajectory is uniquely determined for each single initial con-
dition. The value of the reaction probability is then either
0 or 1. The boundary between the reactiBdtion= 1)
and the nonreactivePgaction = 0) initial conditions coin-
cides withg; = 0, showing negligible nonlinear effect due to
(d2,42)|t=0 = (0,0). As the temperature increases [Fig. 1(b)],
the reaction probability is no longer 0 or 1, due to the stochas-
tic nature of the random force. We can still find the distinc-
tion between the regions with mainly reactiWfction> 1/2)
and mainly nonreactivéeaciion< 1/2) initial conditions. The
boundary of the two regions migrates toward the posigve
As the temperature further increases [Fig. 1(c)], the boundary
moves further. This migration of the reaction boundary with | o
the temperature was found in the case of a Langevin equa- 20.05 0 0.05
tion with white noise€'? in which the physical interpretation q

L . S (b) kT =1
was also given: The nonreactive mo(, @) is thermally 1.0 . .
excited by the kick from the environment. The vibrational ex- ’
citation then affects the reactivity through nonlinear couplings
with the reactive mode. The nonlinear coupling between the
reactive and the nonreactive modes originates from the curved
shape of the ridge of the potential. Here we have found that
a similar phenomenon occurs in the case of the generalized
Langevin equation.
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The thermal average of the reaction coordingtetaken
over realizations of random force [Eq. (30)] can be re-
garded as a function ofqgi,dz,d1,92)|i—0. Since we set /
(02,61, 62) [t—0 = (0,0,0), we can calculatéy;) as a function 0 4=
of g; only. The vertical lines in Fig. 1 shows the valuegaf -0.05 0 0.05
at which(y;) becomes zero. On one side of the line we have (c) kpT =3 Qi
(y1) > 0, and on the other sidg/;1) < 0. The arrows in the 1.0 "
figure indicate which region is which. It is seen that the posi- n ><0,;_9(y1 y>0
tive (negative) sign ofy1) corresponds to high (low) reaction '
probability. In other words, the results of the normal form
calculation reproduces the numerical results for the reactivity,
including the migration of the reaction boundary.

Reaction Probability
S
W

We next check the dependence on the friction kernel by
changing the parameter. Figure 2 shows similar plots with
different values ofy. The temperature i&kgT = 3, corre-
sponding to Fig. 1(c). Comparing Fig. 2(a), Fig. 1(c), and
Fig. 2(b) (in the order of increasing), we can see that the =
migration from the origirg; = 0 to the actual reaction bound- 0 I
ary (defined byly1) = 0) projected onto the positivgy axis is -0.05 0 0.05
less pronounced gsincreases. This can be understood from G
the fact that the excitation of the non-reactive mode by the ex-
ternal force becomes enhanced due to Eq. (2) as the vajue ofFIG. 1: Reaction probabilities as functions @ff—o with the ini-
decreases. The figure shows that the extent of the migration &l values of other coordinates fixed to zero. The temperature is

the reaction boundary is correctly reproduced by the preserffia’ " el & o0 K L G pET e SR T o
theory for all the values gft shown here. X

g; for which the averaged reaction coordindie) becomes zero.
Figure 3 shows the reaction probability as a function ofArrows show the regions wherg,) > 0 and(y;) <O0.

02,92)|t=0. With (01,91)]i=0 = (0,0.4). Different values

((31‘ (qz,)("qz)h:o Iead(to dif)f(Lrent r((aactio)n probabilities due to V. SUMMARY AND OUTLOOK

nonlinear couplings between the nonreactive and the reactive

modes. The set of points for whicly ) = Ois indicated by the The theoretical framework recently developed for the anal-
purple curve. Here also we can see that the(yet= 0 ob-  ysis of reaction dynamics of nonlinearly coupled systems in a
tained by the present theory gives the correct reaction boundhermally fluctuating environment expressed by white noise,
ary subject to nonlinearity and thermally fluctuating force inwas generalized to the case of colored noise by using the (non-
the generalized Langevin equation. linear) generalized Langevin equation. The equation of mo-

Reaction Probability
S
9]
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g //’/: Preaction
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5 A
A /:,»0/ ' FIG. 3: Reaction probability as a function ¢, g2)|—o with the
) . initial values of the other coordinates fixed (i, ¢1 )|t—0 = (0,0.4)
| } atkgT = 1. Solid curves indicate the set of points for which the
-0.05 0 0.05 averaged reaction coordinatg ) becomes zero.
q

FIG. 2: Reaction probabilities as functions@fi;—o with the initial
values of other coordinates fixed to zero. The parameters are set

keT — 3 and (a)pt — 10, (b) 1 — 60, with the other parameters set fhole position-velocity space of the system was found to be

equal to the values in Fig. 1. Diamonds show the results of numericaﬁilyl.ded mto. Teg"’”s of mainly reactive and 'malnl.y nonreactive
simulations. Vertical lines indicate the value @f for which the Initial condltlo_ns. Due to the effect of n(_)nll_nearl_ty and mem-
averaged reaction coordinafg;) becomes zero. Arrows show the OrY: the reaction boundary does not coincide with the surface
regions wherdy; ) > 0 and(y;) < 0. g1 = 0 and migrates toward a region remote from the surface
of g1 = 0. It was found that the present theory can analytically

tion with memory effect can be cast into the equation withou2SSign the migrating reaction boundary observed in the results
memory, at the cost of an increase of the dimension of the sy&f humerical simulation, which is given as zero of the new re-
tem. This fact enables us to utilize the same framework for th@ction coordinatg as a functional of both the positions and
Langevin equation to the non-Markovian process with colore/elocities of the system as well as the colored noise and the
noise. It was found that the increased dimension can be phy&Jiction kernel.

ically interpreted as effective modes of the fluctuating envi- In reality it is almost impossible to identify the precise form
ronment. To support this interpretation, we have investigateof the friction kernel derived from the total Hamiltonian com-
the relationship between the effective modes thus found angosed of the system and the environment of infinitely many
the underlying system-bath Hamiltonian in which the systendimensions. Even if it were possible, it would not shed light
is bilinearly coupled with a bath represented by a collectionon the mechanism of reaction dynamics because the amount
of harmonic oscillators. For a generalized Langevin equaef information would be infinite. [in addition, the total Hamil-
tion derived from the system-bath Hamiltonian it was foundtonian does not necessarily fall into the form of Eq. (31)].
that there exists a one-to-one correspondence between thalather, it is more meaningful to extract an appropriate de-
two representations, if the exact form of the friction kernelscription by a lower-dimensional dynamical system that can
is known at least for such class of Hamiltonian systems. Taffectively represent the effects of the complexity of nonlin-
check the validity of the present theory we analyzed the reacear dynamics of the system in a thermally fluctuating media in
tion dynamics represented by a generalized Langevin equatiderms of an approximant of the friction kernel with a simple
on a Miiller and Brown potenti# with a single exponential ~functional form, such as a linear combination of exponentials
friction kernel with several different damping timescales. Theor exponentially damped trigonometric functions [Eq. (50) or
reaction probability as a function of the initial condition in the (56)]. For the practical application, it will be interesting to
saddle region was calculated by trajectory simulations. Thevaluate the friction kernel from realistic molecular dynamics



10

(MD) simulations®41-42and fit the numerical friction kernel supported by Research Fellowships of the Japan Society for
to the form of Eq. (50) or (56). Such numerical evaluation ofthe Promotion of Science for Young Scientists (to SK) and
friction kernel with the corresponding random force can therby JSPS, JST/CREST, Priority Area ‘Molecular Theory for
be utilized as inputs to the present formulation. It is expectedReal Systems’ (to TK). The computations were partially per-
that the extra modes with low dimensions compared with thédormed using the Research Center for Computational Science,
actual dimension of the environment, thus extracted with thékazaki, Japan.

approximate friction kernel, capture the subset of the environ-

mental degrees of freedom exhibiting significant effects on the

dynamics of the system.
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