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Nonlinear generalized Langevin equation with memory due to thermal environment is equivalent
to a memoryless equation with increased dimensionality

A framework recently developed for the extraction of a dynamic reaction coordinate to mediate reactions
buried in multidimensional Langevin equation is extended to the generalized Langevin equations without a priori
assumption on the forms of the potential (in general, nonlinearly coupled systems) and the friction kernel. The
equation of motion with memory effect can be transformed into an equation without memory at the cost of an
increase in the dimensionality of the system, and hence the theoretical framework developed for the (nonlinear)
Langevin formulation can be generalized to the non-Markovian process with colored noise. It is found that the
increased dimension can be physically interpreted as effective modes of the fluctuating environment. As an
illustrative example, we apply this theory to a multidimensional generalized Langevin equation for motion on
the Müller-Brown potential surface with an exponential friction kernel. Numerical simulations find a boundary
between the highly reactive region and the less reactive region in the space of initial conditions. The location
of the boundary is found to depend significantly on both the memory kernel and the nonlinear couplings. The
theory extracts a reaction coordinate whose sign determines the fate of the reaction taking into account the
thermally fluctuating environments, the memory effect, and the nonlinearities. It is found that the location of
the boundary of reactivity is satisfactorily reproduced as the zero of the statistical average of the new reaction
coordinate, which is an analytical functional of both the original position coordinates and velocities of the
system, and of the properties of the environment.

I. INTRODUCTION

Many chemical reactions and arrangements of the confor-
mation of biomolecules occur in condensed phase under the
influence of stochastic random forces and the friction exerted
by the surrounding solvent molecules. Since the pioneer-
ing work by Kramers,1 the Langevin equation has been of-
ten utilized to represent the dynamical processes in condensed
phase. The chemical reaction was originally modeled as a
stochastic motion surmounting a barrier on a one-dimensional
potential surface along a chosen coordinate considered to de-
scribe the progress of the reaction. In his pioneering work
Kramers found that the rate constant is proportional to the in-
verse of the friction constantγ in the case of high viscosity
whilst it is proportional toγ in the case of low viscosity, re-
sulting in a turn over in the dependence of the rate constant
on γ. Later, Grote and Hynes2 reformulated the theory of

Kramers under the existence of memory by using a general-
ized Langevin equation. In a generalized Langevin equation,
the acceleration of the position coordinate is determined by
the gradient of the potential of mean force, the friction, and
the external force arising from the environment. The friction
depends linearly on the history of the velocity of the system,
resulting in memory effects. If the friction kernel decays much
more rapidly than the typical timescale of the reaction, the
equation can be approximated by a Langevin equation with-
out memory.

It was shown3 by using the projection operator method that
any high-dimensional Hamiltonian system can formally be
cast into a generalized Langevin equation with a small number
of variables. All the detailed dynamics of the “solvent” modes
that are projected out are reflected in a time propagation of
the external force and the friction kernel. The time evolution
of the external force is also given by a form of generalized
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Langevin equation4, which then contains an external force of
the next order. This procedure can be repeated until sufficient
degrees of freedom have been taken and one can make some
approximation to the remaining “random force.” Zwanzig5

showed that, if the solvent can be expressed as a collection of
harmonic oscillators and the coupling with the system is bilin-
ear, the random force can be regarded as a Gaussian random
variable.

Supposing the shape of the potential at the barrier top is an
inverse parabola along the chosen reaction coordinate, theory
by Kramers1 and by Grote and Hynes2 can provide analytical
formula for the rate constant dependent on the friction. Re-
cently, Grote-Hynes theory has been successfully applied to
complex systems with many degrees of freedom, such as en-
zymatic reactions.6 In particular, it was shown that Kramers
theory severely underestimates the transmission coefficient,
implying the necessity of including the memory term in the
generalized Langevin equation. The interplay of the multiple
vibrational modes in the environment with the naïvely chosen
reaction coordinate was also pointed out, although the anal-
yses were performed only at the normal mode level. When
the system contains multiple degrees of freedom, the effect
of the nonlinear couplings within the system on the reaction
dynamics should also be taken into account. It is a nontrivial
issue whether we can construct the concept of “reaction co-
ordinate,” as a single one-dimensional coordinate (decoupled
from other coordinates) that can describe the progress of the
reaction and, in principle, predict the destination of the reac-
tion, that is, reactants or products.

Bartschet al.7–10 scrutinized the geometrical structure of
reaction in the framework of a multidimensional Langevin
equation within the harmonic approximation, that is, each
mode coupled bilinearly with each other. They introduced
a shifted coordinate system that can take into account time-
dependent fluctuating force. They showed that one can ex-
tract the reaction coordinate decoupled from the other nonre-
active coordinates and hence extract the non-recrossing divid-
ing surface (=transition state) in that shifted system. They also
extended the treatment to the case of a generalized Langevin
equation.8 However, the existence of their reaction coordinate
crucially depends on the harmonic approximation for the po-
tential, and therefore could be validated only at very low tem-
perature.

Recently, in order to extract the reaction coordinate and the
no-return transition state for nonlinearly coupled multimode
systems in a fluctuating environment, we have presented a
theory11–14 based on the concept of normal form15 with the
time-dependent formulation16 within the framework of the
multidimensional Langevin formulation. It was shown that,
under certain conditions, a nonlinear coordinate transforma-
tion can be performed to provide a new reaction coordinate
independent of all the other coordinates similarly to the case
of Hamiltonian systems in the region of saddles.17–36The sign
of this reaction coordinate solely can determine whether the
reaction system proceeds to from the products or is reflected
back to the reactants. The nonlinear formulation, however,
was so far restricted to multidimensional Langevin equations
without memory effects.

In this paper we generalize the theory11–14 to generalized
Langevin equations without postulating the forms of the po-
tential or the friction kernel. We exploit the equivalence be-
tween the generalized Langevin equation with memory ker-
nel and a memoryless equation of motion containing larger
number of dimensions, which can be physically interpreted
as a set of effective modes of the environment that affect the
reaction dynamics. As an example, we analyze the reaction
dynamics represented by a generalized Langevin equation on
Müller-Brown potential37 with an exponential friction kernel
with several different damping timescales. It is found that
the reaction coordinate and the reaction boundary determin-
ing the reactivity can be extracted from nonlinearly coupled
multimode systems with thermal fluctuation even when there
is memory.

II. THEORY

A. Generalized normal mode transformation

In this paper we use a generalized Langevin equation to
describe chemical reactions under the effect of colored noise.

q̈ j =− ∂U
∂q j
−
∫ t

0
dτ

d

∑
i=1

γi j (τ)q̇i(t− τ)+ ξ j(t), (1)

whereq1,q2, . . . ,qd are position coordinates of the system (d
is the number of degrees of freedom of the system),U(q) the
potential of mean force,γi j (τ) the friction kernel andξ j(t)
the random force exerted by the solvent. The friction kernel
and the random force are related to each other through the
fluctuation-dissipation theorem,

〈ξi(t)ξ j(t ′)〉= 2kBTγi j (|t− t ′|), (2)

where〈·〉 denotes the ensemble average at equilibrium,kB is
Boltzmann constant andT temperature. The potential force is
decomposed into the harmonic and the anharmonic terms:

− ∂U
∂q j

=−
d

∑
i=1

ai j qi +
∞

∑
k=1

εk ∑
|m|=k+1

α j,mq1
m1 · · ·qd

md , (3)

whereai j andα j,m are the expansion coefficients of the lin-
ear and the higher order terms, respectively. The origin of the
coordinate system is set to be at a stationary point on the po-
tentialU(q). We introduce a formal parameterε to employ
the so-called normal form perturbation theory as in our recent
work on multidimensional Langevin formulation.11 The k-th
order perturbation consists of the polynomial of degree(k+1)
in q. The crux to handle the nonlinearity is to regard the non-
linear term as a function of time through the time dependence
of q j ’s:

f j(t)
def=

∞

∑
k=1

εk ∑
|m|=k+1

α j,mq1
m1(t) · · ·qd

md(t). (4)

We also define

g j(t)
def=ξ j(t)+ f j(t). (5)
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Then Eq. (1) can be expressed as

q̈ j =−
d

∑
i=1

ai j qi−
∫ t

0
dτ

d

∑
i=1

γi j (τ)q̇i(t− τ)+ g j(t). (6)

Note that Eq. (6) is a generalized Langevin equation being
nonlinear inq j ’s, since the termg j(t) includes the nonlinear
force, and the time dependence ing j arises fromξ j and f j
where the time dependence originates fromq j ’s.

We now follow the treatment of Bartschet al.8 with a mod-
ification which is necessary to include the nonlinearities. Let
us consider a formal solution of Eq. (6) by using Laplace
transform

q̂ j(λ ) =
∫ +∞

0
exp(−λ t)q j(t)dt, (7)

and its inverse

q j(t) =
1

2π i

∫ c+i∞

c−i∞
exp(λ t)q̂ j(λ )dλ , (8)

where the real constantc is taken on the right side of all the
singularities ofq̂ j(λ ) on the complex plane. Eq. (6) is, then,
transformed into the following form,

λ 2q̂ j(λ )−λq j(0)− q̇ j(0)

=−
d

∑
i=1

ai j q̂i(λ )−
d

∑
i=1

γ̂i j (λ ){λ q̂i(λ )−qi(0)}+ ĝ j(λ ).

(9)

In matrix form,

λ 2q̂(λ )−λq(0)− q̇(0)

=−Aq̂(λ )− Γ̂ (λ ){λ q̂(λ )−q(0)}+ ĝ(λ ), (10)

whereA = (ai j ), Γ = (γi j ), q = (q j), g = (g j), and the hat
means Laplace transform as usual. By rearranging the terms,
we have

{
λ 2 + λΓ̂ (λ )+ A

}
q̂(λ )

=
{

λ + Γ̂ (λ )
}

q(0)+ q̇(0)+ ĝ(λ ). (11)

We define

B(λ )def=λ 2 + λΓ̂ (λ )+ A, (12)

and the formal solution for̂q(λ ) is then given by

q̂(λ ) =B(λ )−1[{λ + Γ̂ (λ )
}

q(0)+ q̇(0)+ ĝ(λ )
]

=λ−1q(0)+B(λ )−1[−λ−1Aq(0)+ q̇(0)+ ĝ(λ )
]
.

(13)

By applying the inverse Laplace transformation, the formal
solution (13) is brought back to the time domain:

q(t) =
1

2π i

∫ c+i∞

c−i∞
dλ exp(λ t)

[
λ−1q(0)+B(λ )−1q̇(0)−λ−1B(λ )−1Aq(0)

+B(λ )−1
∫ +∞

0
dt′g(t ′)exp(−λ t ′)

]
. (14)

The integration overλ is evaluated by a complex path in-
tegral using residues. The poles of the matrixB(λ )−1 ={

λ 2 + λΓ̂ (λ )+ A
}−1

coincide with the solutions of the non-
linear eigenvalue equation

[
λn

2 + λnΓ̂ (λn)+A
]

vn = 0. (15)

To obtain the residues, we first diagonalize the matrix

B(λ ) =∑
i

βi(λ )wi(λ )wi(λ )T. (16)

The inverse matrix ofB is then given by

B(λ )−1 = ∑
i

1
βi(λ )

wi(λ )wi(λ )T. (17)

At the eigenvaluesλ = λn in Eq. (15), one ofβi(λ ) be-
comes zero and the corresponding vectorwi(λ ) coincides with
the eigenvectorvn. If the poles are simple, we can assume
β1(λn) = 0 without loss of generality. We then make a Taylor
expansion around the poleλ = λn:

β1(λ ) = β ′1(λn)(λ −λn)+O
(
(λ −λn)2) , (18)

and obtain the residue

Res
λ=λn

B(λ )−1 =κnvnvT
n ,

κn
def=β ′1(λn)−1. (19)

By using these residues, Eq. (14) is written as

q(t) =∑
n

vn

[
exp(λnt)κnvT

n

{
q̇(0)−λ−1

n Aq(0)
}

+ κn

∫ t

0
dt′exp(λn(t− t ′))vT

ng(t ′)

]
. (20)

We now define normal mode coordinatesun by the inside of
[ ] in this equation:

un
def= exp(λnt)κnvT

n

{
q̇(0)−λ−1

n Aq(0)
}

+ κn

∫ t

0
dt′exp(λn(t− t ′))vT

ng(t ′). (21)

Thenq andu are related by

q =∑
n

vnun. (22)

The inverse of Eq. (22) att = 0 (i.e., the initial condition ofu)
is given by Eq. (21)

un(0) = κnvT
n

{
q̇(0)−λ−1

n Aq(0)
}
. (23)

>From Eq. (21), it can be shown thatu obeys the following
equation of motion:

u̇n = λnun + κnvT
ng(t). (24)
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Hereg(t) = ξ (t) + f (q(t)) [Eq. (5)] and f is a polynomial of
q j ’s [Eq. (4)]. Sinceq j ’s are now linear combinations ofun’s
[Eq. (22)], we can expressf as polynomials ofun’s. Then we
have

u̇n = λnun + ξ̃n(t)+
∞

∑
k=1

εk ∑
|m|=k+1

β j,mu1
m1 · · ·uN

mN , (25)

where N is the total number of the normal modes,

ξ̃n(t)def=κnvT
nξ (t) is the random force projected onto thenth

normal mode, andβ j,m’s are the expansion coefficients ob-
tained by substituting Eq. (22) into Eq. (4). The equation of
motion (25) has the same form as the equation foru in the
case of a multidimensional Langevin formulation11,12, which
allows us to follow the same normal form procedure38–40 as
presented in Refs. 11 and 12.

The only difference from the previous formulation11,12 is
the increase of dimension needed to describe the system, that
is, N can be larger than2d for some friction kernels (In
Sec. II B, we demonstrate a case in which the friction ker-
nel is expressed as a linear combination of exponential de-
cays). The number and the values of the eigenvalues depend
on the specific form of the friction kernel and that of the po-
tential of mean force. We assume here that, as in the iso-
lated system,17–36 there is one eigenmode with a positive real
eigenvalue (i.e., an unstable mode corresponding to the mo-
tion sliding down the barrier). We number this unstable mode
as 1 (λ1 > 0).

The number of eigenmodes can be more than2d. Note that
the friction kernelΓ arises from dynamical interactions be-
tween the system and the surrounding solvents. Such extra
eigenmodes can be regarded as normal modes of the extended
system consisting of solute and solvent molecules. Moreover,
the friction kernel does not necessarily contain all the motions
of the solvent molecules but includes those which affect the
motion of the solute. In Sec. II C, it is shown that the number
of the eigenmodes is finite if the friction kernel has a sim-
ple form like cosines or exponential decays with integer pow-
ers of time, which have been found in molecular dynamics
simulations.41,42 Therefore the above procedure is a way of
extracting the effective finite degrees of freedom from the vast
(practically infinite) dimensions of solvents.

The equation of motion [Eq. (25)] for the normal mode
coordinatesu can be solved in terms of the time-dependent
normal form perturbation theory,11,38–40 which is a time-
dependent classical analog of the Van Vleck perturbation the-
ory studied in molecular spectroscopy. The details of the pro-
cedure are shown in previous works.11 Briefly, we introduce
a nonlinear coordinate transformationu 7→ y. The unstable
modey1 can be expressed as a polynomial expansion ofu:

y1 =u1−S[λ1, ξ̃1](t)

+
∞

∑
k=1

εk ∑
|m|≤k+1

W(k)
m [λ ,ξ ](t)u1

m1u2
m2 · · ·uN

mN ,

(26)

where the time-dependent coefficientsS[λ1, ξ̃1](t) and

W(k)
m [λ ,ξ ](t) are linear and nonlinear functionals of the ran-

dom force, respectively. The equation of motion fory1 is in-
dependent of the other modesy2,y3, . . . ,yN:

ẏ1≈ {λ1 +c1(t)}y1, (27)

with the coefficientc1(t) only depending ont and not on
y2, . . . ,yN. Under a moderate condition forc1(t), that is,

lim
t→+∞

∣∣∣∣
1
t

∫ t
c1(t ′)dt′

∣∣∣∣< λ1 (28)

(λ1 arises from the zeroth order of the perturbation theory
while the termc1 is from the higher orders) the sign ofy1
solely determines the direction of the motion departing from
the barrier, that is, whether the system undergoes the reaction
to form the product or gets reflected back to the reactant. The
value ofy1 as a function of the initial condition(q(0), q̇(0))
is given by substituting Eq. (23) into Eq. (26). The result can
also be expressed in the form of polynomials:

y1 =a1q1 +a2q̇1−S[λ1, ξ̃1](t)+F0 [ξ ] (t)

+∑|m|≥2wmq1
m1 · · ·qd

md q̇
md+1
1 · · · q̇m2d

d

+ ∑
|m|≥1

Fm[ξ ] (t)q1
m1 · · ·qd

md q̇
md+1
1 · · · q̇m2d

d . (29)

The first two terms correspond to the linear combination in
Eq. (23). When we introduce position space normal mode co-
ordinates, which diagonalize the Hessian matrixA, and the
friction kernel does not have off-diagonal elements, we have
only q1 andq̇1 in the expression ofu1. In general cases, how-
ever, we should have a linear combination of all theq j ’s and
q̇ j ’s in the first parts of Eq. (29). The other terms in Eq. (29)
originate from the effects of nonlinearity, with the coefficients
F0 [ξ ] (t) andFm[ξ ] (t), both nonlinear functionals of the ran-
dom force. The terms withwm (i.e., without ξ ) can be re-
garded as intrinsic nonlinear effects of the system, while oth-
ers are combinations of the nonlinearity and the external ran-
dom force. The transformation Eq. (29) depends on each spe-
cific instance of the random forceξ (t). Since it is impossible
to know the instance of the random force for all the timet in
advance, we have suggested11 to take the ensemble average of
y1 with respect to all the possible realizations of the random
force:

〈y1〉=a1q1 +a2q̇1 + F̄0(kBT)

+∑|m|≥2wmq1
m1 · · ·qd

md q̇
md+1
1 · · · q̇m2d

d

+ ∑
|m|≥1

F̄m(kBT)q1
m1 · · ·qd

md q̇
md+1
1 · · · q̇m2d

d , (30)

whereF̄0(kBT) andF̄m(kBT) are the ensemble averages of the
corresponding coefficients in Eq. (29), and depend on the tem-
perature through Eq. (2) instead of each instance ofξ (t). Note
that the transformations Eq. (29) and Eq. (30) are valid only
for t = 0 because Eq. (23) is only fort = 0. For the purpose of
judging the reactivity for a given initial condition (q(0), q̇(0)),
these equations are sufficient.
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B. Proof of invertibility and noninvertibility of the normal
mode transformation

In this subsection, we investigate an application of the
present theory to a specific one-dimensional model coupled
bilinearly to a harmonic bath. For this system, the rela-
tion between the total Hamiltonian (system + bath) and the
generalized Langevin description has been established.5 The
goal of this subsection is to clarify the relation between the
method presented in Sec. II A, which starts from the gener-
alized Langevin equation, and the normal modes of the total
Hamiltonian system.

It has been shown5 that a generalized Langevin equation
with Gaussian random force can be exactly derived if the “sol-
vent” modes are harmonic oscillators and the interaction with
the “solute” is bilinear. In this case, the total system is de-
scribed in the region of a rank-one saddle by the following
Hamiltonian:

Htotal =
1
2

p0
2− 1

2
b2q0

2 +UNL(q0)

+
N

∑
j=1

[
1
2

p j
2 +

1
2

(
ω jq j +

c j

ω j
q0

)2
]
, (31)

whereq0 andq j for j = 1,2, . . . ,N are the position coordinates
of the solute (= reactive mode) and the solvent (= nonreactive
modes), respectively,p0 andp j their conjugate momenta. We
have divided the potential along the reactive modeq0 into the
quadratic (−1

2b2q0
2, with b being a real number) and the non-

linear (UNL(q0)) parts. The solvents are described as a set of
harmonic oscillators with frequenciesω j , interacting with the
solute with the coupling constantsc j . Zwanzig5 showed that
this system is equivalent to a generalized Langevin equation

q̈0 = b2q0−U ′NL(q0)−
∫ t

0
γ(τ)q̇0(t− τ)dτ + ξ (t), (32)

with the friction kernel given by

γ(τ) =
N

∑
j=1

c j
2

ω j
2 cos(ω jτ), (33)

and the prime inU ′NL denotes the derivative with respect to
q0. The purpose of this subsection is to prove that the full
phase space of the system, which is a2(N + 1)-dimensional
space parametrized by (q0, q1, . . ., qN, p0, p1, . . ., pN), can
be completely recovered from the generalized Langevin equa-
tion, Eq. (32), if we know the exact form of the friction kernel
of Eq. (33).

The harmonic part of the total Hamiltonian is expressed in
matrix form

Htotal =
1
2
|p|2 +

1
2

qTKq+UNL(q0), (34)

where

q =




q0
q1
...

qN


 , p =




p0
p1
...

pN


 ,

K =




−b2 +c0 c1 c2 · · · cN

c1 ω1
2 0 · · · 0

c2 0 ω2
2 . ..

...
...

...
.. .

. .. 0
cN 0 · · · 0 ωN

2



,

c0 =
N

∑
j=1

c j
2

ω j
2 . (35)

To find the relation between the method presented in Sec. II A
and this total Hamiltonian description, we first consider the
normal modes in the2(N + 1)-dimensional Hamiltonian sys-
tem. Leten be eigenvectors of the matrixK:

Ken =−λn
2en, (n = 0,1, . . . ,N), (36)

where we have written the eigenvalues as−λn
2 for conve-

nience in the following.λn is either pure imaginary (for non-
reactive or elliptic modes) or pure real (for reactive or hyper-
bolic mode). The eigenvalues are the solution to the following
equation43

λn
2

{
1+

N

∑
j=1

c j
2

ω j
2

1

λn
2 + ω j

2

}
−b2 = 0. (37)

The components of the eigenvectors are given by43

en =




e0n
e1n
...

eNn


 ,

e0n =

{
1+

N

∑
j=1

c j
2

(λn
2 + ω j

2)2

}−1/2

,

ejn =− c j

λn
2 + ω j

2
e0n ( j = 1, . . . ,N).

(38)

Since the matrixK is symmetric, the eigenvectors form an
orthonormal set

eT
nem = δnm, (39)

whereδ is Kronecker’s delta. By using these eigenvectors, we
define the phase space normal mode coordinates as

ũn =2−1/2(eT
nq+ λ−1

n eT
n p
)
,

ũN+1+n =2−1/2(eT
n p−λneT

nq
)

(n = 0, . . . ,N),

(40)



6

whose inverse transformation is

q =2−1/2
N

∑
n=0

en
(
ũn−λ−1

n ũN+1+n
)
,

p =2−1/2
N

∑
n=0

en (ũN+1+n + λnũn) . (41)

Substituting Eq. (41) into the Hamiltonian equation of motion
obeying Eq. (34) we obtain the equation of motion forũ:

d
dt

ũn =λnũn− 1

21/2λn
e0nU

′
NL(q0),

d
dt

ũN+1+n =−λnũN+1+n− 1

21/2
e0nU

′
NL(q0). (42)

Here the argumentq0 of U ′NL is replaced by

q0 =2−1/2
N

∑
n=0

e0n
(
ũn−λ−1

n ũN+1+n
)
, (43)

resulting in the coupled differential equation ofũ only. The
termsU ′NL(ũ) areO(ũ2). For a positive real value ofλn, ũn
grows exponentially from the origin (ũn = ũN+1+n = 0) while
ũN+1+n asymptotically converges to it. In the harmonic ap-
proximation, these two modes correspond to the motions de-
parting from and converging to the barrier top along the nor-
mal mode reaction coordinate. On the other hand, for pure-
imaginary numbers ofλn, ũn and ũN+1+n represent the mo-
tions of oscillation perpendicular to the reaction coordinate.

The question to be addressed here is whether these equa-
tions of motion in the full phase space can be reconstructed
solely from the generalized Langevin equation (32) with re-
spect to the single coordinateq0. The method presented in
Sec. II A can be applied to this system by substituting into
Eq. (12) the Laplace transform of the friction kernel Eq. (33)
given by

γ̂(λ ) =
N

∑
j=1

c j
2

ω j
2

λ
λ 2 + ω j

2 . (44)

Then we have

B(λ ) = λ 2

(
1+

N

∑
j=1

c j
2

ω j
2

1
λ 2 + ω j

2

)
−b2. (45)

The eigenvalue equationB(λ ) = 0 coincides with Eq. (37).
Note that the eigenvalues appear in pairs of opposite sign be-
cause Eq. (45) is symmetric for the sign ofλ . We number
the eigenvalues such thatλN+1+n =−λn for n = 0,1, . . . ,N so
as to be consistent with Eq. (42). Since the system is one-
dimensional, the eigenvector isvn = (1). We also find by
Eq. (19)

κ−1
n =

dB(λ )
dλ

∣∣∣∣
λ=λn

= 2λne−2
0n . (46)

By defining the normal mode coordinatesun according to
Eqs. (22)-(24) in Sec. II A, we then have

q0 =
2N+1

∑
n=0

un,

u̇n =λnun +
e2

0n

2λn

{−U ′NL(q0)+ ξ (t)
}
. (47)

In order to establish the equivalence of Eqs. (42) and (47),
we first note that the random force in this case can be ex-
pressed as in Ref. 5:

ξ (t) =
N

∑
j=1

(a j cosω j t +b j sinω j t) . (48)

Then one can see that substituting the following transforma-
tion from ũn to un into Eqs. (42) and (43) gives Eq. (47):

un =2−1/2e0nũn

+
N

∑
j=1

κn

λ 2
n + ω2

j

{
a j (−λncosω j t + ω j sinω j t)

+b j (−λnsinω j t−ω j cosω j t)
}
,

uN+1+n =−2−1/2e0nũN+1+n

−
N

∑
j=1

κn

λ 2
n + ω2

j

{
a j (λncosω j t + ω j sinω j t)

+b j (λnsinω j t−ω j cosω j t)
}
. (49)

In conclusion, we have proved that the whole(2N + 1)-
dimensional phase space is recovered from the generalized
Langevin equation (32) if the friction kernel Eq. (33) is known
exactly. In many cases, however, the friction kernel is ap-
proximated by exponential functions, exponentially damped
trigonometric functions, or a sum of a small number of such
terms. The approximation is often satisfactory. As we will
see in Sec. II C, the number of normal modes obtained by the
method in Sec. II A is relatively small for such simple forms
of the friction kernel. The normal modes in this case can
be regarded as representative modes that effectively describe
the motion of the solvent with a certain small dimensionality.
Thus, if the friction kernel is given only approximately, we
cannot, and do not need to, recover the true phase space that
involves many (practically infinite) solvent modes, but can ex-
tract a small number of modes that describe the solvent dy-
namics effectively whenever the friction kernel exerted by the
solvent is approximated well.

C. Dimensionality of the extended system

In Sec. II A, it was found that the generalized Langevin
equation with memory [Eq. (1)] is equivalent with the mem-
oryless equation of motion [Eq. (25)], with an increase in di-
mensionality. In Sec. II B, we showed an example of this in-
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creased dimensionality for the case of a friction kernel be-
ing a sum of cosine functions. In this subsection, we investi-
gate how much the dimension increases in the case of multi-
exponentially decaying kernels. In the case of uniform friction
expressed by the sum of exponentials, the equation is reduced
to polynomials, for which we definitely know the number of
solutions for the nonlinear eigenvalue equation (15). Suppose
the friction kernel has the following form:

γi j (τ) = δi j

L

∑̀
=1

g`exp(−µ`τ) , (50)

that is, a multi-exponentially decaying function. Here,δi j is
Kronecker’s delta,L a certain integer, andg` andµ` some con-
stants (complex in general). The constantsµ` can take com-
plex values, so that Eq. (50) includes exponentially decaying
trigonometric functions as its special cases. As discussed in
Sec. II A and Sec. II B, the expression by Eq. (50) may not
be exact, but can be regarded as an approximate fit to the true
friction kernel. It is expected that many functions that decay
for largeτ can be fitted satisfactorily if the numberL is taken
sufficiently large.

The Laplace transform of Eq. (50) is

γ̂i j (λ ) = δi j

L

∑̀
=1

g`
1

λ + µ`
. (51)

By introducing position space normal mode coordinates in ad-
vance, we can diagonalize the Hessian matrixA of the poten-
tial function:

A = diag(−ω‡2
,ω2

2,ω3
2, . . . ,ωd

2), (52)

whereω‡, andω2, . . . ,ωd are real numbers whose squares cor-
respond to the curvature of the potential at the saddle points,
and we have assigned the unstable direction as mode 1. In
order for Eq. (15) to have a solutionvn 6= 0, we have

det
(

λn
2 + λnΓ̂ (λ )+ A

)

=

(
λn

2 + λn

L

∑̀
=1

g`
1

λn + µ`
−ω‡2

)

×
d

∏
j=2

(
λn

2 + λn

L

∑̀
=1

g`
1

λn + µ`
+ ω j

2

)

=0. (53)

By multiplying
(
∏L
`=1(λn + µ`)

)d
on both sides, We have a

polynomial equation with degree(L + 2)d, with (L + 2)d so-
lutions in general. Without the effect of environment (Γ = 0),
the system has2d dimensions corresponding to the positions
and the velocities. The addition of one exponential term in
Eq. (50) increases the effective dimension of the system byd.

If the eigenvalueλn satisfies

λn
2 + λn

L

∑̀
=1

g`
1

λn + µ`
−ω‡2

= 0, (54)

the corresponding eigenvector is given byvn = (1,0, . . . ,0),
and if

λn
2 + λn

L

∑̀
=1

g`
1

λn + µ`
+ ω j

2 = 0, (55)

we havevn = (0, . . . ,0,
j

1̆,0, . . . ,0).
The above can easily be extended to the case of exponential

decays multiplied by integer powers (k`) of time:

γi j (τ) = δi j

L

∑̀
=1

g`τk` exp(−µ`τ) , (56)

whose Laplace transform is

γ̂i j (λ ) = δi j

L

∑̀
=1

g`
k`!

(λ + µ`)1+k`
, (57)

The nonlinear eigenvalue equation gives a polynomial of de-
gree

(
2+ ∑L

`=1(1+k`)
)

d, which is the dimension of the ex-
tended system.

III. A MODEL SYSTEM

As an illustrative example to demonstrate our theory we an-
alyze a model system with Müller-Brown potential,37 which
has three minima and two saddle points. The detailed descrip-
tion of the potential surface can be found in Ref. 37 and also
in Refs. 11–14. For the friction kernel, we use a single expo-
nential function:

γi j (τ) = δi j γ0exp(−µτ), (58)

with γ0 = 900 andµ = 30. Here, the value ofµ = 30 is set
to be of the same order as the normal mode frequency of the
system. The valueγ0 = 900= 302 is also chosen to be of
the same time scale as the system. [Note that the physical
dimensionality ofγ0 is square of inverse time, as seen from
Eqs. (1) and (58) ].

In this paper we focus on the saddle with the higher en-
ergy, which was found to be subject to larger nonlinearity.12

To compare the present theory with the results of numeri-
cal simulations, trajectory calculations are performed by the
method of Ref. 44. For calculating reaction probabilities, tra-
jectories are judged to have settled in the well region when the
energy (kinetic plus potential) becomes less than2kBT above
the minima. The factor 2 corresponds to the fact that this sys-
tem has two degrees of freedom.

IV. RESULTS AND DISCUSSION

Figure 1 shows the reaction probabilityPreactionas a func-
tion of the initial value ofq1 with the initial values of the other
coordinates(q2, q̇1, q̇2) fixed to zero. In the casekBT = 0,
the random force is zero because of Eq. (2). Therefore the
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trajectory is uniquely determined for each single initial con-
dition. The value of the reaction probability is then either
0 or 1. The boundary between the reactive (Preaction = 1)
and the nonreactive (Preaction = 0) initial conditions coin-
cides withq1 = 0, showing negligible nonlinear effect due to
(q2, q̇2)|t=0 = (0,0). As the temperature increases [Fig. 1(b)],
the reaction probability is no longer 0 or 1, due to the stochas-
tic nature of the random force. We can still find the distinc-
tion between the regions with mainly reactive (Preaction> 1/2)
and mainly nonreactive (Preaction< 1/2) initial conditions. The
boundary of the two regions migrates toward the positiveq1.
As the temperature further increases [Fig. 1(c)], the boundary
moves further. This migration of the reaction boundary with
the temperature was found in the case of a Langevin equa-
tion with white noise,12 in which the physical interpretation
was also given: The nonreactive mode(q2, q̇2) is thermally
excited by the kick from the environment. The vibrational ex-
citation then affects the reactivity through nonlinear couplings
with the reactive mode. The nonlinear coupling between the
reactive and the nonreactive modes originates from the curved
shape of the ridge of the potential. Here we have found that
a similar phenomenon occurs in the case of the generalized
Langevin equation.

The thermal average of the reaction coordinatey1 taken
over realizations of random force [Eq. (30)] can be re-
garded as a function of(q1,q2, q̇1, q̇2)|t=0. Since we set
(q2, q̇1, q̇2)|t=0 = (0,0,0), we can calculate〈y1〉 as a function
of q1 only. The vertical lines in Fig. 1 shows the value ofq1
at which〈y1〉 becomes zero. On one side of the line we have
〈y1〉 > 0, and on the other side〈y1〉 < 0. The arrows in the
figure indicate which region is which. It is seen that the posi-
tive (negative) sign of〈y1〉 corresponds to high (low) reaction
probability. In other words, the results of the normal form
calculation reproduces the numerical results for the reactivity,
including the migration of the reaction boundary.

We next check the dependence on the friction kernel by
changing the parameterµ. Figure 2 shows similar plots with
different values ofµ. The temperature iskBT = 3, corre-
sponding to Fig. 1(c). Comparing Fig. 2(a), Fig. 1(c), and
Fig. 2(b) (in the order of increasingµ), we can see that the
migration from the originq1 = 0 to the actual reaction bound-
ary (defined by〈y1〉= 0) projected onto the positiveq1axis is
less pronounced asµ increases. This can be understood from
the fact that the excitation of the non-reactive mode by the ex-
ternal force becomes enhanced due to Eq. (2) as the value ofµ
decreases. The figure shows that the extent of the migration of
the reaction boundary is correctly reproduced by the present
theory for all the values ofµ shown here.

Figure 3 shows the reaction probability as a function of
(q2, q̇2)|t=0. with (q1, q̇1)|t=0 = (0,0.4). Different values
of (q2, q̇2)|t=0 lead to different reaction probabilities due to
nonlinear couplings between the nonreactive and the reactive
modes. The set of points for which〈y1〉= 0 is indicated by the
purple curve. Here also we can see that the set〈y1〉 = 0 ob-
tained by the present theory gives the correct reaction bound-
ary subject to nonlinearity and thermally fluctuating force in
the generalized Langevin equation.

FIG. 1: Reaction probabilities as functions ofq1|t=0 with the ini-
tial values of other coordinates fixed to zero. The temperature is
(a)kBT = 0, (b)kBT = 1, and (c)kBT = 3. Diamonds show the re-
sults of numerical simulations. Vertical lines indicate the value of
q1 for which the averaged reaction coordinate〈y1〉 becomes zero.
Arrows show the regions where〈y1〉> 0 and〈y1〉< 0.

V. SUMMARY AND OUTLOOK

The theoretical framework recently developed for the anal-
ysis of reaction dynamics of nonlinearly coupled systems in a
thermally fluctuating environment expressed by white noise,
was generalized to the case of colored noise by using the (non-
linear) generalized Langevin equation. The equation of mo-
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FIG. 2: Reaction probabilities as functions ofq1|t=0 with the initial
values of other coordinates fixed to zero. The parameters are set as
kBT = 3 and (a)µ = 10, (b) µ = 60, with the other parameters set
equal to the values in Fig. 1. Diamonds show the results of numerical
simulations. Vertical lines indicate the value ofq1 for which the
averaged reaction coordinate〈y1〉 becomes zero. Arrows show the
regions where〈y1〉> 0 and〈y1〉< 0.

tion with memory effect can be cast into the equation without
memory, at the cost of an increase of the dimension of the sys-
tem. This fact enables us to utilize the same framework for the
Langevin equation to the non-Markovian process with colored
noise. It was found that the increased dimension can be phys-
ically interpreted as effective modes of the fluctuating envi-
ronment. To support this interpretation, we have investigated
the relationship between the effective modes thus found and
the underlying system-bath Hamiltonian in which the system
is bilinearly coupled with a bath represented by a collection
of harmonic oscillators. For a generalized Langevin equa-
tion derived from the system-bath Hamiltonian it was found
that there exists a one-to-one correspondence between these
two representations, if the exact form of the friction kernel
is known at least for such class of Hamiltonian systems. To
check the validity of the present theory we analyzed the reac-
tion dynamics represented by a generalized Langevin equation
on a Müller and Brown potential37 with a single exponential
friction kernel with several different damping timescales. The
reaction probability as a function of the initial condition in the
saddle region was calculated by trajectory simulations. The

FIG. 3: Reaction probability as a function of(q2, q̇2)|t=0 with the
initial values of the other coordinates fixed to(q1, q̇1)|t=0 = (0,0.4)
at kBT = 1. Solid curves indicate the set of points for which the
averaged reaction coordinate〈y1〉 becomes zero.

whole position-velocity space of the system was found to be
divided into regions of mainly reactive and mainly nonreactive
initial conditions. Due to the effect of nonlinearity and mem-
ory, the reaction boundary does not coincide with the surface
q1 = 0 and migrates toward a region remote from the surface
of q1 = 0. It was found that the present theory can analytically
assign the migrating reaction boundary observed in the results
of numerical simulation, which is given as zero of the new re-
action coordinatey1 as a functional of both the positions and
velocities of the system as well as the colored noise and the
friction kernel.

In reality it is almost impossible to identify the precise form
of the friction kernel derived from the total Hamiltonian com-
posed of the system and the environment of infinitely many
dimensions. Even if it were possible, it would not shed light
on the mechanism of reaction dynamics because the amount
of information would be infinite. [in addition, the total Hamil-
tonian does not necessarily fall into the form of Eq. (31)].
Rather, it is more meaningful to extract an appropriate de-
scription by a lower-dimensional dynamical system that can
effectively represent the effects of the complexity of nonlin-
ear dynamics of the system in a thermally fluctuating media in
terms of an approximant of the friction kernel with a simple
functional form, such as a linear combination of exponentials
or exponentially damped trigonometric functions [Eq. (50) or
(56)]. For the practical application, it will be interesting to
evaluate the friction kernel from realistic molecular dynamics
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(MD) simulations,6,41,42 and fit the numerical friction kernel
to the form of Eq. (50) or (56). Such numerical evaluation of
friction kernel with the corresponding random force can then
be utilized as inputs to the present formulation. It is expected
that the extra modes with low dimensions compared with the
actual dimension of the environment, thus extracted with the
approximate friction kernel, capture the subset of the environ-
mental degrees of freedom exhibiting significant effects on the
dynamics of the system.
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