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Abstract 
 

This paper presents a case study to illustrate the 
design and implementation of cellular Genetic 
Algorithm (cGA) with Local Search (LS) to solve 
Capacitated Vehicle Routing Problem (CVRP) over 
Cell Broadband Engine (Cell BE). Cell BE is a 
heterogeneous, distributed memory multicore 
processor architecture for multimedia applications 
with regular memory access requirements. It has one 
64-bit Power Processing Element (PPE) that acts as 
the main processor and 8 Synergistic Processing 
Elements (SPEs) with only 256 KB of local memory, 
each for instructions and data. GAs on the other hand 
use population based search techniques. Such 
techniques usually have large memory requirements 
and show non-uniform memory access patterns. These 
properties of GAs make their implementation over Cell 
BE even more challenging. In order to take maximum 
advantage of the hardware, we propose an 
asynchronous approach to implement cGA+LS over 
Cell BE. In this paper, we discuss the implementation 
and optimization of the proposed method in detail. We 
compare the proposed method with other state-of-the-
art CVRP solvers and synchronous implementation of 
cGA+LS over Cell BE. We solve existing benchmark 
problems and achieve considerable speedups. We 
extend the work further to solve extremely large 
instances of CVRP compared to ones present in the 
CVRP literature, and get acceptable results in a 
reasonable amount of time.  
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1. Introduction 
 

The Vehicle Routing Problem (VRP) is a 
combinatorial optimization problem, seeking to service 
a certain number of customers with a fleet of vehicles. 
Real-world applications have widely shown that the 
use of computerized procedures for the distribution 
process planning, generally results in 5% to 20% 
savings in the global transportation cost [1]. As 
transportation cost represents 10% to 20% of the final 
cost of the goods [1], therefore, VRP is a widely 
studied problem both theoretically and in practice [2]. 
There are different variants of VRP which pose 
different constraints on delivery time and route length. 
In this paper, we consider a well-known variant of 
VRP known as Capacitated Vehicle Routing Problem 
(CVRP). In CVRP each customer has a fixed demand 
of goods and each vehicle has a limited carrying 
capacity, moreover, the pickup point is always a 
central depot. CVRP can be of two types: CVRP with 
time windows and CVRP without time windows. In 
this paper, we only consider CVRP without time 
windows, i.e. there is no constraint on the time of the 
delivery (we will use the term CVRP to refer CVRP 
without time windows throughout this paper unless 
specified otherwise). 

Exact methods of CVRP can be used to solve a 
CVRP with less than 50 customers [1]. However, for 
problems involving more than 50 customers, 
approximate methods e.g. heuristics and 
metaheuristics, have gained more attention over the 
last few years. Algorithms like Tabu Search [3], 
Simulated Annealing [4], and Genetic Algorithms 
(GA) [5] gained a lot of attention during this time. GAs 
are comparatively simple and highly customizable as 
compared to their other counterparts, making them one 
of the most important type of optimization algorithms. 
In this paper, we have used cellular GA (cGA) with a 
structured population as the base of the algorithm. In 
order to improve the results, we have used two well-
known Local Search (LS) techniques, namely 2-Opt 
[6] and λ-Interchange [7]. It is important to note that 
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LS is mandatory to get good results for CVRP using 
GAs [2,8,9,10,11]. LS is also mandatory for a wide 
variety of problems to improve convergence. This 
hybrid of cGA+LS to solve CVRP, was first suggested 
by E. Alba et al. [2], and it has the potential to compete 
with any state-of-the-art CVRP algorithm available.  

GAs are algorithms inspired from the natural 
process of evolution. They maintain a population of 
probable solutions and apply genetic operators in 
search for better solutions over the generations. GAs 
give above average performance for a wide range of 
optimization problems, at the expense of computational 
power they use. Therefore, it is common to implement 
GAs over High Performance Computing (HPC) 
clusters. An HPC cluster provides enhanced 
performance by splitting the computational task (GAs 
in this case) among the nodes in the cluster. Clusters, 
although being cost effective, are greatly influenced by 
hardware constraints, leading to the three performance-
limiting walls [12] namely power wall, memory wall, 
and instruction level parallelism wall. These three 
performance limiting walls combine to limit 
performance growth for single-core microprocessors 
and hence, for clusters consisting of single-core 
processing nodes. 

A multi-core architecture is one of the solutions to 
tackle the three wall problem. This has led most 
microprocessor vendors to turn instead to multicore 
chip organizations, even though the benefits of 
multiple cores can only be realized if the programmer 
or compiler explicitly parallelize the software [13]. 
Multicore processors are broadly divided into two 
categories: 1) homogeneous, and 2) heterogeneous. 
Homogeneous multicore processors usually have 
identical processing cores and share a common 
memory space, on the other hand, heterogeneous 
processors have heterogeneous cores and the memory 
is usually distributed among the available cores. 
Homogeneous multicore processors are considered to 
be general purpose and are usually easier to program. 
They have large caches and complex control logic. 
Heterogeneous processors are mostly designed for 
specific applications. They usually lack big caches and 
complex control logic; instead they use more 
transistors to provide computational modules. 
Therefore, commodity heterogeneous processors have 
10-100's of processing cores as compared to less than 
10 cores in a comparable grade homogeneous 
multicore processor. As a consequence, although 
difficult to program, heterogeneous processors can 
achieve better speedups as compared to a similar grade 
homogeneous processor. Due to this reason, 

heterogeneous processors are being used for a wide 
variety of algorithms with considerable performance 
gains. In this paper, we have used state-of-the-art 
heterogeneous architecture namely, Cell Broadband 
Engine (Cell BE) to speed up the cGA+LS algorithm 
to solve CVRP. 

Cell BE is an heterogeneous multi-core chip 
designed by STI (STI stands for Sony, Toshiba & 
IBM, alliance). Cell BE processor comprises of a 64-
bit Power Processor Element (PPE) core and co-
processing elements called Synergistic Processor 
Elements (SPE). SPEs have 256 Kb of local storage 
each for instructions and data. Cell BE processor is 
architected for multimedia applications with regular 
processing requirements. However, Cell BE shows 
significant speedups even for the problems with non-
uniform memory access [14,15]. GAs are well known 
for their large memory requirements and non-uniform 
memory access patterns. These two factors call for a 
careful design to take maximum advantage of the Cell 
BE hardware. 

In this paper, we propose a unique asynchronous 
approach for implementation of cGA+LS over Cell 
BE. LS, being mandatory to solve a large variety of 
optimization problems using GAs, is usually the most 
computationally intensive part in GA+LS hybrid 
algorithms; moreover, LS has relatively small memory 
requirements. These two properties of LS makes them 
ideal candidate to be implemented in parallel over 
SPEs. cGAs having large memory footprint are not so 
computationally intensive and are therefore more 
suitable for serial implementation over PPE. In our 
implementation, PPE runs the cGA and also act as a 
controller for the SPEs in an indirect manner. In the 
normal cases, LS is applied to all the individuals in a 
population. In this paper, we discuss that for large 
problems, instead of performing LS on all the 
individuals, we can select the individuals on which 
local search is performed based on some criteria. This 
results in a considerable reduction in the execution 
time with a negligible deterioration in the results 
quality. Our implementation over Cell BE is based on 
native Cell SDK (Ver 3.0). 

The main motivation behind this paper is to harness 
the computational power of Cell BE, to reduce the 
execution time for solving existing CVRP benchmark 
problems and to solve CVRP problems of sizes larger 
than the ones attempted in the CVRP literature. To get 
better results for the benchmark problems than the one 
known in literature is not the motivation behind this 
paper. In most of the real life cases total execution time 
is the main limiting factor, and the user wants to gain 
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most out of the time available at hand. We claim that 
using the proposed method the user can make a better 
use of his time and approach near optimal solution. We 

show that the proposed methods can be used to get 
significant speedups for the known benchmark 
problems. The quality of results remains comparable to 
any state-of-the-art CVRP solver. We apply the 
technique to problems containing 50-2000 customers. 
To the best of the author's knowledge, CVRP of size 
greater than 1024 customers has never been attempted 
before. The proposed implementation is suitable for a 
large variety of optimization algorithms that require a 
hybrid of GA+LS for their solutions. This approach 
enables us to solve relatively large scale problems over 
limited distributed memory multicore architectures like 
Cell BE. We believe that such architectures will 
become more and more common in the coming years, 
making similar multicore implementations of 
algorithms inevitable in near future. We discuss the 
results and their implications in detail in Sect. 6. 

The paper is arranged in the following manner: 
Section 2 describes the CVRP in detail. Section 3 
defines the cGA+LS hybrid algorithm used to solve 
CVRP. Section 4 explains the Cell BE architecture 
along with the conventional parallelization models to 
program this architecture. In Sect. 5, we discuss the 
proposed parallelization model to solve CVRP using 
cGA+LS over Cell BE. Section 6 shows the results 
obtained and compares them with the results obtained 
by other state-of-the-art heuristics based methods in the 
literature. Section 7 concludes this paper and gives 
some guidelines for future work. 

 
2. Capacitated VRP 

 

As discussed earlier CVRP is a form of VRP. It can 
be defined mathematically as an undirected graph: Let 
G=(V,E) be a complete undirected graph with a set of 

n+1 vertices V={v0, v1, ..., vn} and a set of edges E. v0 
is a central depot and vi(i ∈ 1,...,n) represents n 
customers, each having a non-negative demand qi. 
Each edge (vi,vj) has a non-negative distance cij 
(usually Euclidean distance). The CVRP finds a set of 
m routes of minimum total distance, such that each 
route starts and ends at the central depot, each 
customer is visited exactly once, and the total demand 
of any route does not exceed Q (vehicle capacity 
constraint). It's important to note that m is also a 
decision variable. A solution S of CVRP is a set of m 
routes i.e. (R1, ..., Rm). The cost of any given route 
Ri={v0, v1,..., v(k+1)}  (where, v0 & v(k+1) are central 
depot) can be given as: 

∑
=

+=
k

j
jji CRCost

0
1,)(  

 

(1) 

The total cost of a problem solution (S) can be given 
by: 

∑
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In simple terms CVRP strives to find a set of routes 

of minimum total distance, such that each route starts 
and ends at the central depot, each customer is visited 
exactly once, and the total demand of any route does 
not exceed vehicle capacity constraint. 

 
3. cGA + LS 
 

 

 
1 : Initialize cGA(InputParams); 
2 : for s1 to MAX STEPS do 
3 :   for x1 to WIDTH do 
4 :    for y1 to HEIGHT do 
5 :     NListGet Neighborhood(Pop(x,y)); 
6 :     ParentsLocalSelect(NList); 
7 :     AuxIndivRecombination(Pc, Parents); 
8 :     AuxIndivMutation(Pm, AuxIndiv); 
9 :     AuxIndivLocal Search(Pl, AuxIndiv); 
10:    EvaluateFitness(aux indiv); 
11:    InsertIfBetter(Pop(x,y), AuxIndiv, AuxPop); 
12:   end for 
13:  end for 
14:  PopAuxPop; 
15:  UpdateStatistics(Pop); 
16: end for 
17: Destroy(); 

Figure 1. Population arrangement (cGA) Figure 2. Pseudocode for the cGA+LS [2] 
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Figure 3. (a) Representation of a solution S, (b) Solution S 
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Figure 4. Types of Mutation used 
 

GAs are a particular class of Evolutionary 
Algorithms (EAs) that use techniques inspired by 
evolutionary biology such as inheritance, mutation, 
selection, and crossover [16]. Cellular GAs (cGAs) are 

a subclass of GAs with spatially structured population, 
i.e. the individuals can only mate with their 
neighboring individuals [17]. These overlapped small 
neighborhoods help in exploring the search space 
because the induced slow diffusion of solutions 
through the population provides a kind of exploration, 
while exploitation takes place inside each 
neighborhood by genetic operators.  

In cGAs the population is structured in a 2D 
toroidal grid. The neighborhood always contain 5 
individuals: the considered one (position(x,y)) plus the 
North, East, West, and South individuals. Binary 
tournament selection is used in the neighborhood for 
the first parent, while the other one is the considered 
the individual itself as shown in Figure 1. Use of cGA 
+ LS to solve CVRP was first proposed by E. Alba et 
al. as given in Figure 2. 

 
3.1 Representation 
 

Representation of an individual is an important part 
of the GA design. We have used a representation in 
which each individual is a permutation of unique 
numbers. This kind of representation is commonly 
used for CVRP. The permutation contains the 
customers and the route delimiters. Each route starts 
and ends at the central depot, and a null route can be 
represented by putting two route delimiters together 
without any customer in-between. Length of an 
individual (chromosome length) is given by: Lindiv= N 

+ Mmax - 1, where Lindiv is chromosome length, N is 
number of customers, and Mmax is the maximum 
number of routes allowed in the solution. Numbers 
from 0 to N-1 represents the customers while the 

numbers ≥ N represents the route delimiters or route 
splitters. Figure 3-(a) shows the representation of an 
individual and Figure 3-(b) shows the actual solution. 
 
3.2 Crossover & Mutation 
 

We have used the well-known ERX operator [18] 
as the crossover operator. For mutation we use the 
three mutations recommended in [2], namely Insertion, 
Swap and Inversion (see Figure 4) with equal 
probability. Note that mutation can change a single 
route or multiple routes. 

 
3.3 Fitness Evaluation 
 

We have used the fitness function used by most of 
the heuristics based CVRP solvers. The fitness is given 
by: 
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Figure 5. Architecture of Cell BE 
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Figure 6. Cell BE Parallelization Models 

 
)()()(min SovercapSFSf VRP ⋅+= α  (3) 

 
Where, FVRP(S) is the total distance of the routes, 

and overcap(S) is the overhead of the capacity (sum of 
the excess of demand on routes) in a solution candidate 
S. We are using the penalty method to handle the 
capacity constraint of vehicles. A route exceeding the 
capacity of a vehicle is penalized by α∙overcap(S). α is 
a scaling factor and the value we have used is 103 as 
suggested by E. Alba et al. [2]. 
 
3.4 Local Search 
 

LS is mandatory to improve convergence of GAs in 
case of a large variety of optimization problems. We 
have used two well known LS techniques namely, 2-
Opt and λ-Interchange [6,7]. 2-Opt is applied within a 
route and λ-Interchange between two different routes. 
2-Opt randomly selects two non-adjacent edges (i.e. (a, 
b) and (c, d)) of a single route, delete them, thus 
breaking the tour into two parts, and then reconnecting 
those parts in the other possible way (i.e. (a, c) and (b, 
d)). The λ-Interchange local optimization method we 
use is based on the interchange of all the possible 
combinations for up to λ customers between sets of 
routes. Hence, this method results in customers either 
being shifted from one route to another, or being 
exchanged between routes. It can also result in 
destruction of an existing route or creation of a new 
route. We have kept the value of λ=1 throughout the 
experiments. LS routine repeatedly applies 2-Opt and 

λ-Interchange for LSiter number of times. Value of LSiter 
is kept constant at 20 in the original cGA+LS 
algorithm. 

 
4. Cell BE 
 

As mentioned earlier we are using Cell BE, a state-
of-the-art heterogeneous processor. The first 
generation Cell Broadband Engine (Cell BE) 
architecture has one Power Processor Element (PPE) 
core (two-way multithreaded) acting as the controller 
for the eight Synergistic Processing Element (SPEs) 
(SPEs are specially designed for computationally 
intensive jobs) as shown in Figure 5, each SPE has 256 
Kbytes of local memory for data and instructions. Both 
PPE and SPEs support vector (SIMD) instructions. 
Due to the limited local memory of SPEs, Cell BE is 
considered to be a challenging processor to program. 
SPEs and PPE are connected via Element Interconnect 
Bus (EIB) and can communicate in several different 
ways. The most efficient way of transferring large 
amounts of data between PPE and an SPE is by using 
Direct Memory Access (DMA) operations. All the 
communication in the proposed implementation is 
done by this method. 

 
4.1 Parallelization Models 
 

There are two common parallel programming 
models for Cell BE as shown in Figure 6: 
• PPE Centric Model: In PPE centric model the main 

application runs on the PPE, and individual tasks 
are offloaded to the SPEs. PPE then waits for, and 
coordinates, the results returning from the SPEs. 
This model fits an application with serial data and 
parallel computation. PPE centric model can be 
further subdivided into (1) Multistage pipeline 
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model, (2) Parallel stages model, and (3) Services 
model as shown in Figure 6. 

• SPE Centric Model: Most of the application code is 
distributed among the SPEs. The PPE acts as a 
centralized resource manager for the SPEs. Each 
SPE fetches its next work item from main storage 
(or its own local store) when it completes its 
current work. In the proposed implementation, we 
are using SPE centric model. 

 
4.2 Parallelization for GAs 

 
In a typical parallel GA, the population is 

distributed among the available computational 
resources and based on some criteria individuals are 
exchanged with other sub populations. This model is 
suitable for a cluster of processors or shared memory 
multicore processors like AMD Opteron and Intel 
CoreDuo, where each processor has direct access to the 
main memory or distributed memory architectures with 
large local memory for each processing core. In case of 
architectures like Cell BE this is feasible only for very 
small problems with small populations, e.g. for a 
synchronous GA, CVRP involving N customers and 
population size P, the memory required Mreq can be 
given by: Mreq>2∙N∙P∙Sint Bytes (where Sint is the size 
taken to represent one Integer). For N=500, P=1000 
and Sint=4: Mreq>4 MBytes, when distributed among 
eight SPEs this comes out to be > 500 KBytes per SPE 
(greater than the available local memory). Therefore, 
the above mentioned model (the island model) is not a 
feasible option to solve large instances of CVRP over 
Cell BE. Therefore, conventional parallel GAs are not 
suitable for implementation over Cell BE especially for 
large problems and/or large populations. 

 
5. Proposed Implementation over Cell BE 
 

In this paper, we discuss an asynchronous 
implementation of cGA+LS over Cell BE in detail. 
The main design considerations for the design are the 
limited local storage of each SPU and the 
communication bandwidth between the main memory 
and SPU local store. We discuss how the algorithm can 
be modified to make maximum use of the available 
resources.  
 
5.1 Improvement in the LS 

 
In the original cGA+LS algorithm [2] the local 

search routine applies λ-Interchange and 2-opt to each 
individual repeatedly for a fixed number of times LSiter. 

LSiter was kept constant at 20 in the original algorithm. 
In our implementation the number of LS iterations is 
not a constant. We fix the maximum number of 
iterations at 20, but in every iteration we analyze the 
fitness gain as compared to the last iterations. If the 
fitness gain is zero we stop there as we have already 
reached the local minima. This small modification has 
a significant effect on the overall execution time. The 
number of LS iterations for each individual decreases 
as the algorithm progress towards the absolute minima. 

 
5.2 Asynchronous cGA+LS over Cell BE 

 
As discussed in Sect. 3, LS is mandatory for 

solving a wide range of optimization problems using 
GAs. Here we propose a unique method to implement 
cGA+LS over Cell BE using SPE centric 
parallelization model (Sect. 4.1). In the proposed 
parallelization model, LS runs as a daemon process 
over all the SPEs. These threads are independent to 
fetch the data from the main memory. PPE on the other 
hand is responsible to run the cGA and to prepare the 
data for SPEs. Therefore, PPE although controlling 
SPE in some way is not acting as an explicit controller. 
We call it asynchronous implementation, as the cGA 
(running over PPE) and LS (running over SPEs) runs 
independent of each other and are not synchronized. 

 
5.2.1 Memory Layout 
 

All the communication between SPE's and PPE is 
done through SPE initiated DMA operations. PPE has 
two buffers for each SPE, one for sending the data to 
an SPE and the other one for receiving the data from an 
SPE, as shown in Figure 7. The SPE always reads the 
data from its respective Out buffer and writes the data 
to the respective In buffer. Flags are used to 
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Figure 8. Controller: (a) PPE side control logic, (b) 
SPE side control logic (SPE uses DMA operations to 

perform read and write operations on “In/Out 
Buffers”). 

synchronize the data access between PPE and SPE. All 
the communication in our implementation occurs 
between SPE and PPE only. 

Each buffer consists of 5 fields namely Flag, Size, 

Fitness_Values, Individuals, and Padding. Flag is used 
for message passing between the PPE and SPE thread 
and is also used for synchronizing the data interchange 
between the two threads. Flag can be either 
NEW_DATA, EMPTY, or EXIT. NEW_DATA 
represents presence of new data, while EMPTY simply 
shows an empty buffer. EXIT signal is used at the 
termination of the program. It is a message for the SPE 
threads to initiate the destruction sequence. Size is the 
number of individuals on which we want to perform 
LS; it is kept in between 1-5 (for large instances of 
CVRP we take it as 1). Fitness_Values is a sequence of 
single precession fitness values of all the individuals in 
the buffer. Individuals contains the permutations of all 
the individuals. While, Padding is used to make the 
memory size in multiples of 128 bytes. This is 
preferable size for making DMA operations in case of 
Cell BE. 

 
5.2.2 Controller Logic 

 
Control logic for both PPE and SPE is shown in 

Figure 8. 
• PPE side controller: is shown in Figure 8-(a). PPE 

has three main responsibilities: to run cGA, to fill 
the SPE buffers, and to read the results returned by 

the SPE's and insert them into the main 
population. 

• SPE side controller: is shown in Figure 8-(b). SPE 
has very simple control logic. It simply checks for 
the new data. Whenever new data is available SPE 
reads the data, performs local search on it and 
write the data back into the main memory. SPE 
threads run independent of the main thread and are 
not directly controlled by it. However, the Flag of 
the buffer holds a control message for the SPE's. 
 

PPE sets the value of Flag in all the Out Buffers to 
EXIT in order to signal all the SPE threads to call the 
destroy functions and exit. Mailboxes can also be used 
to signal the availability of new data but based on our 
experience mailboxes are slower than simple DMA 
operations. 

 
5.2.3 Pseudocode over Cell BE 

 
Figure 9 shows the Pseudocode of PPE side thread 

and SPE side threads separately. The Pseudocode 
explains the controller shown in Sect. 5.2.2 in further 
detail. As shown in the figure, PPE thread runs a single 
generation of the cGA and then checks the status of 
each SPE thread. If any of the SPE threads is free, PPE 
selects some individuals from the main population and 
fills the Out Buffer corresponding to that SPE, changes 
the Flag of the Out Buffer to NEW_DATA, and changes 
the status of that SPE thread to BUSY. PPE then checks 
the Flag of all the In Buffers. If new data is available 
PPE reads the respective In Buffer, insert the data in 
the main population, change the Flag to EMPTY, and 
change the status of that SPE to FREE. Flag is also 
used to synchronize data between the SPE's and the 
PPE. Therefore it should be set to NEW_DATA only 
when the entire buffer is already filled with the desired 
data. It's important to note that all DMA operations in 
our implementation are SPE initiated. PPE is only 
responsible to fill the respective Out Buffers. SPE 
automatically reads the data from this buffer when it is 
free. Similarly SPE writes the data to the In Buffer 
using DMA operations. This data is then read by the 
PPE using simple memory read operations. 

As shown in Figure 7 the criteria for selecting 
individuals for LS is based on tournament selection of 
size Tf, while the individuals (result of LS) are inserted 
back in the main population using a reverse tournament 
selection of size Tr. In reverse tournament selection, Tr 
individuals are selected randomly from the main 
population and the individual with the lowest fitness in 
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InitializeSPUThread(ControlBlock) ;
while TRUE do

ToSPUBuffer  DMAFromMainMemory ();
if(ToSPUBuffer.Flag == EXIT) 

Break;
end if
if  (ToSPUBuffer.Flag == NEW_DATA_AVAILABLE) 

ToSPUBuffer.Flag  EMPTY;
SPUPop = ExtractFromBuffer(ToSPUBuffer); 
for i  1 to SPUPopSize

SPUPop[i]  2Opt(SPUPop([i]);
SPUPop[i]  LambdaInterchange(SPUPop[i]);

end for
FromSPUBuffer  InitializeBuffer(SPUPop);
FromSPUBuffer.Flag NEW_DATA_AVAILABLE;
DMAToMainMemory(FromSPUBuffer);

end if
end while 

Destroy();

InitializeSPUThreads(NUM_SPU_THREADS, ControlBlocks) ;
Initialize_cGA(InputParams);
for g  1 to MAXGEN do

for x  1 to WIDTH do
for y  1 to HEIGHT do

NList  Get Neighborhood(Pop(x,y));
Parents  Local Select(NList);
TempIndiv Recombination(Pc, Parents);
TempIndiv Mutation(Pm, TempIndiv);
Evaluate Fitness(TempIndiv);
Insert If Better(Pop(x,y), TempIndiv, Pop);

end for
end for
Update Statistics(Pop);

for s  1 to NUM_SPU_THREADS
if (SPUThreadState(s) == FREE) 

TempIndivduals  TournamentSelect(TournamentSize, Pop);
ToSPUBuffer(s)  InitializeBuffer(TempIndivduals);
ToSPUBuffer(s).Flag NEW_DATA_AVAILABLE;
SPUThreadState(s)  BUSY;

end if
if (FromSPUBuffer.Flag == NEW_DATA_AVAILABLE) 

TempIndivduals  ExtractFromBuffer(FromSPUBuffer(s));
Pop InsertByReverseTournament(TempIndivduals);
FromSPUBuffer(s).Flag EMPTY;
SPUThreadState(s)  FREE;

end if
end for

end for

for s  1 to NUM_SPU_THREADS do
ToSPUBuffer(s).Flag EXIT

end for

WaitForAllSPUThreadsToFinish();
Destroy();

(a) (b) 

SPU Initiated DMA Operation= 

 
Figure 9. Pseudocode of the proposed implementation over Cell BE: (a) PPE side 

pseudocode, (b) SPE side Pseudocode 

the main population are replaced by the ones received 
from the LS thread. 

We have used asynchronous population (Steady 
State GA) to reduce the overall memory requirements. 

In our observation, asynchronous population gives 
almost the same results as that of synchronous 
population. Double buffering is not applied as the time 
taken by LS is a lot more than the time taken by DMA 
operation, therefore, adding double buffering will only 
add complexities to the controller without adding any 
considerable performance benefit.  

Using the proposed model for parallelization we 
can easily run problems of very large size over the 
limited size distributed memory architectures like Cell 
BE. LS being mandatory and computationally very 
intensive (as compared to cGA) is the most suitable 
part of the code to be run in parallel. While, the rest of 
the code being very light (as compared to LS) can run 
on the PPE. Moreover, GAs are ideal for 
implementation over the single precision architecture 
of Cell BE, as the error in the case of GAs does not 
accumulate over the generations. 

5.3 Simple Synchronous Parallelization 
 
For comparison purposes we also implemented 

synchronous cGA+LS. This approach simply uses 

functional level parallelism to implement LS over the 
available SPUs. In synchronous approach LS is 
performed on all the individuals of a population and 
the algorithm waits for all the LS to finish before 
moving on to the next step. Instead of using Cell BE 
native code we have used Cell Superscalar (CellSs) 
[19] to generate parallel program from the serial code. 
CellSs provides a certain level of abstraction and help 
in writing a functional level parallel code with the 
addition of a few trivial annotations in the serial code. 
CellSs compiler converts the source code into a valid 
Cell BE executable. The compiler takes care of the task 
scheduling and data handling between the different 
processors of this heterogeneous architecture. Besides, 
it automatically implements double buffering and a 
locality-aware task scheduling to reduce the overhead 
of data transfers. Figure 10 shows the annotations that 
we have used to convert the serial cGA+LS code into a 
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LocalSearch() {
malloc();
LambdaInter();
2Opt();

}

Gen() {
Crossover ();
Mutation  ();
LocalSearch();
Replacement();

}

main() {
Init() 
while(MAX_GEN) {   

Gen();
}

}

cGA+LS serial code

#pragma css task … …
LocalSearch() {

css_malloc();
LambdaInter();
2Opt();

}

Gen() {
Crossover ();
Mutation  ();
LocalSearch();
#pragma css barrier
Replacement();

}

main() {
#pragma css start
Init() 
while(MAX_GEN) {   

Gen();
}
#pragma css finish

}

Annotations for CellSs

Cell Executable

CellSs Compiler
(cellss-cc) 

CellSs Libraries

 
 

Figure 10. CellSs Annotations 

functional level parallel cGA+LS code. Note that 
CellSs cannot maintain the state of the threads running 
over SPEs and hence is not useful for the asynchronous 
implementation discussed in the last section. 
 

6. Results 
 

In this section, we have compared the results 
obtained by the proposed method with results obtained 
by other state-of-the-art metaheuristics based solvers in 
CVRP literature. We also compare the asynchronous 
implementation of CVRP over Cell BE with the 
synchronous implementation. 

 
6.1 Environment & Benchmarks 

 
All the results presented here were collected on a 

Sony PS3TM (Play Station 3) with Fedora Core 7. PS3 
has Cell BE as its processor, with 256MB of main 
memory as compared to 1GB in a normal Cell BE 
configuration. Moreover, only seven of the eight SPEs 
are available in case of PS3. Out of these seven, one is 
used by the OS; therefore we are left with only six 
SPEs to work with. However, the same application 
should give even better results if executed over a 
normal Cell BE processor with 8 SPEs. We have 
implemented the proposed algorithm using plain C 

with Cell BE intrinsics. This native Cell code is 
compatible with Cell SDK 3.0.  

We have kept the conditions constant throughout 
the experiments. The value of α is kept constant at 103, 
and value of λ is kept at 1 throughout the experiments. 

Value of maximum numbers of LS iterations LSiter is 
kept constant at 20. The population size of the cGA is 
also kept constant at 100. For stopping criteria, the 
algorithm stops if the required value is achieved which 
is usually the best known fitness with a fixed error 
margin. Algorithm also stops if the fitness value of the 
population does not change over the last 10 
generations. Value of Tr and Tf (as given in Sect. 5.2.3) 
are kept constant at 4. Value of mutation probability 
Pm=0.85 and value of crossover probability Pc=0.65 
throughout the experiment as recommended by E. Alba 
et al. [2]. All the results presented in this paper are 
average of at least 10 independent runs under similar 
conditions. 

The test cases used in the results are taken from the 
famous CVRP benchmarks problems namely 
Christofides benchmarks [20] (represented by C in 
Table 1), and Golden benchmarks [21] (represented by 
G in Table 1). While, the benchmark problems 
represented by M are our own benchmark problems. As 
to the best of author's knowledge CVRP benchmarks of 
large size do not exist in literature, therefore, we have 
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Table 1. Time/Quality of the solutions obtained by different algorithms over different computing environments. 
Time is kept constant at Tc 

Instances n Tc (Seconds) Asynchronous *C Synchronous *C cGA+LS *1 E. Alba et al. *2

C1 50 8 531.25 524.61 524.61 524.61

C2 75 16 858.2 919.42 985.12 1021.23

C3 100 35 832.71 913.59 1026.61 971.48

C5 199 88 1364.21 1612.42 1982.58 2100.84

G12 483 1485 1198.23 1314.65 1492.27 1682.01

M1 500 1823 5598.23 5715.81 5828.54 6125.93

M2 750 2341 8032.12 8389.04 8525.18 9294.29

M3 1000 3120 10254.19 10396.1 10749.56 12295.58

M4 2000 3901 21857.32 22431.98 27321.31 25153.95
*C. 3.2GHz Cell BE (PS3), Implemented by the authors
*1. 3 GHz PIV, Implemented by the authors
*2. 2.4 GHz PC, E. Alba (2004)

Proposed Method
Implemented by the authors for comparison purposes

 

 
 

Figure 11. Quality of solutions (ΔSolution) 

created new benchmarks of sizes starting from 500 
customers to 2000 customers. 
 
6.2 Empirical Results & Discussion 
 

In any real metaheuristics based implementation 
there is always a tradeoff between the quality of the 

solution and the total execution time. This means that a 
slight increase in solution quality may require a 
considerable increase in the total execution time. This 
type of tradeoff is more visible in real-life situations 
where we have strict time constraints. In most of the 
real life cases the goal is to get the best possible 
solution within the total available time at hand. 
Therefore, for a fair comparison between different 
algorithms, we either have to keep the quality or the 
execution time as a constant. As time is the limiting 
factor in most of the cases so it will only be fair to keep 
the time as a constant and observe the quality of the 
solution obtained by different algorithms in that fixed 
amount of time. 

Table 1 shows the quality of solutions obtained by 
using different algorithms, while keeping the total 
execution time as a constant Tc. Where, Tc is the time 
taken by asynchronous cGA+LS algorithm (proposed 
method) to converge to a solution. We have compared 
the results obtained by the proposed asynchronous 
implementation with the synchronous implementation 
over Cell BE and other state-of-the-art metaheuristics 
based algorithms. Note that in the proposed 
asynchronous implementation of cGA+LS over Cell 
BE, LS is only applied to the individuals selected using 
a special criterion (see Sect. 5.2.3 for details). It is 

clear from the table that asynchronous approach 
outperforms every other method for all test cases 
except for C1 (which is a relatively small instance of 
CVRP). Therefore, we argue that it is not important to 
apply LS to all the individuals when the target is not to 
achieve the absolute best result, but to achieve the best 
possible result in the given amount time. 

Figure 11 shows the deviation (ΔSolution) of the 
solutions obtained by different methods as compared to 
the ones obtained by asynchronous algorithm: 
 

100*||
onBestSoluti

onBestSolutiSolutionSolution −
=∆  (4) 

 
BestSolution in the above equation does not mean 

the absolute best solution, rather it is the best solution 

obtained in Tc amount of time by any of the algorithm 
shown in Table 1. As it is clear from the figure, 
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(a) (b)

(c) (d)  
Figure 12. Snapshots of the solution for: (a) M1 benchmark problem (500 customers), (b) M2 benchmark 

problem (750 customers), (c) M3 benchmark problem (1000 customers),  
(d) M4 benchmark problem (2000 customers). 

ΔSolution of asynchronous algorithm is almost always 
0. This supports our argument that it is not necessary to 
apply LS to all the individuals in a case where we have 
limited amount of time to reach a solution. 

We conclude that in a limited amount of time 
asynchronous method gives better solution as 
compared to other algorithms. Such speed-up is 
necessary for very large scale CVRP problems which 

can take hours and even days to evaluate using the 
conventional methods of solving CVRP. We have 
attempted CVRP problems involving more than 500 
customers. As these benchmarks are new and we have 

solved them for the first time; therefore, we give a 
snapshot of the solutions obtained by the proposed 
implementation in Figure 12. This figure gives a rough 
idea about the quality of the solutions obtained by the 
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proposed asynchronous implementation of cGA+LS 
over Cell BE. 
 
7. Conclusions & Future Work 

 
CVRP is far more complicated than solving 

multiple Traveling Salesman Problems (TSPs) in 
parallel. This is due to the fact that in case of CVRP 
the customers can move within the routes and there are 
further constraints not present in a simple TSP.  

In this paper, we have presented a unique method 
for solving CVRP using cGA+LS over Cell BE like 
architectures. This method can be used to solve any 
kind of optimization problem that uses GA+LS hybrid 
pair for its solution. As LS usually takes most of the 
execution time, therefore, parallelization of LS can 
considerably reduce the total execution time without 
disturbing the result quality. We argue that 
implementation of parallel GAs over Cell BE in their 
crude form is only feasible for problems with smaller 
population sizes and shorter chromosome lengths.  

We proposed an asynchronous algorithm that does 
not apply LS to all the individuals in a population. 
Asynchronous implementation is more feasible in real 
world problems where the total execution time is 
usually limited. Therefore, applying LS to all the 
individuals of a population may not be a good idea in 
all the cases.  

We used CellSs to implement synchronous 
cGA+LS over Cell BE and found it to be a very 
efficient way to introduce functional level parallelism 
in a serial code. 

As a future work, an exact analysis of number of 
local searches performed and its impact on the solution 
quality would be a good contribution. Number of local 
searches performed can be treated as a variable instead 
of a constant and can be increased/decreased with the 
increase in generations. To analyze the feasibility of 
using SIMD instructions for the LS algorithm is 
another good line of work. 
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