

Instructions for use

Title Implementation and Optimization of cGA+LS to solve Capacitated VRP over Cell/B.E.

Author(s) Munawar, Asim; Wahib, Mohamed; Munetomo, Masaharu; Akama, Kiyoshi

Citation International Journal of Advancements in Computing Technology, 1(2), 16-28
https://doi.org/10.4156/ijact.vol1.issue2.2

Issue Date 2009-12

Doc URL http://hdl.handle.net/2115/44385

Type article

File Information pubversion.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Implementation and Optimization of cGA+LS to solve Capacitated VRP over Cell/B.E.
Asim Munawar, Mohamed Wahib, Masaharu Munetomo, Kiyoshi Akama

Implementation and Optimization of cGA+LS to solve Capacitated
VRP over Cell/B.E.

Asim Munawar *1, Mohamed Wahib *1, Masaharu Munetomo *2, Kiyoshi Akama *2

*1, Corresponding author Graduate School of Information Science and Technology Hokkaido
University, Sapporo 060-0811, JAPAN

*2, Information Initiative Center, Hokkaido University, Sapporo 060-0811, JAPAN
{asim,wahibium}@uva.cims.hokudai.ac.jp, {munetomo,akama}@iic.hokudai.ac.jp

doi: 10.4156/ijact.vol1.issue2.2

Abstract

This paper presents a case study to illustrate the
design and implementation of cellular Genetic
Algorithm (cGA) with Local Search (LS) to solve
Capacitated Vehicle Routing Problem (CVRP) over
Cell Broadband Engine (Cell BE). Cell BE is a
heterogeneous, distributed memory multicore
processor architecture for multimedia applications
with regular memory access requirements. It has one
64-bit Power Processing Element (PPE) that acts as
the main processor and 8 Synergistic Processing
Elements (SPEs) with only 256 KB of local memory,
each for instructions and data. GAs on the other hand
use population based search techniques. Such
techniques usually have large memory requirements
and show non-uniform memory access patterns. These
properties of GAs make their implementation over Cell
BE even more challenging. In order to take maximum
advantage of the hardware, we propose an
asynchronous approach to implement cGA+LS over
Cell BE. In this paper, we discuss the implementation
and optimization of the proposed method in detail. We
compare the proposed method with other state-of-the-
art CVRP solvers and synchronous implementation of
cGA+LS over Cell BE. We solve existing benchmark
problems and achieve considerable speedups. We
extend the work further to solve extremely large
instances of CVRP compared to ones present in the
CVRP literature, and get acceptable results in a
reasonable amount of time.

Keywords

Cellular Genetic Algorithm (cGA); Combinatorial

Optimization Problem; Multicore; Cell Broadband
Engine Architecture; Vehicle Routing Problem.

1. Introduction

The Vehicle Routing Problem (VRP) is a
combinatorial optimization problem, seeking to service
a certain number of customers with a fleet of vehicles.
Real-world applications have widely shown that the
use of computerized procedures for the distribution
process planning, generally results in 5% to 20%
savings in the global transportation cost [1]. As
transportation cost represents 10% to 20% of the final
cost of the goods [1], therefore, VRP is a widely
studied problem both theoretically and in practice [2].
There are different variants of VRP which pose
different constraints on delivery time and route length.
In this paper, we consider a well-known variant of
VRP known as Capacitated Vehicle Routing Problem
(CVRP). In CVRP each customer has a fixed demand
of goods and each vehicle has a limited carrying
capacity, moreover, the pickup point is always a
central depot. CVRP can be of two types: CVRP with
time windows and CVRP without time windows. In
this paper, we only consider CVRP without time
windows, i.e. there is no constraint on the time of the
delivery (we will use the term CVRP to refer CVRP
without time windows throughout this paper unless
specified otherwise).

Exact methods of CVRP can be used to solve a
CVRP with less than 50 customers [1]. However, for
problems involving more than 50 customers,
approximate methods e.g. heuristics and
metaheuristics, have gained more attention over the
last few years. Algorithms like Tabu Search [3],
Simulated Annealing [4], and Genetic Algorithms
(GA) [5] gained a lot of attention during this time. GAs
are comparatively simple and highly customizable as
compared to their other counterparts, making them one
of the most important type of optimization algorithms.
In this paper, we have used cellular GA (cGA) with a
structured population as the base of the algorithm. In
order to improve the results, we have used two well-
known Local Search (LS) techniques, namely 2-Opt
[6] and λ-Interchange [7]. It is important to note that

16

International Journal of Advancements in Computing Technology
Volume 1, Number 2, December 2009

LS is mandatory to get good results for CVRP using
GAs [2,8,9,10,11]. LS is also mandatory for a wide
variety of problems to improve convergence. This
hybrid of cGA+LS to solve CVRP, was first suggested
by E. Alba et al. [2], and it has the potential to compete
with any state-of-the-art CVRP algorithm available.

GAs are algorithms inspired from the natural
process of evolution. They maintain a population of
probable solutions and apply genetic operators in
search for better solutions over the generations. GAs
give above average performance for a wide range of
optimization problems, at the expense of computational
power they use. Therefore, it is common to implement
GAs over High Performance Computing (HPC)
clusters. An HPC cluster provides enhanced
performance by splitting the computational task (GAs
in this case) among the nodes in the cluster. Clusters,
although being cost effective, are greatly influenced by
hardware constraints, leading to the three performance-
limiting walls [12] namely power wall, memory wall,
and instruction level parallelism wall. These three
performance limiting walls combine to limit
performance growth for single-core microprocessors
and hence, for clusters consisting of single-core
processing nodes.

A multi-core architecture is one of the solutions to
tackle the three wall problem. This has led most
microprocessor vendors to turn instead to multicore
chip organizations, even though the benefits of
multiple cores can only be realized if the programmer
or compiler explicitly parallelize the software [13].
Multicore processors are broadly divided into two
categories: 1) homogeneous, and 2) heterogeneous.
Homogeneous multicore processors usually have
identical processing cores and share a common
memory space, on the other hand, heterogeneous
processors have heterogeneous cores and the memory
is usually distributed among the available cores.
Homogeneous multicore processors are considered to
be general purpose and are usually easier to program.
They have large caches and complex control logic.
Heterogeneous processors are mostly designed for
specific applications. They usually lack big caches and
complex control logic; instead they use more
transistors to provide computational modules.
Therefore, commodity heterogeneous processors have
10-100's of processing cores as compared to less than
10 cores in a comparable grade homogeneous
multicore processor. As a consequence, although
difficult to program, heterogeneous processors can
achieve better speedups as compared to a similar grade
homogeneous processor. Due to this reason,

heterogeneous processors are being used for a wide
variety of algorithms with considerable performance
gains. In this paper, we have used state-of-the-art
heterogeneous architecture namely, Cell Broadband
Engine (Cell BE) to speed up the cGA+LS algorithm
to solve CVRP.

Cell BE is an heterogeneous multi-core chip
designed by STI (STI stands for Sony, Toshiba &
IBM, alliance). Cell BE processor comprises of a 64-
bit Power Processor Element (PPE) core and co-
processing elements called Synergistic Processor
Elements (SPE). SPEs have 256 Kb of local storage
each for instructions and data. Cell BE processor is
architected for multimedia applications with regular
processing requirements. However, Cell BE shows
significant speedups even for the problems with non-
uniform memory access [14,15]. GAs are well known
for their large memory requirements and non-uniform
memory access patterns. These two factors call for a
careful design to take maximum advantage of the Cell
BE hardware.

In this paper, we propose a unique asynchronous
approach for implementation of cGA+LS over Cell
BE. LS, being mandatory to solve a large variety of
optimization problems using GAs, is usually the most
computationally intensive part in GA+LS hybrid
algorithms; moreover, LS has relatively small memory
requirements. These two properties of LS makes them
ideal candidate to be implemented in parallel over
SPEs. cGAs having large memory footprint are not so
computationally intensive and are therefore more
suitable for serial implementation over PPE. In our
implementation, PPE runs the cGA and also act as a
controller for the SPEs in an indirect manner. In the
normal cases, LS is applied to all the individuals in a
population. In this paper, we discuss that for large
problems, instead of performing LS on all the
individuals, we can select the individuals on which
local search is performed based on some criteria. This
results in a considerable reduction in the execution
time with a negligible deterioration in the results
quality. Our implementation over Cell BE is based on
native Cell SDK (Ver 3.0).

The main motivation behind this paper is to harness
the computational power of Cell BE, to reduce the
execution time for solving existing CVRP benchmark
problems and to solve CVRP problems of sizes larger
than the ones attempted in the CVRP literature. To get
better results for the benchmark problems than the one
known in literature is not the motivation behind this
paper. In most of the real life cases total execution time
is the main limiting factor, and the user wants to gain

17

Implementation and Optimization of cGA+LS to solve Capacitated VRP over Cell/B.E.
Asim Munawar, Mohamed Wahib, Masaharu Munetomo, Kiyoshi Akama

most out of the time available at hand. We claim that
using the proposed method the user can make a better
use of his time and approach near optimal solution. We

show that the proposed methods can be used to get
significant speedups for the known benchmark
problems. The quality of results remains comparable to
any state-of-the-art CVRP solver. We apply the
technique to problems containing 50-2000 customers.
To the best of the author's knowledge, CVRP of size
greater than 1024 customers has never been attempted
before. The proposed implementation is suitable for a
large variety of optimization algorithms that require a
hybrid of GA+LS for their solutions. This approach
enables us to solve relatively large scale problems over
limited distributed memory multicore architectures like
Cell BE. We believe that such architectures will
become more and more common in the coming years,
making similar multicore implementations of
algorithms inevitable in near future. We discuss the
results and their implications in detail in Sect. 6.

The paper is arranged in the following manner:
Section 2 describes the CVRP in detail. Section 3
defines the cGA+LS hybrid algorithm used to solve
CVRP. Section 4 explains the Cell BE architecture
along with the conventional parallelization models to
program this architecture. In Sect. 5, we discuss the
proposed parallelization model to solve CVRP using
cGA+LS over Cell BE. Section 6 shows the results
obtained and compares them with the results obtained
by other state-of-the-art heuristics based methods in the
literature. Section 7 concludes this paper and gives
some guidelines for future work.

2. Capacitated VRP

As discussed earlier CVRP is a form of VRP. It can
be defined mathematically as an undirected graph: Let
G=(V,E) be a complete undirected graph with a set of

n+1 vertices V={v0, v1, ..., vn} and a set of edges E. v0
is a central depot and vi(i ∈ 1,...,n) represents n
customers, each having a non-negative demand qi.
Each edge (vi,vj) has a non-negative distance cij
(usually Euclidean distance). The CVRP finds a set of
m routes of minimum total distance, such that each
route starts and ends at the central depot, each
customer is visited exactly once, and the total demand
of any route does not exceed Q (vehicle capacity
constraint). It's important to note that m is also a
decision variable. A solution S of CVRP is a set of m
routes i.e. (R1, ..., Rm). The cost of any given route
Ri={v0, v1,..., v(k+1)} (where, v0 & v(k+1) are central
depot) can be given as:

∑
=

+=
k

j
jji CRCost

0
1,)(

(1)

The total cost of a problem solution (S) can be given
by:

∑
=

=
m

i
iVRP RCostSF

1
)()((2)

In simple terms CVRP strives to find a set of routes

of minimum total distance, such that each route starts
and ends at the central depot, each customer is visited
exactly once, and the total demand of any route does
not exceed vehicle capacity constraint.

3. cGA + LS

1 : Initialize cGA(InputParams);
2 : for s1 to MAX STEPS do
3 : for x1 to WIDTH do
4 : for y1 to HEIGHT do
5 : NListGet Neighborhood(Pop(x,y));
6 : ParentsLocalSelect(NList);
7 : AuxIndivRecombination(Pc, Parents);
8 : AuxIndivMutation(Pm, AuxIndiv);
9 : AuxIndivLocal Search(Pl, AuxIndiv);
10: EvaluateFitness(aux indiv);
11: InsertIfBetter(Pop(x,y), AuxIndiv, AuxPop);
12: end for
13: end for
14: PopAuxPop;
15: UpdateStatistics(Pop);
16: end for
17: Destroy();

Figure 1. Population arrangement (cGA) Figure 2. Pseudocode for the cGA+LS [2]

18

International Journal of Advancements in Computing Technology
Volume 1, Number 2, December 2009

1 - 3 - 4 - 10 - 5 - 6 - 0 - 2 - 11 - 12 - 9 - 8 - 7
Route 1 Route 2 Route 4Route 3

(a)

(b)

1

3

4
5

6

0

2

9

8

7

Central
Depot

1

3

4
5

6

0

2

9

8

7

Central
Depot

Problem Solution

Route 3
(NULL Route)

Route Splitters

Customers

Figure 3. (a) Representation of a solution S, (b) Solution S

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8

1 - 2 - 4 - 5 - 6 - 3 - 7 - 8

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8

1 - 2 - 5 - 4 - 3 - 6 - 7 - 8

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8

1 - 2 - 6 - 5 - 4 - 3 - 7 - 8

Insertion

Swap

Inversion

After

Before

After

Before

Figure 4. Types of Mutation used

GAs are a particular class of Evolutionary
Algorithms (EAs) that use techniques inspired by
evolutionary biology such as inheritance, mutation,
selection, and crossover [16]. Cellular GAs (cGAs) are

a subclass of GAs with spatially structured population,
i.e. the individuals can only mate with their
neighboring individuals [17]. These overlapped small
neighborhoods help in exploring the search space
because the induced slow diffusion of solutions
through the population provides a kind of exploration,
while exploitation takes place inside each
neighborhood by genetic operators.

In cGAs the population is structured in a 2D
toroidal grid. The neighborhood always contain 5
individuals: the considered one (position(x,y)) plus the
North, East, West, and South individuals. Binary
tournament selection is used in the neighborhood for
the first parent, while the other one is the considered
the individual itself as shown in Figure 1. Use of cGA
+ LS to solve CVRP was first proposed by E. Alba et
al. as given in Figure 2.

3.1 Representation

Representation of an individual is an important part
of the GA design. We have used a representation in
which each individual is a permutation of unique
numbers. This kind of representation is commonly
used for CVRP. The permutation contains the
customers and the route delimiters. Each route starts
and ends at the central depot, and a null route can be
represented by putting two route delimiters together
without any customer in-between. Length of an
individual (chromosome length) is given by: Lindiv= N

+ Mmax - 1, where Lindiv is chromosome length, N is
number of customers, and Mmax is the maximum
number of routes allowed in the solution. Numbers
from 0 to N-1 represents the customers while the

numbers ≥ N represents the route delimiters or route
splitters. Figure 3-(a) shows the representation of an
individual and Figure 3-(b) shows the actual solution.

3.2 Crossover & Mutation

We have used the well-known ERX operator [18]
as the crossover operator. For mutation we use the
three mutations recommended in [2], namely Insertion,
Swap and Inversion (see Figure 4) with equal
probability. Note that mutation can change a single
route or multiple routes.

3.3 Fitness Evaluation

We have used the fitness function used by most of
the heuristics based CVRP solvers. The fitness is given
by:

19

Implementation and Optimization of cGA+LS to solve Capacitated VRP over Cell/B.E.
Asim Munawar, Mohamed Wahib, Masaharu Munetomo, Kiyoshi Akama

25.6 GB/s

25.6 GB/s

25.6 GB/s

25.6 GB/s

25.6 GB/s

25.6 GB/s

25.6 GB/s

25.6 GB/s

SPE 2

SPU
(128 128 b
registers)

LS
(256 KB)

51.2 GB/s

SPE 3

SPU
(128 128 b
registers)

LS
(256 KB)

51.2 GB/s

SPE 8

SPU
(128 128 b
registers)

LS
(256 KB)

51.2 GB/s

SPE 1

SPU
(128 128 b
registers)

LS
(256 KB)

51.2 GB/s

EIB (204.8 GB/s)

PPE

L2 (512 KB)

PX / VMX

51.2 GB/s

25.6 GB/s

25.6 GB/s

L1 (32 KB 1-D)

51.2 GB/s51.2 GB/s

IO
Controller

25.6 GB/s

25.6 GB/s

MIC

25.6 GB/s

25.6 GB/s

Memory

25.6 GB/s

35 GB/s 25 GB/s

Figure 5. Architecture of Cell BE

PPE-Centric SPE-Centric

Multistage
Pipeline

Services
Model

Parallel
Stages

PPE

SPESPE

PPE

SPE

SPE

PPE
Application Code

SPE
Task 1

SPE
Task 2

Cell BE Parallelization Models

Figure 6. Cell BE Parallelization Models

)()()(min SovercapSFSf VRP ⋅+= α (3)

Where, FVRP(S) is the total distance of the routes,

and overcap(S) is the overhead of the capacity (sum of
the excess of demand on routes) in a solution candidate
S. We are using the penalty method to handle the
capacity constraint of vehicles. A route exceeding the
capacity of a vehicle is penalized by α∙overcap(S). α is
a scaling factor and the value we have used is 103 as
suggested by E. Alba et al. [2].

3.4 Local Search

LS is mandatory to improve convergence of GAs in
case of a large variety of optimization problems. We
have used two well known LS techniques namely, 2-
Opt and λ-Interchange [6,7]. 2-Opt is applied within a
route and λ-Interchange between two different routes.
2-Opt randomly selects two non-adjacent edges (i.e. (a,
b) and (c, d)) of a single route, delete them, thus
breaking the tour into two parts, and then reconnecting
those parts in the other possible way (i.e. (a, c) and (b,
d)). The λ-Interchange local optimization method we
use is based on the interchange of all the possible
combinations for up to λ customers between sets of
routes. Hence, this method results in customers either
being shifted from one route to another, or being
exchanged between routes. It can also result in
destruction of an existing route or creation of a new
route. We have kept the value of λ=1 throughout the
experiments. LS routine repeatedly applies 2-Opt and

λ-Interchange for LSiter number of times. Value of LSiter
is kept constant at 20 in the original cGA+LS
algorithm.

4. Cell BE

As mentioned earlier we are using Cell BE, a state-
of-the-art heterogeneous processor. The first
generation Cell Broadband Engine (Cell BE)
architecture has one Power Processor Element (PPE)
core (two-way multithreaded) acting as the controller
for the eight Synergistic Processing Element (SPEs)
(SPEs are specially designed for computationally
intensive jobs) as shown in Figure 5, each SPE has 256
Kbytes of local memory for data and instructions. Both
PPE and SPEs support vector (SIMD) instructions.
Due to the limited local memory of SPEs, Cell BE is
considered to be a challenging processor to program.
SPEs and PPE are connected via Element Interconnect
Bus (EIB) and can communicate in several different
ways. The most efficient way of transferring large
amounts of data between PPE and an SPE is by using
Direct Memory Access (DMA) operations. All the
communication in the proposed implementation is
done by this method.

4.1 Parallelization Models

There are two common parallel programming
models for Cell BE as shown in Figure 6:
• PPE Centric Model: In PPE centric model the main

application runs on the PPE, and individual tasks
are offloaded to the SPEs. PPE then waits for, and
coordinates, the results returning from the SPEs.
This model fits an application with serial data and
parallel computation. PPE centric model can be
further subdivided into (1) Multistage pipeline

20

International Journal of Advancements in Computing Technology
Volume 1, Number 2, December 2009

Main Population

Out Buffer # 1

SPE “n” +
Local Store

Out Buffer # n

Tournament
Selection
Algorithm

Reverse
Tournament

Selection
Algorithm

In Buffer # 1

SPE “1” +
Local Store

Main Memory

DMA Read Operations

DMA Write Operations

Flag Size Fitness Values Individuals Padding
Buffer

In Buffer # n

PPE

Figure 7. Memory Layout & Communication
Buffers

model, (2) Parallel stages model, and (3) Services
model as shown in Figure 6.

• SPE Centric Model: Most of the application code is
distributed among the SPEs. The PPE acts as a
centralized resource manager for the SPEs. Each
SPE fetches its next work item from main storage
(or its own local store) when it completes its
current work. In the proposed implementation, we
are using SPE centric model.

4.2 Parallelization for GAs

In a typical parallel GA, the population is

distributed among the available computational
resources and based on some criteria individuals are
exchanged with other sub populations. This model is
suitable for a cluster of processors or shared memory
multicore processors like AMD Opteron and Intel
CoreDuo, where each processor has direct access to the
main memory or distributed memory architectures with
large local memory for each processing core. In case of
architectures like Cell BE this is feasible only for very
small problems with small populations, e.g. for a
synchronous GA, CVRP involving N customers and
population size P, the memory required Mreq can be
given by: Mreq>2∙N∙P∙Sint Bytes (where Sint is the size
taken to represent one Integer). For N=500, P=1000
and Sint=4: Mreq>4 MBytes, when distributed among
eight SPEs this comes out to be > 500 KBytes per SPE
(greater than the available local memory). Therefore,
the above mentioned model (the island model) is not a
feasible option to solve large instances of CVRP over
Cell BE. Therefore, conventional parallel GAs are not
suitable for implementation over Cell BE especially for
large problems and/or large populations.

5. Proposed Implementation over Cell BE

In this paper, we discuss an asynchronous
implementation of cGA+LS over Cell BE in detail.
The main design considerations for the design are the
limited local storage of each SPU and the
communication bandwidth between the main memory
and SPU local store. We discuss how the algorithm can
be modified to make maximum use of the available
resources.

5.1 Improvement in the LS

In the original cGA+LS algorithm [2] the local

search routine applies λ-Interchange and 2-opt to each
individual repeatedly for a fixed number of times LSiter.

LSiter was kept constant at 20 in the original algorithm.
In our implementation the number of LS iterations is
not a constant. We fix the maximum number of
iterations at 20, but in every iteration we analyze the
fitness gain as compared to the last iterations. If the
fitness gain is zero we stop there as we have already
reached the local minima. This small modification has
a significant effect on the overall execution time. The
number of LS iterations for each individual decreases
as the algorithm progress towards the absolute minima.

5.2 Asynchronous cGA+LS over Cell BE

As discussed in Sect. 3, LS is mandatory for

solving a wide range of optimization problems using
GAs. Here we propose a unique method to implement
cGA+LS over Cell BE using SPE centric
parallelization model (Sect. 4.1). In the proposed
parallelization model, LS runs as a daemon process
over all the SPEs. These threads are independent to
fetch the data from the main memory. PPE on the other
hand is responsible to run the cGA and to prepare the
data for SPEs. Therefore, PPE although controlling
SPE in some way is not acting as an explicit controller.
We call it asynchronous implementation, as the cGA
(running over PPE) and LS (running over SPEs) runs
independent of each other and are not synchronized.

5.2.1 Memory Layout

All the communication between SPE's and PPE is
done through SPE initiated DMA operations. PPE has
two buffers for each SPE, one for sending the data to
an SPE and the other one for receiving the data from an
SPE, as shown in Figure 7. The SPE always reads the
data from its respective Out buffer and writes the data
to the respective In buffer. Flags are used to

21

Implementation and Optimization of cGA+LS to solve Capacitated VRP over Cell/B.E.
Asim Munawar, Mohamed Wahib, Masaharu Munetomo, Kiyoshi Akama

Run GA

SPU Thread is
Free

Write Data to “Out Buffer”
(change thread to busy)

Read “In Buffer”
Check Flag

Read LS Result
(change thread to free)

NO

Yes

Read “Out Buffer”
Check Flag

Fetch New Data

New_Data

Apply LS

Write Results to “In Buffer”

Empty

(a) (b)

Initialize

Initialize

Exit
Ex

it

If Exit Criteria

NO

Send Terminate Signal to
all SPEs

Yes

Exit

New_Data

R
ep

ea
t f

or
 a

ll
SP

Es

Figure 8. Controller: (a) PPE side control logic, (b)
SPE side control logic (SPE uses DMA operations to

perform read and write operations on “In/Out
Buffers”).

synchronize the data access between PPE and SPE. All
the communication in our implementation occurs
between SPE and PPE only.

Each buffer consists of 5 fields namely Flag, Size,

Fitness_Values, Individuals, and Padding. Flag is used
for message passing between the PPE and SPE thread
and is also used for synchronizing the data interchange
between the two threads. Flag can be either
NEW_DATA, EMPTY, or EXIT. NEW_DATA
represents presence of new data, while EMPTY simply
shows an empty buffer. EXIT signal is used at the
termination of the program. It is a message for the SPE
threads to initiate the destruction sequence. Size is the
number of individuals on which we want to perform
LS; it is kept in between 1-5 (for large instances of
CVRP we take it as 1). Fitness_Values is a sequence of
single precession fitness values of all the individuals in
the buffer. Individuals contains the permutations of all
the individuals. While, Padding is used to make the
memory size in multiples of 128 bytes. This is
preferable size for making DMA operations in case of
Cell BE.

5.2.2 Controller Logic

Control logic for both PPE and SPE is shown in

Figure 8.
• PPE side controller: is shown in Figure 8-(a). PPE

has three main responsibilities: to run cGA, to fill
the SPE buffers, and to read the results returned by

the SPE's and insert them into the main
population.

• SPE side controller: is shown in Figure 8-(b). SPE
has very simple control logic. It simply checks for
the new data. Whenever new data is available SPE
reads the data, performs local search on it and
write the data back into the main memory. SPE
threads run independent of the main thread and are
not directly controlled by it. However, the Flag of
the buffer holds a control message for the SPE's.

PPE sets the value of Flag in all the Out Buffers to
EXIT in order to signal all the SPE threads to call the
destroy functions and exit. Mailboxes can also be used
to signal the availability of new data but based on our
experience mailboxes are slower than simple DMA
operations.

5.2.3 Pseudocode over Cell BE

Figure 9 shows the Pseudocode of PPE side thread

and SPE side threads separately. The Pseudocode
explains the controller shown in Sect. 5.2.2 in further
detail. As shown in the figure, PPE thread runs a single
generation of the cGA and then checks the status of
each SPE thread. If any of the SPE threads is free, PPE
selects some individuals from the main population and
fills the Out Buffer corresponding to that SPE, changes
the Flag of the Out Buffer to NEW_DATA, and changes
the status of that SPE thread to BUSY. PPE then checks
the Flag of all the In Buffers. If new data is available
PPE reads the respective In Buffer, insert the data in
the main population, change the Flag to EMPTY, and
change the status of that SPE to FREE. Flag is also
used to synchronize data between the SPE's and the
PPE. Therefore it should be set to NEW_DATA only
when the entire buffer is already filled with the desired
data. It's important to note that all DMA operations in
our implementation are SPE initiated. PPE is only
responsible to fill the respective Out Buffers. SPE
automatically reads the data from this buffer when it is
free. Similarly SPE writes the data to the In Buffer
using DMA operations. This data is then read by the
PPE using simple memory read operations.

As shown in Figure 7 the criteria for selecting
individuals for LS is based on tournament selection of
size Tf, while the individuals (result of LS) are inserted
back in the main population using a reverse tournament
selection of size Tr. In reverse tournament selection, Tr
individuals are selected randomly from the main
population and the individual with the lowest fitness in

22

International Journal of Advancements in Computing Technology
Volume 1, Number 2, December 2009

InitializeSPUThread(ControlBlock) ;
while TRUE do

ToSPUBuffer  DMAFromMainMemory ();
if(ToSPUBuffer.Flag == EXIT)

Break;
end if
if (ToSPUBuffer.Flag == NEW_DATA_AVAILABLE)

ToSPUBuffer.Flag  EMPTY;
SPUPop = ExtractFromBuffer(ToSPUBuffer);
for i  1 to SPUPopSize

SPUPop[i]  2Opt(SPUPop([i]);
SPUPop[i]  LambdaInterchange(SPUPop[i]);

end for
FromSPUBuffer  InitializeBuffer(SPUPop);
FromSPUBuffer.Flag NEW_DATA_AVAILABLE;
DMAToMainMemory(FromSPUBuffer);

end if
end while

Destroy();

InitializeSPUThreads(NUM_SPU_THREADS, ControlBlocks) ;
Initialize_cGA(InputParams);
for g  1 to MAXGEN do

for x  1 to WIDTH do
for y  1 to HEIGHT do

NList Get Neighborhood(Pop(x,y));
Parents  Local Select(NList);
TempIndiv Recombination(Pc, Parents);
TempIndiv Mutation(Pm, TempIndiv);
Evaluate Fitness(TempIndiv);
Insert If Better(Pop(x,y), TempIndiv, Pop);

end for
end for
Update Statistics(Pop);

for s  1 to NUM_SPU_THREADS
if (SPUThreadState(s) == FREE)

TempIndivduals  TournamentSelect(TournamentSize, Pop);
ToSPUBuffer(s)  InitializeBuffer(TempIndivduals);
ToSPUBuffer(s).Flag NEW_DATA_AVAILABLE;
SPUThreadState(s)  BUSY;

end if
if (FromSPUBuffer.Flag == NEW_DATA_AVAILABLE)

TempIndivduals  ExtractFromBuffer(FromSPUBuffer(s));
Pop InsertByReverseTournament(TempIndivduals);
FromSPUBuffer(s).Flag EMPTY;
SPUThreadState(s)  FREE;

end if
end for

end for

for s  1 to NUM_SPU_THREADS do
ToSPUBuffer(s).Flag EXIT

end for

WaitForAllSPUThreadsToFinish();
Destroy();

(a) (b)

SPU Initiated DMA Operation=

Figure 9. Pseudocode of the proposed implementation over Cell BE: (a) PPE side

pseudocode, (b) SPE side Pseudocode

the main population are replaced by the ones received
from the LS thread.

We have used asynchronous population (Steady
State GA) to reduce the overall memory requirements.

In our observation, asynchronous population gives
almost the same results as that of synchronous
population. Double buffering is not applied as the time
taken by LS is a lot more than the time taken by DMA
operation, therefore, adding double buffering will only
add complexities to the controller without adding any
considerable performance benefit.

Using the proposed model for parallelization we
can easily run problems of very large size over the
limited size distributed memory architectures like Cell
BE. LS being mandatory and computationally very
intensive (as compared to cGA) is the most suitable
part of the code to be run in parallel. While, the rest of
the code being very light (as compared to LS) can run
on the PPE. Moreover, GAs are ideal for
implementation over the single precision architecture
of Cell BE, as the error in the case of GAs does not
accumulate over the generations.

5.3 Simple Synchronous Parallelization

For comparison purposes we also implemented

synchronous cGA+LS. This approach simply uses

functional level parallelism to implement LS over the
available SPUs. In synchronous approach LS is
performed on all the individuals of a population and
the algorithm waits for all the LS to finish before
moving on to the next step. Instead of using Cell BE
native code we have used Cell Superscalar (CellSs)
[19] to generate parallel program from the serial code.
CellSs provides a certain level of abstraction and help
in writing a functional level parallel code with the
addition of a few trivial annotations in the serial code.
CellSs compiler converts the source code into a valid
Cell BE executable. The compiler takes care of the task
scheduling and data handling between the different
processors of this heterogeneous architecture. Besides,
it automatically implements double buffering and a
locality-aware task scheduling to reduce the overhead
of data transfers. Figure 10 shows the annotations that
we have used to convert the serial cGA+LS code into a

23

Implementation and Optimization of cGA+LS to solve Capacitated VRP over Cell/B.E.
Asim Munawar, Mohamed Wahib, Masaharu Munetomo, Kiyoshi Akama

LocalSearch() {
malloc();
LambdaInter();
2Opt();

}

Gen() {
Crossover ();
Mutation ();
LocalSearch();
Replacement();

}

main() {
Init()
while(MAX_GEN) {

Gen();
}

}

cGA+LS serial code

#pragma css task … …
LocalSearch() {

css_malloc();
LambdaInter();
2Opt();

}

Gen() {
Crossover ();
Mutation ();
LocalSearch();
#pragma css barrier
Replacement();

}

main() {
#pragma css start
Init()
while(MAX_GEN) {

Gen();
}
#pragma css finish

}

Annotations for CellSs

Cell Executable

CellSs Compiler
(cellss-cc)

CellSs Libraries

Figure 10. CellSs Annotations

functional level parallel cGA+LS code. Note that
CellSs cannot maintain the state of the threads running
over SPEs and hence is not useful for the asynchronous
implementation discussed in the last section.

6. Results

In this section, we have compared the results
obtained by the proposed method with results obtained
by other state-of-the-art metaheuristics based solvers in
CVRP literature. We also compare the asynchronous
implementation of CVRP over Cell BE with the
synchronous implementation.

6.1 Environment & Benchmarks

All the results presented here were collected on a

Sony PS3TM (Play Station 3) with Fedora Core 7. PS3
has Cell BE as its processor, with 256MB of main
memory as compared to 1GB in a normal Cell BE
configuration. Moreover, only seven of the eight SPEs
are available in case of PS3. Out of these seven, one is
used by the OS; therefore we are left with only six
SPEs to work with. However, the same application
should give even better results if executed over a
normal Cell BE processor with 8 SPEs. We have
implemented the proposed algorithm using plain C

with Cell BE intrinsics. This native Cell code is
compatible with Cell SDK 3.0.

We have kept the conditions constant throughout
the experiments. The value of α is kept constant at 103,
and value of λ is kept at 1 throughout the experiments.

Value of maximum numbers of LS iterations LSiter is
kept constant at 20. The population size of the cGA is
also kept constant at 100. For stopping criteria, the
algorithm stops if the required value is achieved which
is usually the best known fitness with a fixed error
margin. Algorithm also stops if the fitness value of the
population does not change over the last 10
generations. Value of Tr and Tf (as given in Sect. 5.2.3)
are kept constant at 4. Value of mutation probability
Pm=0.85 and value of crossover probability Pc=0.65
throughout the experiment as recommended by E. Alba
et al. [2]. All the results presented in this paper are
average of at least 10 independent runs under similar
conditions.

The test cases used in the results are taken from the
famous CVRP benchmarks problems namely
Christofides benchmarks [20] (represented by C in
Table 1), and Golden benchmarks [21] (represented by
G in Table 1). While, the benchmark problems
represented by M are our own benchmark problems. As
to the best of author's knowledge CVRP benchmarks of
large size do not exist in literature, therefore, we have

24

International Journal of Advancements in Computing Technology
Volume 1, Number 2, December 2009

Table 1. Time/Quality of the solutions obtained by different algorithms over different computing environments.
Time is kept constant at Tc

Instances n Tc (Seconds) Asynchronous *C Synchronous *C cGA+LS *1 E. Alba et al. *2

C1 50 8 531.25 524.61 524.61 524.61

C2 75 16 858.2 919.42 985.12 1021.23

C3 100 35 832.71 913.59 1026.61 971.48

C5 199 88 1364.21 1612.42 1982.58 2100.84

G12 483 1485 1198.23 1314.65 1492.27 1682.01

M1 500 1823 5598.23 5715.81 5828.54 6125.93

M2 750 2341 8032.12 8389.04 8525.18 9294.29

M3 1000 3120 10254.19 10396.1 10749.56 12295.58

M4 2000 3901 21857.32 22431.98 27321.31 25153.95
*C. 3.2GHz Cell BE (PS3), Implemented by the authors
*1. 3 GHz PIV, Implemented by the authors
*2. 2.4 GHz PC, E. Alba (2004)

Proposed Method
Implemented by the authors for comparison purposes

Figure 11. Quality of solutions (ΔSolution)

created new benchmarks of sizes starting from 500
customers to 2000 customers.

6.2 Empirical Results & Discussion

In any real metaheuristics based implementation
there is always a tradeoff between the quality of the

solution and the total execution time. This means that a
slight increase in solution quality may require a
considerable increase in the total execution time. This
type of tradeoff is more visible in real-life situations
where we have strict time constraints. In most of the
real life cases the goal is to get the best possible
solution within the total available time at hand.
Therefore, for a fair comparison between different
algorithms, we either have to keep the quality or the
execution time as a constant. As time is the limiting
factor in most of the cases so it will only be fair to keep
the time as a constant and observe the quality of the
solution obtained by different algorithms in that fixed
amount of time.

Table 1 shows the quality of solutions obtained by
using different algorithms, while keeping the total
execution time as a constant Tc. Where, Tc is the time
taken by asynchronous cGA+LS algorithm (proposed
method) to converge to a solution. We have compared
the results obtained by the proposed asynchronous
implementation with the synchronous implementation
over Cell BE and other state-of-the-art metaheuristics
based algorithms. Note that in the proposed
asynchronous implementation of cGA+LS over Cell
BE, LS is only applied to the individuals selected using
a special criterion (see Sect. 5.2.3 for details). It is

clear from the table that asynchronous approach
outperforms every other method for all test cases
except for C1 (which is a relatively small instance of
CVRP). Therefore, we argue that it is not important to
apply LS to all the individuals when the target is not to
achieve the absolute best result, but to achieve the best
possible result in the given amount time.

Figure 11 shows the deviation (ΔSolution) of the
solutions obtained by different methods as compared to
the ones obtained by asynchronous algorithm:

100*||
onBestSoluti

onBestSolutiSolutionSolution −
=∆ (4)

BestSolution in the above equation does not mean

the absolute best solution, rather it is the best solution

obtained in Tc amount of time by any of the algorithm
shown in Table 1. As it is clear from the figure,

25

Implementation and Optimization of cGA+LS to solve Capacitated VRP over Cell/B.E.
Asim Munawar, Mohamed Wahib, Masaharu Munetomo, Kiyoshi Akama

(a) (b)

(c) (d)
Figure 12. Snapshots of the solution for: (a) M1 benchmark problem (500 customers), (b) M2 benchmark

problem (750 customers), (c) M3 benchmark problem (1000 customers),
(d) M4 benchmark problem (2000 customers).

ΔSolution of asynchronous algorithm is almost always
0. This supports our argument that it is not necessary to
apply LS to all the individuals in a case where we have
limited amount of time to reach a solution.

We conclude that in a limited amount of time
asynchronous method gives better solution as
compared to other algorithms. Such speed-up is
necessary for very large scale CVRP problems which

can take hours and even days to evaluate using the
conventional methods of solving CVRP. We have
attempted CVRP problems involving more than 500
customers. As these benchmarks are new and we have

solved them for the first time; therefore, we give a
snapshot of the solutions obtained by the proposed
implementation in Figure 12. This figure gives a rough
idea about the quality of the solutions obtained by the

26

International Journal of Advancements in Computing Technology
Volume 1, Number 2, December 2009

proposed asynchronous implementation of cGA+LS
over Cell BE.

7. Conclusions & Future Work

CVRP is far more complicated than solving

multiple Traveling Salesman Problems (TSPs) in
parallel. This is due to the fact that in case of CVRP
the customers can move within the routes and there are
further constraints not present in a simple TSP.

In this paper, we have presented a unique method
for solving CVRP using cGA+LS over Cell BE like
architectures. This method can be used to solve any
kind of optimization problem that uses GA+LS hybrid
pair for its solution. As LS usually takes most of the
execution time, therefore, parallelization of LS can
considerably reduce the total execution time without
disturbing the result quality. We argue that
implementation of parallel GAs over Cell BE in their
crude form is only feasible for problems with smaller
population sizes and shorter chromosome lengths.

We proposed an asynchronous algorithm that does
not apply LS to all the individuals in a population.
Asynchronous implementation is more feasible in real
world problems where the total execution time is
usually limited. Therefore, applying LS to all the
individuals of a population may not be a good idea in
all the cases.

We used CellSs to implement synchronous
cGA+LS over Cell BE and found it to be a very
efficient way to introduce functional level parallelism
in a serial code.

As a future work, an exact analysis of number of
local searches performed and its impact on the solution
quality would be a good contribution. Number of local
searches performed can be treated as a variable instead
of a constant and can be increased/decreased with the
increase in generations. To analyze the feasibility of
using SIMD instructions for the LS algorithm is
another good line of work.

8. Acknowledgements

We would like to thank Bernabé Dorronsoro for his
help, regarding the use of Cellular Genetic Algorithm
to solve Capacitated Vehicle Routing Problem. We
would also like to thank Isaac Jurado and Rosa M.
Badia for their help in using CellSs. We also thank the
anonymous users who replied to our queries on the
mailing lists related to CellBE.

9. References

[1] P. Toth, D. Vigo, The vehicle routing problem.
Monographs on Discrete Mathematics and Applications.
SIAM 2001.

[2] E. Alba, B. Dorronsoro, Solving the vehicle routing
problem by using cellular genetic algorithms. EvoCOP,
Lecture Notes in Computer Science, vol. 3004, Gottlieb
J, Raidl G (eds.), Springer, 2004; pp 11–20.

[3] F. Glover, M. Laguna, Tabu search. Modern Heuristic
Techniques for Combinatorial Problems, Reeves C (ed.),
Blackwell Scientific Publishing: Oxford, England, 1993.

[4] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by
simulated annealing. Science, Number 4598, 13 May
1983; pp 671–680.

[5] D. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley
Professional, 1989.

[6] G. Croes, A method for solving traveling salesman
problems. Operations Research 6, 1958; 791–812.

[7] I. Osman, Metastrategy simulated annealing and tabu
search algorithms for the vehicle routing problem. Ann.
Oper. Res. 1993; 41(1-4): pp 421–451.

[8] E. Alba, B. Dorronsoro, Computing nine new best-so-far
solutions for capacitated vrp with a cellular genetic
algorithm. Information Processing Letters. 98(6): June
2006; pp 225–230.

[9] J. Berger, M. Barkaoui, A hybrid genetic algorithm for
the capacitated vehicle routing problem. GECCO Lecture
Notes in Computer Science, vol. 2723, Springer, 2003.

[10] Y. Nagata, Edge assembly crossover for the capacitated
vehicle routing problem. EvoCOP, Lecture Notes in
Computer Science, vol. 4446, Cotta C, van Hemert J
(eds.), Springer, 2007; pp 142–153.

[11] Y. Rochat, E. Taillard, Probabilistic diversification and
intensification in local search for vehicle routing. Journal
of Heuristics 1995; pp 147–167.

[12] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P.
Husbands, K. Keutzer, D. Patterson, W. Plishker, J.
Shalf, S. Williams, The landscape of parallel computing
research: A view from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of
California, Berkeley Dec 2006.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, JW. Sheaffer, K.
Skadron, A performance study of general-purpose
applications on graphics processors using CUDA. Journal
of Parallel and Distributed Computing, Vol. 68, No. 10.
(October 2008), pp. 1370-1380.

[14] J. Kurzak, J. Dongarra, Implementation of mixed
precision in solving systems of linear equations on the
cell processor: Research articles. Concurrency and
Computation: Practice and Experience 2007; 19(10): pp
1371–1385..

[15] M. Xu, P. Thulasiraman, Parallel algorithm design and
performance evaluation of fdtd on 3 different
architectures: Cluster, homogeneous multicore and
Cell/B.E. Proceedings of HPCC ’08: 10th IEEE
International Conference on High Performance
Computing and Communications, Dalian, China, 2008;
174–181.

27

Implementation and Optimization of cGA+LS to solve Capacitated VRP over Cell/B.E.
Asim Munawar, Mohamed Wahib, Masaharu Munetomo, Kiyoshi Akama

[16] D. Petrowski, S. Taillard, Metaheuristics for Hard
Optimization: Methods and Case Studies, chap.
Evolutionary Algorithms. Springer, 2006; pp 75–92.

[17] E. Alba, B. Dorronsoro, Cellular Genetic Algorithms,
Operations Research/Computer Science Interfaces Series,
vol. 42. Springer, 2008.

[18] W. Darrell, T. Starkweather, D. Fuquay, Scheduling
problems and traveling salesman: The genetic edge
recombination operator. International Conference on
Genetic Algorithms, 1989; 133–140.

[19] P. Bellens, J. Perez, R. Badia, J. Labarta, Cellss: a
programming model for the cell be architecture.
Supercomputing, 2006. SC ’06. Proceedings of the
ACM/IEEE SC 2006 Conference Nov 2006.

[20] N. Christofides, A. Mingozzi, P. Toth, Combinatorial
Optimization, chap. The vehicle routing problem. John
Wiley & Sons, 1979.

[21] B. Golden, E. Wasil, J. Kelly, I. Chao. Fleet
Management and Logistics, chap. Metaheuristics in
vehicle routing. Kluwer Academic Publishers: Boston,
1998.

28

