
 

Instructions for use

Title The design, usage, and performance of GridUFO: A Grid based Unified Framework for Optimization

Author(s) Munawar, Asim; Wahib, Mohamed; Munetomo, Masaharu; Akama, Kiyoshi

Citation Future Generation Computer Systems, 26(4), 633-644
https://doi.org/10.1016/j.future.2009.12.001

Issue Date 2010-04

Doc URL http://hdl.handle.net/2115/44373

Type article (author version)

File Information Journal.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


The Design, Usage, and Performance of GridUFO:
A Grid based Unified Framework for Optimization

Asim Munawar a,∗,1, Mohamed Wahib a, Masaharu Munetomo b,
Kiyoshi Akama b

aGrad. School of Information Science & Tech., Hokkaido University, Sapporo, Japan
bInformation Initiative Center, Hokkaido University, Sapporo, Japan

Abstract

We present GridUFO (Grid based Unified Framework for Optimization), a Service Oriented
Architecture (SOA) compliant Problem Solving Environment (PSE) that allows the user to
implement/share metaheuristics based optimization algorithms over a Grid. GridUFO erad-
icates the shortcomings of earlier projects and provides a unified approach for using algo-
rithm/problem pair over a Grid in the easiest possible “plug & play” manner. This frame-
work allows the users to concentrate on the actual application development, by hiding all
the complexities involved in a Grid, without compromising on the functionality and flexi-
bility promised by a Grid. This paper provides a detailed overview of the GridUFO infras-
tructure, specifically the way it deals with optimization algoirthms and objective functions,
handles Service Level Agreements (SLAs), and follows SOA. We also present various re-
sults achieved, that demonstrate both the utility and performance of GridUFO under various
application workloads and scenarios.

Key words: Grid computing, service oriented architecture, problem solving environment,
metaheuristics based optimization algorithms, optimization framework

∗ Corresponding Author
Email addresses: asim@ist.cims.hokudai.ac.jp (Asim Munawar),

wahibium@ist.cims.hokudai.ac.jp (Mohamed Wahib),
munetomo@iic.hokudai.ac.jp (Masaharu Munetomo),
akama@iic.hokudai.ac.jp (Kiyoshi Akama).
1 Present Address: Division of Large Scale Computing Systems, Information Initiative
Center, Hokkaido University, North 11, West 5, Sapporo 060-0811, JAPAN
phone: +81(11)706–3759 facsimile: +81(11)706–3759

Preprint submitted to Elsevier 6 December 2009



1 Introduction

Distributed computing and its close relative, Grid computing, are becoming less
rare with each passing day. Grid computing allows a secure and coordinated shar-
ing of globally distributed resources spanning several physical organizations[13].
Service Oriented Architectures (SOAs) underlie several of the current Grid initia-
tives and reflect the current Grid computing infrastructures, where the participants
offer and request application services. SOA defines standard interfaces and proto-
cols that enables the developers to encapsulate resources of different complexities
and values as services that clients can access without the knowledge of their in-
ternal workings[11]. Embracement of SOA by Grid computing is one of the key
reasons for the success of Grids[14]. The motivation for the development of the
Grid was to offer the computing as a service to the users without them knowing the
acutal location of the physical resources. Therefore, we argue that in true spirits of
a Grid the framework should support SOA. Moreover, Service Level Agreement or
SLA should be offered to define the level of service the user can expect.

Every field of applied sciences and engineering, rely on the solution to optimiza-
tion problems in one way or the other. The solvers for such problems include a vast
set of algorithms, ranging from gradient descent to algorithms that mimic nature
like metaheuristics based algorithms. As stated by No Free Lunch (NFL) theorem
[36], we cannot have a single optimization algorithm that gives us good results
for all the problems in the entire problem space, and the average performance of
all the algorithms over the entire problem space is the same. This forces us to de-
velop a framework incorporating different specialized algorithms from which the
user can select the algorithm of his own choice, to solve the optimization problem
at hand. Metaheuristics based algorithms have a tremendous potential for paral-
lelization over modern parallel computing paradigms like Grid. Therefore, we will
restrict our discussion only to metaheuristics algorithms in this paper. The high rate
of increase in distributed resources, data deluge, multicore systems, and high speed
networks makes the parallel and distributed implementation of algorithms more
vital than ever before.

In this paper we present a Grid based Unified Framework for Optimization (GridUFO),
a SOA compliant Problem Solving Environment (PSE) that allows the user to im-
plement and share metaheuristics based algorithms over a Grid. The main target
of this research is to harness the power of the Grid, to maximize the efficiency of
metaheurisitcs based optimization algorithms, while keeping all the low-level de-
tails hidden from the application developer. To achieve this target, GridUFO uses
open standards and protocols to hide the complexities of the Grid from the user
without compromising the flexibility and functionality offered by the Grid. Word
“Unified” in GridUFO have several implications: (1) GridUFO unifies the features
of other similar projects at one place (not to mention the extra functionalities pro-
vided by the framework), (2) It provides a single platform to solve any kind of

2



metaheuristics algorithm, (3) It unifies the Grid technologies with the optimization
algorithms to take the optimization frameworks concept to a new level.

Owing to the very gradual learning curve of Grid technologies, researchers and ap-
plication developers are reluctant to use Grid computing models. Application devel-
opers usually waste a lot of time and energy in understanding the basics of Grids,
Grid middlewares and Grid configurations. Moreover, due to the lack of mature
tools, this process is very sensitive and error prone. To ease this process by provid-
ing an abstraction to the user is the basic motivation behind this paper. GridUFO
can significantly reduce the development time and allow the developer to concen-
trate on the actual problem, i.e. optimization in the case of GridUFO. We believe
that computing models like Grid computing and utility computing (utility comput-
ing is a kind of Grid computing where the users only pay for the services/resources
they use) is the future of distributed computing, and projects like GridUFO can
encourage the application developers to shift to Grid technologies. GridUFO pro-
vides a smooth transition from conventional parallel models to modern distributed
computing technologies.

GridUFO is a step towards Virtual Innovative Laboratory (VIL), proposed by Munetomo[28]
(2006). VIL seeks for realizing virtual laboratory that innovates automatically to
find optimal solutions or designs, by combining robust evolutionary search and
simulator program of the target problems. VIL intends to replace a part of human
designer’s trial-and-error process.

Most of the similar optimization frameworks attempted in the past (see Sect. 2)
either lacks the required flexibility or the Grid compatibility, asserting them practi-
cally unusable for the modern distributed computing paradigms. They include Grid
computing, utility computing and the more recent, cloud computing paradigms.
Moreover, the Grid based counterparts of GridUFO do not provide the functional-
ity in the true spirits of a Grid and closely resembles conventional parallel archi-
tectures. GridUFO on the other hand is a true SOA compatible Grid based design
and offers all its functionalities as services to the users. The contract of the ser-
vice is determined by the Service Level Agreement (SLA) protocol. SLA protocol
used in GridUFO is defined in Sect. 3.5. From a user’s point of view GridUFO
is a framework that offers services to different classes of users namely: (1) Users
who want to share an optimization algorithm with other GridUFO users, (2) Users
who want to share an optimization problem with other GridUFO users, (3) Users
who want to solve an optimization problem using an optimization algorithm al-
ready registered with the framework. There are two Service Access Points (SAPs)
of GridUFO namely, (1) Web Services Resource Framework (WSRF) based Web
service that can be consumed by any client application independent of the operat-
ing system and architecture of the system, (2) Fully integrated 2nd generation Web
portal (with custom portlets) that allows the user to access all the services through
any Web browser. Some other salient features of GridUFO are listed in Sect. 2.

3



The novelty of GridUFO lies in its unique way of treating the optimization algo-
rithms and the objective functions. In a usual setting both these entities are tightly
connected and inseparable. However, in the case of GridUFO these two entities are
loosely coupled and can be developed by different developers. Moreover, both the
entities are Quality of Service (QoS) conscious and formally declare the services
provided by them using the SLD file (SLD file is a Service Level Description file
written by using a proposed markup language discussed in Sect. 4). User is al-
lowed to use any pair of optimization algorithm and objective function. The QoS
between an optimization algorithm and an objective function is negotiated during
the SLA process by the SLA service of GridUFO (see Sect. 3.5). GridUFO en-
forces the algorithm developer to use an API that we call “GridUFO API”. An
algorithm written using this API is automatically recognized by the system on reg-
istration. All the calls to the objective function are made through this API and are
hence hidden from the user. Similarly an objective function with a proper IDL file
is also recognized by the system automatically. Using the tools including GridUFO
API, SLD, and IDL GridUFO allows a very loose and flexible connection between
optimization algorithm and objective functions. It is important to note that this ap-
proach of GridUFO is very different from the normal workflow approach. Work-
flow allows us to arrange execution of different pieces of codes in a sequence; on
the other hand GridUFO’s approach allows a continuous interaction between two
independent pieces of codes running at remote locations. GridUFO make use of
GridRPC[33], GridMPI[20], and GridUFO’s job scheduler for distributed imple-
mentation over the Grid (see Sect. 3.6). We also propose MetaHeuristics Markup
Language (MHML), an XML based language that acts as an interface between the
user and the framework.

This paper is organized as follows: In the next section we will discuss the related
work done in this area. In Sect. 3 we will discuss the design and implementation of
the system in detail. Section 4 explains the proposed markup language. Section 6
gives us some theoretical analysis and empirical results for the overheads involved
in Grids. We conclude the paper in Sect. 7 with some guidelines for possible im-
provements in the system.

2 Comparison with the Past Work

Several optimization frameworks have been developed for solving different opti-
mization problems in the recent years. However, we will only discuss the most no-
ticeable projects, e.g., NEOS [9,16,10], Folding@Home[21], Nimrod/O[3], GEODISE[8],
OSP[1], and GE HPGA[23]. Most of these projects are either non Grid compliant
or lack the features promised by a real Grid environment. Moreover, most of these
projects do not work in a black box manner (important for metaheuristics algo-
rithms), do not allow the user to add new algorithms, and almost all of the projects
completely ignore the service oriented aspect of the Grid. Therefore, we argue, that

4



Table 1
Comparison of GridUFO with the work done in the past.

projects (frameworks) attempted in the past are not in agreement with the true spirit
of Grids as most of them ignores the service oriented aspect of the Grid. The term
Grid Oriented Genetic Algorithms (GOGAs) were first introduced by Imade et al.
[18] in 2003. Since then, some research has been done on the GOGAs [23,19,17],
which is still far from mature. We argue that presenting a new Grid based algorithm
is not so meaningful unless the user has a robust Grid based framework to use that
algorithm (as setting up a Grid is not a trivial task). At the same time, a Grid based
framework is not so meaningful unless it offers the algorithms through Grid ser-
vices and allows the user to add new algorithms. A comparison of some of the most
noticeable projects with GridUFO is given in table 1.

SOA although ignored by most of the earlier projects is important for building a
flexible framework. Keeping this in consideration GridUFO is SOA compatible
and all the features of GridUFO are available as standard Grid services. Moreover,
GridUFO is compatible with Open Grid Services Architecture (OGSA) compliant
Grid middlewares and allows the user to solve global optimization problems over a
Grid in a black box fashion. Some salient features of GridUFO as compared to the
previous work can be listed as follows:

• GridUFO is a SOA compliant Grid based architecture.
• Most of the projects done until today requires manual deployment of the appli-

cation on all the resources before starting the execution but GridUFO provides a
mechanism for automatic deployment.

• GridUFO has well defined interfaces between the user and the framework (based
on MHML). MHML is not limited to GridUFO and can be used with any other
similar framework.

• GridUFO supports black box optimization.
• GridUFO allows the algorithm and objective function to be developed by differ-

ent developers.
• GridUFO allows the user’s to add and share new metaheuristics based algo-

rithms.
• GridUFO allows the algorithm developer, objective function developer, client

and the resource owner to maintain their own set of policies. SLA service of
GridUFO uses these policies to finalize a contract between these entities. GridUFO
uses a multi-stage SLA to finalize a QoS contract.

5



Fig. 1. GridUFO: The core concept.

• GridUFO has two SAPs namely; GridPortal and/or Grid based Web Service. It
offers all the services through either of the SAPs.

• GridUFO emphasizes simplest possible interfaces for the users without com-
promising on the flexibility and functionality offered by the Grid. This can be
considered as the biggest challenge in design and implementation of GridUFO.

In the coming sections we will explain all the above mentioned features in detail.
In short, GridUFO addresses above mentioned shortcomings of the work done in
the past and provides solutions to these problems in consent with the true spirit of
Grids. Moreover, GridUFO provides extra features that were not present in any of
its past counterparts.

3 The GridUFO Infrastructure

In this section we will discuss the design & implementation of the proposed frame-
work. We will start from the core concept and then move towards the key technolo-
gies involved in realizing this concept.

3.1 The Core Concept of GridUFO

The core concept of GridUFO at an abstract level is shown in Fig. 1. The figure
depicts the unique way in which GridUFO handles the optimization algorithm and
objective function (two main modules of an optimization job). In a standard imple-
mentation of algorithms, these two modules are tightly linked with each other and
are inseparable. However, GridUFO is unique in the way it treats these two mod-
ules. GridUFO maintains separate databases for the algorithms and for the objec-

6



Fig. 2. Abstract level architecture of GridUFO (shows the most notable components of the
system).

tive functions as shown in the figure. The optimization algorithm and the objective
function can potentially be developed by different developers and get registered
with the framework. The client (user) is allowed to use any algorithm/objective
function pair. The contract of service between these two entities is defined by the
SLA service of GridUFO. GridUFO automatically executes both the algorithm and
the objective function in a distributed manner over the available resources. This
unified approach towards all kinds of metaheuristics based algorithms allows the
user to test an algorithm against many different objective functions; similarly, user
can try to solve an optimization problem by using different algorithms available in
the framework.

3.2 Architecture of GridUFO

Figure 2 shows the abstract level architecture of GridUFO. A brief description of
the main components of the framework is as follows:

(1) GridUFO’s Web Service: is a WSRF compliant web service running inside
a Globus Toolkit’s[12] Web service container. This Web service can be con-
sumed by any client application, independent of the architecture and the plat-
form that application is using. Web Services Description Language (WSDL)
file declares the interface of the GridUFO’s Web service to the client appli-
cation. GridUFO’s Web service offers different services to the user including
SLA service, and job submission service.

(2) GridUFO’s Web Portal: is a fully integrated 2nd generation Gridsphere[31]
portal with JSR 168 compliant GridUFO portlets installed. Each portlet corre-
sponds to one or more services, provided by the GridUFO’s Web service. The

7



portlets can be thought of as client applications consuming the GridUFO’s
Web service on user’s behalf.

(3) GridUFO’s Directory Index: is a PostgreSQL based database containing all
the algorithms and the objective functions registered with the framework. It
also maintains logs/history of the jobs submitted to the framework.

(4) GridUFO’s Job Manager: is responsible for maintaining a job waiting queue,
and running the jobs over the available computational resources. It uses Ninf-
G’s 2 InvokeServer[35] functionality and/or GridUFO’s Scheduler to schedule
the submitted job on the available resources.

(5) GridUFO’s Resources: refers to the computational resources only. For the
time being GridUFO’s resources can include any resource using Globus Toolkit
WS GRAM, Globus Toolkit Pre-WS GRAM, Condor[15], SSH, NAREGISS
[25], or UNICORE [6]. The user can access other kinds of Grid compatible re-
sources (e.g. remote data source or equipment using GridFTP) by employing
the GridUFO API.

Another important component is GridUFO’s scheduler. It is a simple job sched-
uler which can be replaced by any other well known scheduler or super scheduler
without any major modification in the system.

3.3 The Software Stack

The GridUFO builds on the existing Grid technologies and tools for performing
“data intensive” computing on distributed resources. It adds new tools for solving
optimization problems as Grid services. There are numerous applications of such
tools in both academia & industry. Figure 3 shows the software stack used to re-
alize the design of GridUFO. Bottom layer is “platform infrastructure layer”. It
comprises the Grid fabric including physical computational resources, networks,
data storage centers etc. Second layer is “low-level middleware layer”. Low-level
middleware provides a secure and transparent access to resources. GridUFO uses
tools like Globus Toolkit 4.0.x [12], scheduler in low-level middleware layer. Third
layer is “upper-level middleware layer”. The semantic gap between the “low-level
middleware layer ” and the “application layer ” makes it difficult to build use-
ful applications on top of low-level middleware directly. Therefore, “upper-level
middleware layer” is introduced in between which is often called as “user-level
middleware layer”. Some of the important tools used by GridUFO in this layer in-
clude Java Cog Kit[22] (abstraction on top of Globus), Vine Toolkit[2] (a toolkit
for using custom made Web services), Ninf-G [35], Condor [15] (scheduler) etc.
“Upper-level middleware layer” provides tools for application development and
the aggregation of distributed resources. The top most layer is “application layer”.
This layer can have various Grid based applications and/or PSEs that can make use

2 Ninf-G is a reference implementation of GridRPC [33]

8



Fig. 3. GridUFO’s layered structure.

of low-lying layers to solve a specific group of problems. GridSphere [31] (Grid
portal) used by GridUFO sits at this layer.

It is clear from the figure that, GridUFO provides two Service Access Points (SAPs)
to the user. It is deliberate to have GridUFO offering two different SAPs in the mid-
dleware and the application layers as shown in the figure. In Fig. 3, “User A” uses
the Web portal to access the framework, while “User B” uses the Web service as
SAP. Hence, GridUFO is understandable to both humans (via Portal), and machines
(via Web Service). This feature of GridUFO closely resembles the future incarna-
tion of Semantic Grid 3 . Theoretically speaking, GridUFO’s Web portal is just a
client service consuming the GridUFO’s Web service on behalf of the user.

3.4 SOA Compliance

We have used GridUFO’s WSRF compliant Web service to implement SOA, hence
enabling the users to employ platform independent standard Internet protocols to
access the services offered by GridUFO. GridUFO’s Web service provides the core
services that orchestrate all the components in the system. The four basic services
offered by the framework are:

(1) Register Service: allows the developer to register a new algorithm or an ob-
jective function with the framework. The user is required to submit the SLD
file along with the code (only of C language) of the algorithm and objective
function respectively. It is important to note that the register service is only
available through the Web portal and not through the Web service directly.

3 Semantic Grid is an extension of the current Grid in which information and services are
given well-defined meaning, understandable by both humans and machines, better enabling
computers and people to work in cooperation

9



(2) Retrieve Service: when queried, returns a list of all the algorithms and objec-
tive functions registered with the framework along with their SLDs.

(3) SLA Service: is a service of GridUFO that finalizes the service contract be-
tween four QoS-aware entities namely; algorithm, objective function, client,
and resources owners.

(4) Job Submit Service: allows the user to submit an optimization job to the frame-
work through a job submission file. Job submission file contains the name of
the algorithm, name of the objective function, and configuration of the job
[26]. The user has an option to wait for the job to finish, or get the results
emailed whenever the job is finished.

Note that both SLD and the job submission file are MHML files. As the name sug-
gests, SLD describes the specification about an algorithm or an objective function.
See Munawar et al. (2007)[26] for details on SLD.

3.5 SLA in GridUFO

Service Level Agreement (SLA) is that part of a service contract where the level
of service is formally defined. SLA is mostly used to refer to the contracted deliv-
ery time (of the service) or performance. Usually SLA is between two parties the
client and the application or resources. However, in the case of GridUFO there are
four QoS-aware components each having its own policy, namely the algorithm, the
objective function, the client submitting optimization job and the resource owners.
Hence, GridUFO uses a multi-stage SLA concept to finalize a contract that does
not violate any policies and is acceptable to the client.

Four service policies are involved in the final contract. They are defined by SLD
files of the Optimization algorithm, SLD file of the Objective Function, the Job sub-
mission file, and the resource policy file. As mentioned earlier, in case of GridUFO

Fig. 4. SLA Rectangle of GridUFO. Note: All the policies are defined in MHML format.

10



Table 2
SLA metrics for stage 1.

the algorithm and the objective functions can be written by different developers
and the user has an option to select any optimization algorithm/objective function
pair at the time of job submission. So, it is important to check compatibility of the
algorithm and the objective function before the job submission. Therefore the SLA
service of GridUFO is slightly more complicated than the usual, as it defines the
contract between four entities (as shown in Fig. 4). In this section we will discuss
the SLA strategy used by GridUFO. SLA is one of the most important features of
GridUFO not present in any of its predecessors.

The SLA is performed in two steps. Step 1 occurs at the application layer while
step 2 occurs at the middelware layer. In the first stage SLA is negotiated between
the algorithm and the objective function. If this stage fails, an error is returned
to the user without proceeding to the second stage. This is due to the fact that
incompatible algorithm/objective function pair will result in meaningless results.
Table 2 shows the SLA metrics used for deciding the compatibility of an algorithm
with an objective function during the stage 1 of SLA. This performance metrics
only tell us if the algorithm/objective function pair is compatible or not.

If the algorithm and objective function are compatible with each other the SLA
service moves on to the stage 2 of SLA. In stage 2 the service checks the avail-
able resources, their policies and the requirements of the applications. User defines
the policy in the job submission file. User can either opt to minimize the resource
use, to minimize the execution time or to minimize the cost (applicable for utility
computing). User can also set limits to the minimum number of resources used,
maximum number of resources used, maximum amount of time, maximum cost
etc. The framework estimates the service on the basis of available resources and
resource use policy and returns an error if the required resources are not available.
After that user can either change his preferences or wait till the resources get free.
If stage 2 is also passed the contract if finalized and job is forwarded to the job
manager.

11



3.6 Distributed Implementation (GridUFO’s Approach)

As compared to conventional parallel computing paradigms, Grid is very differ-
ent in its approach towards distributed implementation of applications/algorithms.
GridUFO employs GridMPI, GridRPC and GrifUFO’s job scheduler for distribut-
ing the job over the available computational resources. All these tools depend on
the low-level Grid middleware (Globus in the case of GridUFO) for their working
in one way or the other. GridMPI is not a very good choice to be used in a Grid
environment where the scheduling takes place dynamically. Moreover, GridMPI
is not fault tolerant and have a severe restriction of globally unique IP’s. There-
fore, we have restricted ourselves to the use of GridMPI within the cluster only
and GridRPC for inter cluster executions. This use of GridRPC and GridMPI for
parallelization is borrowed from Takemiya et al. (2006)[34] and is shown in Fig. 5.

Fig. 5. Unique hybrid GridRPC + GridMPI approach to parallelization.

3.6.1 Automatic Deployment

Two major problems in the area of modern distributed computing are debugging
and deployment of applications. Heterogeneity, of Grids makes automatic deploy-
ment very difficult. Therefore, most of the projects attempted in the past use manual
deployment of applications, i.e., the application must be deployed on all the servers
before the execution [34]. Manual deployment is in extensive use but it is not in
consent with the true concept of Grids. Even though, GridUFO does not provide
any feature for the debugging part, it provides a very elegant solution to solve the
problem of deployment. It provides a mechanism for automatic deployment of ap-
plications over heterogeneous resources without any user intervention.

GridUFO uses a unique approach for implementation of algorithms over distributed
environment. Whenever GridUFO receives a new job it reads the following MHML
files:

(1) Job submission file (written by the user submitting the job). Name of the al-
gorithm and objective function are given in this file.

(2) Algorithm SLD (written by algorithm developer).
(3) Objective Function SLD (written by objective function developer).

12



Fig. 6. Deployment over GridUFO.

(4) Algorithm Configurations (written by user submitting the job), can be left
blank if user wants the default configurations.

(5) Objective Function Configurations (written by user submitting the job), can
be left blank if user wants the default configurations.

For deployment purposes GridUFO uses the information given in the SLD files
for the algorithm and the objective function respectively. We give two options to
the user: (1) provide executables for different kind of environments, (2) provide
the code with compilation command on different environments. If the user selects
the second option in the SLD file, GridUFO automatically compiles the code on
the resource (depending on the environment and SLD) before execution. If user
selects the first option GridUFO deploys the appropriate executable depending on
the environment.

The job manager of GridUFO is responsible to deploy the application code before
running it. GridUFO strategy for deployment is shown in Fig. 6. A very light Ninf-
G client is initiated on a node. The Ninf-G client then instantiates the Ninf-G server
by using the GridUFO scheduler. This is done by using the InvokeServer function-
ality of Ninf-G. This method has some overheads but, it is very reliable, flexible,
and robust. It provides an automatic mechanism to recover from errors using the
check pointing mechanism provided by the scheduler.

3.6.2 GridUFO API

An existing algorithm can be converted into a GridUFO compatible algorithm by
using a simple API (GridUFO API) provided to the algorithm developer. Most im-
portant functions provided by this API are shown in Fig. 7. The API can be used to
make calls to the objective function; it also allows reading and parsing the MHML
based configuration files. Calls to the objective function must be made through the
API. User is also required to call the “init” and “destroy” function of the API at the
start and end of the algorithm respectively.

13



Fig. 7. GridUFO API.

Objective function is a C code which is treated as a black box by the system. User
is required to write a code for the objective function along with the Ninf-IDL[35]
interface file.

After implementing a GridUFO compatible algorithm or objective function the
user can submit it to the framework for registration using “Register Service”of the
framework. User must also submit the SLD files for the algorithm and the objective
function respectively.

3.7 User’s Perspective

From the user’s perspective GridUFO is a PSE meant for solving optimization prob-
lems over a Grid. There are four distinct types of GridUFO users:

(1) Administrators: can access the framework only through the Web portal (and
not through the Web service). Administrator manages the user accounts, cer-
tificates etc. Administrator can monitor all the jobs running in the framework
and interrupt them in the middle.

(2) Algorithm Developers: write new algorithm for the framework using the GridUFO
API. He also writes the SLD for the algorithm before submitting it to the
framework. Algorithm developer uses the Register Service offered by the
framework. This service is only accessible through the Web portal.

(3) Objective Function Developers: write GridUFO compatible objective func-
tion and add it to the framework along with the Ninf-IDL and the SLD file.
Objective function developer also uses the Register Service offered by the
framework to register the objective function. This service is only accessible
through the Web portal.

(4) Ordinary users: are the users who want to execute an optimization job over

14



the framework. Most of the GridUFO users will be of this type. They can use
the framework through the Web portal or by consuming the GridUFO’s Web
service directly. Figure 8 depicts the sequence of operations in the framework
for submission of a new job. Before submitting a job the user can acquire a list
of all the available algorithms and the objective functions by using the “Re-
trieve Service”, after that user can select any algorithm and objective function
and request a guidance from the “SLA Service”, after that the job is submitted
through the “Job Submit Service”. This service calls the SLA service again to
finalize the contract of service and then forwards the job to the job manager.

The user needs to register with the framework to acquire a valid user certificate
before starting to use the services. This can be done by using the Web portal.

3.8 GridUFO’s Web portal

GridUFO’s Web portal is one of the two SAPs available to the user. It provides
many other services beside the service to submit an optimization job. Main ser-
vices offered through the portal are: (1) Register a new user, (2) Administer the
jobs, (3) Register/Remove an algorithm, (4) Register/Remove an objective func-
tion, (5) Retrieve a list of available algorithms and objective functions, (6) Check
optimization algorithm-objective function compatibility, and (7) Submit optimiza-
tion job. GridUFO’s Web service only provides services number 5,6, and 7; all other
tasks should be done through the Web portal directly.

We have designed JSR 168 compliant custom portlets for each of the service pro-
vided by the portal. These portlets runs inside a GridSphere portlet container. The
portal allows the user to access GridUFO through any Web browser without in-

Fig. 8. Job submission scenario from user’s perspective.

15



stalling any extra client application. The screen shot of the GridUFO portal (job
submission portlet) is shown in Fig. 9.

Fig. 9. Screenshot of GridUFO Job Submission portlet. (Screenshot has been resized and
slightly modified to make it more appropriate for printing)

3.9 Algorithms for GridUFO

Theoretically speaking, a serial or a conventionally written parallel algorithm can
run on GridUFO without any modifications. However, there is a need for algorithms
exclusively designed for the Grid environments. Grid computing environment is
very different from its conventional counterparts. Grid has a hierarchical struc-
ture that supports different Grain sizes, at different levels. Bottom layer consists
of multicore resources like multicore CPUs, middle layer consists of medium grain
resources like clusters, while the top layer is coarse grained layer[27]. Therefore,
hierarchical algorithms like GE-HPGA[23] are more suitable for implementation
over Grid. Grid based algorithms: (1) should support interconnections of loosely
coupled distributed applications; (2) must be able to tolerate communication de-
lays up to 100’s of milliseconds; (3) must be fault tolerant; (4) should support late-
binding 4 ; (5) should support dynamic migration and; (6) must rely on external data
resources (both real-time data streams and archival data resources), whenever re-
quired. Due to the inherent nature of Metaheuristics algorithms if properly designed
can easily fullfil all these requirements.

4 In modern distributed computing the decision on a specific service instance is not made
until needed, this is called late-binding

16



4 MHML

All the communication between the user and the framework is done by using a pro-
posed language that we call MetaHeuristics Markup Language (MHML). Here, we
give only a brief introduction to MHML, for a complete description see Munawar et
al. (2007) [26]. Standardization of communication interfaces is often ignored by the
developers of similar projects attempted in the past (as shown in table 1). A stan-
dard communication interface however, can lead to a flexible design. It provides
interoperability, and reduces the chance of human error. GridUFO forces the devel-
oper to use a standard interface for the algorithm as well as the objective function.
The interface can be standardized using different methods; however, XML appears
to be the most promising language for such a purpose.

Fig. 10. Top level hierarchy of MHML with important tags.

MHML can be considered as an extension of the work presented in E. Alba et
al. (2003) [5]. E. Alba et al. (2003) fail to address some very important issues
regarding the configuration of an optimization algorithm. MHML provides many
advantages over E. Alba et al. (2003) and can be applied to a greater number of
cases. It provides advanced features like SLD, which is used to define the service
level provided by the respective entity. MHML has the capability to represent:

(1) Job Configuration or job submission file is a file containing the configuration
about the job submitted to the framework. Information in this file includes the
name of the algorithm, name of the objective function, and execution prefer-
ences.

(2) Algorithm or Objective Function SLD is submitted during the registration of
the algorithm or the objective function with the framework. SLD contains the
algorithm or objective function related information. For example, the compat-
ible OS, execution commands, interfaces, and other specifications.

(3) Algorithm or Objective Function Configuration are submitted along with the
job configuration file. They contain information regarding the configurations
for the algorithm and the objective function. For example a typical configu-
ration file for a Genetic Algorithm (GA) may contain the population size, the

17



Fig. 11. GridUFO compatible simple Genetic Algorithm (sGA).

mutation probability etc. These files can be left blank if the user wants to use
the default configurations.

(4) Client Information is a part of all the MHML files and it contains the informa-
tion about creator of that MHML file. This is mainly used for logging.

(5) Results/Errors is the only MHML file generated by the framework. The re-
sults/errors are compiled into MHML format before submission to the user.

MHML is presented to the user as an XML schema [26]. A top-level hierarchy of
MHML is shown in Fig. 10.

5 Use Case

GridUFO framework covers a wide spectrum of technologies and understanding the
role of each component in the system can be difficult. Therefore, in this section we
provide a step-by-step use case for running a simple Genetic Algorithm (sGA) over

Fig. 12. GridUFO compatible OneMax Objective Function and the required Ninf IDL file.

18



Fig. 13. Job Submission MHML file

GridUFO to solve one-max optimization problem. We will also discuss the regis-
tration process of the algorithm and the objective function with the framework. As
a first step, we need to convert the algorithm to a GridUFO compatible algorithm.
A C language implementation of sGA can easily be converted to GridUFO compat-
ible algorithm by using the GridUFO API (Fig. 7) as shown in Fig. 11. It is clear
from the figure that all the lower level details are kept hidden from the user. Sim-
ilarly, an objective function can be converted to a GridUFO compatible objective
function by providing a Ninf IDL file as shown in Fig. 12. The user is than re-
quired to write the MHML files defining the SLD of the objective function and the
algorithm. After this step the algorithm and the objective function must be added
to the framework using the Register service of GridUFO. Now any user registered
with the GridUFO framework can write a job submission MHML file and select
the above mentioned algorithm and objective function and run the job on the Grid.
This job submission MHML is shown in Fig. 13. The job submission file is then
submitted to the GridUFO where the SLA takes place. In case the SLA passes the
job is submitted to the scheduler for scheduling over the Grid. On the other hand in
case of any error the error is returned back to the user.

The registration of the optimization algorithm and the objective function may seem
to be a tedious job. However, the reality is that this is a one time job and once
registered the algorithm and the objective function can be used by anyone by simply
submitting a job submission MHML file.

19



6 Results & Discussion

Although the scope of Grid is very broad and is bound to expand in the near future
to incorporate many more advantages over conventional parallel environments, yet
distribution of an application over heterogeneous resources (to reduce execution
time) will remain one of the main advantages/styles of using Grids. In this sec-
tion we will give a theoretical analysis of the maximum achievable speedup for
the framework. We will also give some empirical results that demonstrate both the
utility and performance of GridUFO under various application workloads and sce-
narios.

6.1 Theoretical analysis of GridUFO

The speed-up S of a parallel algorithm over a parallel computing environment can
be defined as Ts/Tp. Where Ts and Tp denote the execution time when the algo-
rithm is executed in serial and parallel, respectively. It is not easy to formulate a
single equation for GridUFO, as it allows the user to run any kind of metahuris-
tic algorithm on a Grid. Therefore, we will give theoretical analysis of only one
algorithm, i.e., parallel Linkage Identification using Nonlinearity Check algorithm
(pLINC) by Munetomo et al. (2003) [30].

We assume that, λ(n) is the total time taken by the algorithm, γ(n) is the total time
taken for fitness evaluations, and n is the problem size. For pLINC algorithm λ(n)
can be divided into three parts, serial part λserial(n)(time taken by selection and
InterGA) and parallelizable parts λlinkage(n)(time taken for evaluating linkages),
λIntraGA(n) (time taken by IntraGA step). We can define the speed-up as:

S(n, p) =
λserial(n) + λlinkage + λIntraGA + γ(n)

λserial(n) +
λlinkage(n)+λIntraGA(n)+γ(n)

p
+ O(n, p)

(1)

where p is the total number of computational nodes, and O(n, p) is the paralleliza-
tion overhead. According to Amdahl’s law[7], equation for maximum speed-up
Smax(n, p) can be obtained by assuming O(n, p) = 0.

Now we will try to find the speed-up achieved by running the same algorithm on
multiple clusters as compared to a single cluster implementation. In this case the
single cluster implementation will become the Ts and the multiple cluster imple-
mentation will become Tp. For this purpose we will define ω as

ω(n) = λlinkage(n) + λIntraGA(n) + γ(n) (2)

20



Now we can compute Ts and Tp as follows:

• Single cluster implementation is suitable when λ(n) ≈ γ(n) OR λ(n) > γ(n).
It is recommended that a single cluster implementation is used when the fitness
evaluation is very light. We can compute Ts as:

Ts = λserial + m
(
α

ωc

s
+ Ointra

)
(3)

where s is the number of computational nodes in a cluster, α is the parallelism
factor of the cluster, Ointra gives the parallelism overhead within the cluster, m
is the total number of computational subgroups or total number of clusters in
multiple cluster implementation, and ωc is equal to ω/m.

• Multiple cluster implementation is suitable for the cases where γ(n) À λ(n).
For such cases GridUFO automatically runs the optimization algorithm on one
cluster and distributes the fitness evaluations among other real or virtual clusters.
We can ignore the time taken by the optimization algorithm (linkage identifica-
tion, mutation, crossover, and selection) λ(n) as it is much less than the total
time used for fitness evaluation γ(n) and Grid overheads O(n, p), but we will
keep it for comparison purposes with single cluster case. Therefore, using this
information Tp can be computed as:

Tp =
m∑

i=1

Oi
inter + λserial +

(
α

ωc

s
+ Ointra

)
(4)

where Ointer is the communication overhead between clusters, m is the total
number of clusters , s is the number of nodes in a single cluster, and α is the
parallelism factor of a cluster (it is a function of problem size and CPU specifi-
cations).

In Eqs. 3 and 4, we can define:

u =
(
α

ωc

s
+ Ointra

)
(5)

Therefore, and we will also neglect the term λserial, because usually it is too small
compared to other values. We can now write the equation for maximum speed-up
offered by GridUFO as:

Smax =
Tmax

s

Tmin
p

=
mumax

mOmin
inter + umin

(6)

where Tmax
s is the maximum total time to execute pLINC algorithm over a sin-

gle cluster, Tmin
p is the minimum total time to execute pLINC algorithm over m

clusters, Omin
inter is the minimum inter cluster communication overhead, umax is the

maximum total time taken by slowest cluster to execute the (1/m)th part of the al-
gorithm, and umin is the minimum total time taken by the fastest cluster to execute

21



Table 3
Empirical results obtained by running a dummy problem over GridUFO using a Simple
Real GA (time is shown in seconds).

(1/m)th part of the algorithm. For further details on Eq. 6, see Munawar et al.[27]
(2008).

6.2 Empirical Results

6.2.1 Grid Overheads

We have performed some experiments to get an idea of the overheads discussed in
Sect. 6.1. We have used a dummy optimization problem so that we can change all
the parameters according to our needs. The dummy optimization problem in use is a
simple one-max optimization problem. However, unlike a simple one-max problem
we can control the time (Tf ) taken by a single objective function call. We try to map
the results on Eq. 6 to find the overheads. As resources, GridUFO has 16 dedicated
IBM x3455 AMD R© Dual-Core Opteron model servers (with 2GB of memory) as
Globus based resources, and one Condor pool with 16 execute resources of similar
specifications. These resources can be arranged into logical topologies by mod-
ifying a topology configuration file. New resources can be added very easily by
modifying this configuration file.

Table 3 shows the empirical results obtained by running the dummy problem over
GridUFO using a “Simple Real GA” as the optimization algorithm. Ts is the time
taken by serial implementation of the code, Tp is the time taken by the parallel
implementation over GridUFO, Tf is the time taken by a single fitness value calcu-
lation. Ts/Tp is the Speedup achieved by implementation over GridUFO, m is total
number of clusters involved, uavg is the average time taken by a cluster to execute
(1/m)th part of the algorithm, and Ointer is the average communication overhead
per cluster. We have used 16 clusters for the implementation and each cluster con-
sists of only one IBM x3455 AMD R© Dual-Core Opteron model servers (with 2GB
of memory) Globus based resource. Each cluster has only one computational node,
as we only want to observe the inter cluster overheads (Ointer). Value of m is 16
throughout the experiments. Moreover, population size is 90 and maximum genera-
tions are set to 10. Call to the fitness function was made 990 times by the algorithm.
Each result is an average of 10 independent runs with similar conditions and pa-

22



rameters. Time for initialization and destruction of GridUFO API is also included;
however, time for scheduling the job is not considered as it can vary in wide ranges.

It is clear from the table that the overheads due to the implementation over a Grid
are quite significant for smaller problems. However, we can obtain considerable
speedups for the problems of large sizes. We increase the execution time of sin-
gle objective function call to simulate a larger or a harder problem. Therefore, in
terms of speedup GridUFO and other such environments are more suitable for the
problems of relatively large sizes.

7 Conclusions & Future Work

In this paper, we demonstrated a unified approach for constructing an optimiza-
tion PSE using an OGSA based Grid middleware. This SOA compliant framework
works in consent with the true spirit of Grids and offers all its functionality as
WSRF services to the users. GridUFO eradicates the short comings of the earlier
projects in the area and also provide some extra features. Emphasis has been given
to the ease of use without compromising on the flexibility and functionality pro-
vided by the Grid. Using GridUFO a user can either solve an optimization problem
using the optimization algorithms available in the framework, or add a new algo-
rithm to the framework and share with other GridUFO users. Similarly the user
can either use an existing objective function (optimization problem), or add a new
one and share with other users. This strategy allows the user to use any algorithm to
solve the optimization problem at hand, or the user is allowed to use same algorithm
to solve different optimization problems. User is not required to install any software
as the framework is accessible through Web portal (can be used through any mod-
ern Web browser). Moreover, the Web service provided with the framework can be
consumed directly from within the client application independent of the program-
ming language and environment used by the client application. The work presented
in this paper can act as a foundation work for other similar projects.

In our experience the learning curve of Grid is very gradual, and therefore, many
application developers are either reluctant to use Grid or waste a lot of time in
learning the basics of Grid before starting with actual implementations. There is a
dire need for more Grid based PSEs similar to GridUFO, to attract more and more
application developers to this computing paradigm of the future.

In future areas of work can be improvement of QoS mechanism in order to improve
the framework. Adding an economically feasible utility computing model to the
system can be a good contribution. Introduction of advanced resource reservation
is also a hot topic for research. Improvements can be made to the Web portal in
order to make it more user friendly. We plan to make the next version of GridUFO
API that will allow the user to use two or more algorithms in a hybrid fashion over

23



distributed computing environments like Grid.

8 Acknowledgments

We would like to acknowledge a number of people who have helped us with the
problems at different parts of this project. We would like to thank Hidemoto Nakada,
Masato Asou, Yoshio Tanaka for their help, regarding the use of Ninf-G. We would
also like to thank Hiroshi Takemiya for sharing his knowledge about the Grid mid-
dlewares and other tools. We thank Michael Russell and Jason Novotny for their
help on resolving GridSphere related problems. We also thank the anonymous users
who replied to our queries on the mailing lists.

References

[1] Optimization service provider, http://www.osp.org/.

[2] The vine toolkit project, http://gforge.man.poznan.pl/gf/project/vine/.

[3] D. Abramson, A. Lewis, T. Peachy, Nimrod/o: A tool for automatic design
optimization, in: The 4th International Conference on Algorithms & Architectures for
Parallel Processing (ICA3PP 2000), Hong Kong, 2000.

[4] E. Alba, B. Dorronsoro, Solving the vehicle routing problem by using cellular genetic
algorithms, in: EvoCOP, 2004.

[5] E. Alba, J. Garcia-Nieto, A. Nebro, On the configuration of optimization algorithms
by using xml files, Tech. rep., The TRACER Project, http://tracer.lcc.uma.es/ (March
2003).

[6] J. Almond, D. Snelling, Unicore: Uniform access to supercomputing as an element of
electronic commerce, in: Future Generation Computer Systems, 1999.

[7] G. Amdahl, M. Gene, Validity of the single processor approach to achieving large
scale computing capabilities (2000) 79–81.

[8] S. Cox, L. Chen, S. Campobasso, M. Duta, M. Eres, M. Giles, C. Goble, Z. Jiao,
A. Keane, G. Pound, A. Roberts, N. Shadbolt, F. Tao, J. Wason, F. Xu, Grid enabled
optimisation and design search (geodise), in: UK e-Science All Hands Meeting,
Sheffield, UK, 2002.

[9] J. Czyzyk, M. Mesnier, J. More, The neos server, IEEE Journal on Computational
Science and Engineering 5 (1998) 68–75.

[10] E. Dolan, The neos server 4.0 administrative guide, Technical Memorandum
ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National
Laboratory (May 2001).

24



[11] I. Foster, Service-oriented science: scaling the application and impact of eresearch, in:
First International Conference on e-Science and Grid Computing, 2005.

[12] I. Foster, Globus toolkit version 4: Software for service-oriented systems, in: IFIP
International Conference on Network and Parallel Computing, Springer-Verlag LNCS
3779, 2006.

[13] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure,
Morgan-Kaufman, 1999.

[14] G. Fox, M. S. Aktas, G. Aydin, H. Gadgil, S. Pallickara, E. Pierce, A. Sayar,
Algorithms and the grid, in: Computing and Visualization in Science (CVS), 2005.

[15] J. Frey, T. Tannenbaum, I. Foster, M. Livny, S. Tuecke, Condor-G: A computation
management agent for multi-institutional grids, in: Proceedings of the Tenth IEEE
Symposium on High Performance Distributed Computing (HPDC), San Francisco,
California, 2001.

[16] W. Gropp, J. Mor’e, Optimization environments and the neos server, in: M. D.
Buhmann, A. Iserles (eds.), Approximation Theory and Optimization, Cambridge
University Press, 1997.

[17] J. Herrera, E. Huedo, R. Montero, I. Llorente, A grid-oriented genetic algorithm, in:
Advances in Grid Computing - EGC 2005, 2005.

[18] H. Imade, R. Morishita, I. Ono, N. Ono, M. Okamoto, A grid-oriented genetic
algorithm for estimating genetic networks by s-systems, SICE 2003 Annual
Conference 3 (4-6) (2003) 2750–2755.

[19] H. Imade, R. Morishita, I. Ono, N. Ono, M. Okamoto, A grid-oriented genetic
algorithm framework for bioinformatics, New Generation Computing 22 (2) (2004)
177–186.

[20] Y. Ishikawa, Y. Kaneo, M. Edamoto, F. Okazaki, H. Koie, R. Takano, T. Kudoh,
Y. Kodama, Overview of the gridmpi version 1.0, in: Summer United Workshops on
Parallel, Distributed and Cooperative Processing, SWoPP05, 2005.

[21] S. Larson, C. Snow, V. Pande, Folding@Home and Genome@Home: Using distributed
computing to tackle previously intractable problems in computational biology, R.
Grant, ed, Horizon Press, 2003.

[22] G. Laszewski, The Java CoG Kit User Manual, version 4.0, Mcs technical
memorandum, Argonne National Laboratory, Mathematics and Computer Science
Division, 9700 S. Cass Ave, Argonne, IL 60439, U.S.A. (March 2004).

[23] D. Lim, Y. Ong, Y. Jin, B. Sendhoff, B. Lee, Efficient hierarchical parallel genetic
algorithms using grid computing, Future Generation Computer Systems 23 (4) (2007)
658–670.

[24] F. Lobo, G. Harik, Extended compact genetic algorithm in c, Tech. Rep. IlliGAL
Report No. 99016, Urbana, IL: University of Illinois at Urbana-Champaign. (1999).

25



[25] K. Miura, Overview of japanese science grid project: Naregi, in: Progress in
Informatics, 2006.

[26] A. Munawar, M. Wahib, M. Munetomo, K. Akama, Standardization of interfaces
for meta-heuristics based problem solving framework over grid environment, in:
Proccedings of HPCAsia 2007, Seoul, South Korea, 2007.

[27] A. Munawar, M. Wahib, M. Munetomo, K. Akama, Linkage in Evolutionary
Computation (to appear), chap. Parallel GEAs with Linkage Analysis over Grid,
Springer, 2008.

[28] M. Munetomo, Realizing virtual innovative laboratory with robust evolutionary
algorithms over the grid computing system, in: Proceedings of the 6th International
Conference on Recent Advance in Soft Computing, 2006.

[29] M. Munetomo, D. Goldberg, Identifying linkage by nonlinearity check, Tech. Rep.
IlliGAL Report No. 98012, Urbana, IL: University of Illinois at Urbana-Champaign.
(1998).

[30] M. Munetomo, N. Murao, K. Akama, A parallel genetic algorithm based on linkage
identification, in: Genetic and Evolutionary Computation GECCO 2003, Springer,
2003.

[31] J. Novotny, M. Russell, O. Wehrens, Gridsphere: a portal framework for building
collaborations, Concurrency and Computation: Practice and Experience 16 (5) (2004)
503–513.

[32] M. Pelikan, D. E. Goldberg, E. Cantú-Paz, BOA: The Bayesian optimization
algorithm, in: Proceedings of the Genetic and Evolutionary Computation Conference
GECCO-99, vol. I, Morgan Kaufmann Publishers, San Fransisco, CA, Orlando, FL,
1999.

[33] K. Symour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, H. Casanova, Overview of
gridrpc: A remote procedure call api for grid computing, Proc. 3rd Int. Workshop Grid
Computing (2002) 274–278.

[34] H. Takemiya, Y. Tanaka, S. Sekiguchi, S. Ogata, R. Kalia, A. Nakano, P. Vashishta,
Sustainable adaptive grid supercomputing: multiscale simulation of semiconductor
processing across the pacific, in: SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, ACM, New York, NY, USA, 2006.

[35] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, S. Matsuoka, Ninf-g: A reference
implementation of rpc-based programming middleware for grid computing, Journal of
Grid Computing 1 (1) (2003) 41–51.

[36] D. H. Wolpert, W. G. Macready, No free lunch theorems for search, Tech. Rep. SFI-
TR-95-02-010, Santa Fe, NM (1995).

26


