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involving diffusion in the solid  
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Abstract  
A quantitative phase-field model for two-phase solidification process is developed based on 
the antitrapping current approach with the free energy functional formulated to suppress the 
formation of an extra phase at the interface. This model appropriately recovers the free 
boundary problem for the motion of interface in the thin-interface limit and, importantly, it is 
applicable to the solidification process in binary alloy systems with arbitrary values of the 
solid diffusivities and interfacial energies. The performance of the present model is 
investigated for the peritectic reaction process in carbon steel. The present model exhibits 
excellent convergence behavior with respect to the interface thickness.  
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1. Introduction  

The description of microstructures during multi-phase solidifications is one of the 

most important issues in materials science. The phase-field model has been emerging as a 

powerful model to describe a variety of microstructural evolution processes [1-3]. The diffuse 

interface concept in this model allows us to describe the complex morphology of the 

microstructure without explicitly tracking the position of the interface. Of particular relevance 

to the present study is the development of multi-phase-field models for multi-phase 

solidification processes [3-9].  

The motion of solid-liquid interface has been an issue tackled in the framework of 

free boundary problems (FBP). Basically, the solution of the phase-field simulation must be 

consistent with the FBP. However, the conventional models involve several anomalous 

interface effects [10]. Consequently, the outcome is not consistent with the FBP and is 

dependent on the interface thickness, W. A seminal scheme was devised to lift this problem 

based on the thin-interface limit [11,12]. For the single phase solidification in binary alloy 

systems, the FBP can be recovered with a finite value of W by introducing an additional solute 

current, called the antitrapping current in the diffusion equation [12,13]. This model is called 

the quantitative phase-field model by which one can obtain W-independent and quantitatively 

accurate result under a given set of physical parameters. This quantitative phase-field model 

was applied to the analyses of several solidification phenomena [14-18] and it was recently 
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extended to the description for the multi-component alloy [19]. Importantly, a quantitative 

phase-field model for two-phase solidifications was developed on the basis of the antitrapping 

current scheme [20]. However, there is a limitation in the application of these models. These 

models are applicable only to the alloy system without the solid diffusion (one-sided model). 

Hence, one cannot reproduce the equilibrium solidification during extremely slow cooling 

process and, instead, one inevitably describes the Scheil-type solidification process. 

Furthermore, it is not possible to appropriately deal with the peritectic reaction and 

transformation which accompanies the motion of the solid-solid interface controlled by the 

solid diffusion.  

Based on an asymptotic analysis, the present authors recently extended the 

antitrapping current approach to the single phase solidification process involving diffusion in 

the solid, viz., the case for an arbitrary value of the solid diffusivity [21]. The computations 

for the dendrite growth demonstrated fairly reasonable convergence behavior of the outcomes 

such as the dendrite tip velocity, dendrite tip radius and concentration profile with respect to 

W. In the present study, we develop a model for two-phase solidification processes based on 

this antitrapping current approach. As mentioned above, the quantitative phase-field modeling 

was previously carried out for the two-phase solidification process [20]. Two notable 

improvements were achieved in that modeling; one is the elimination of a problem associated 

with an extra phase in the interface, which is involved in the conventional models as detailed 
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later, and the other is the correction of the solute concentration field by introducing the 

antitrapping current. The former improvement associated with the phase field profile is 

indispensable for the antitrapping current to work successfully in the latter improvement. As 

mentioned above, however, this model cannot handle the diffusion in the solid. In addition, 

this model is actually validated only for the system in which all two-phase interfaces possess 

the same interfacial energy. These are the stringent limitations in the application.  

In this study, we develop the quantitative phase-field model for the two-phase 

solidification in binary alloy systems with arbitrary values of the solid diffusivities and 

interfacial energies. For this, the antitrapping current approach of Ref. [21] is extended to the 

case for the two-phase solidification. Also, an appropriate free energy functional is devised to 

remove the problem related to the extra phase at the interface. We demonstrate the 

performance of the present model, focusing on the peritectic reaction in carbon steel.  

 

2. Modeling  

2.1 Free energy functional   

In a binary alloy system, three phases exist during the eutectic or peritectic reaction, 

liquid and two solid phases. We employ three phase fields, pi, indicating the existence of i 

phase. The subscript i with i=1, 2 and 3 specifies the type of the phase. For generality in the 

discussion, also, we use indices i, j and k to distinguish the three phases. pi is allowed to vary 
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from 0 to 1 and the following constraint is subjected to these phase fields,  

1=∑
i

ip .   (1)  

Then, for instance, the existence of i phase is represented by the relation (pi, pj, pk)=(1,0,0). 

The j-k interface is characterized by the spatial profile of the phase fields in which pj and pk 

smoothly vary from 1 to 0 across the interface, whereas pi is always zero. Provided that this 

spatial profile is realized, the conventional multi-phase-field model is formulated to become 

identical to the model for the single phase solidification, which is the essential strategy of the 

modeling. As discussed in the early studies [20, 22], however, the conventional models 

involve the unexpected formation of an extra phase in the interface, More specifically, in 

practice, pi is not zero but takes a finite value inside the j-k interface region. In the description 

of the motion of two-phase interface, hence, the multi-phase-field model is not consistent with 

the model for the single-phase solidification. As shown later, moreover, the antitrapping 

current approach does not work adequately when the unexpected extra phase exists, since the 

antitrapping current term depends on the spatial profile of the phase fields. This problem 

makes it impossible to perform quantitatively (and sometimes even qualitatively) accurate 

simulation for the multi-phase solidifications.  

In order to eliminate the extra phase, viz., in order for pi to be zero across the j-k 

interface, one must satisfy the condition, 0lim
0

=∂∂
→

tpipi
, where t is the time. Within the 

phase-field model, the time evolution of the phase field is described based on the free energy 
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functional of the system, F, as written by the following time-dependent Ginzburg-Landau 

equation [20],  

{ }( )
1=∑

−=
∂
∂

jpi
j

i

p
FpM

t
p

δ
δ ,   (2)  

where M({pj}) is the mobility which depends on the phase fields. The functional derivative of 

F on the right-hand side of eq.(2) is evaluated with imposing the constraint of eq.(1). Using a 

Lagrange multiplier, the variational derivative in eq.(2) is expressed as, 

∑−=
∑ = j jipi p

F
p
F

p
F

j
δ
δ

δ
δ

δ
δ

3
1

1

,   (3)  

where the functional derivatives on the right-hand side are taken as if all the phase fields were 

independent. Therefore, the condition for the elimination of the extra phase can be rewritten 

as, 

0
1

=
∑ =jpip

F
δ
δ   at  pi=0 i∀ .   (4)  

Specifically, the free energy functional F should be formulated to satisfy the requirement that 

the only steady state solution of pi profile across the j-k interface is pi=0. Also, there is another 

requirement that pi=1 is the stable solution in the bulk state of any phase i. Furthermore, the 

stability of these solutions against a fluctuation in the phase filed profiles should be 

guaranteed by the condition that the second derivative of free energy is always positive at 

pi=0 and 1, as detailed in Ref. [20].  

The condition given by eq.(4) was not taken into account in the conventional 



 6

multi-phase-field modeling. The so-called double obstacle potential with a higher order term 

can suppress the formation of the extra phase [22]. However, such a model is not pertinently 

mapped onto the thin-interface limit model. In the pioneering study on the quantitative 

phase-field modeling for two-phase solidifications [20], the existence of the extra phase was 

successfully suppressed by modifying the form of the free energy functional. However, the 

model presented in Ref. [22] is validated only for the system with the equal interfacial 

energies. Although a scheme for the description of unequal interfacial energies was proposed 

[20], it necessitates a revision in the available thin-interface limit analysis. No multi-phase- 

field model is currently developed for the system with unequal interfacial energies so as to 

ensure the consistency with the available quantitative phase-field model for the single phase 

solidification. In this section, we demonstrate the quantitative phase-field model, which is free 

from the problem with the extra phase in the interface and is consistent with the thin-interface 

limit model, for the two-phase solidification in the binary alloy system with arbitrary values 

of the solid diffusivities and interfacial energies. The crystalline anisotropy of the interfacial 

energy is not taken into account. However, the introduction of the anisotropy does not alter 

the essential parts in the modeling.  

In this study, we propose the following form of the Ginzburg-Landau-type free 

energy functional,  

( ) { }( ) ( ) { }( ) ( )∫ ∑∑∑ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
−+∇= dVTcfpgppppF

i
iiii

i
iii

i
i ,1

4
0222

2

ωε .   (5)  
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where V is the unit volume. The details of each term in the integrand of eq.(5) are discussed 

below.  

The first term in the integrand of eq.(5) represents the gradient energy term and ε is 

the gradient energy coefficient. It is noted that the gradient energy coefficient does not depend 

on the type of the two-phase interface. This is in contrast to the fact that different gradient 

energy coefficients are used for the different interfaces as expressed by εij in the conventional 

models [4-9]. The form in eq.(5) is required to satisfy the condition given by eq. (4) [20]. The 

unequal interfacial energies are considered in the second term in eq.(5) as detailed below.  

The second term in eq.(5), denoted here as fpot, represents the potential barrier 

between the bulk phases, which assures that the solidification is the first order transition. The 

term in the square bracket represents the sum of double well potentials, pi
2(1−pi)2. ω({pi}) 

determines the potential height. In the conventional models [4-9], different constant values are 

assigned to the potential height for each interface, as expressed by ωij, to describe the unequal 

interfacial energies. However, the condition, eq.(4), cannot be satisfied in such an approach. If 

ω is taken to be a constant in eq.(5), our free energy model is essentially equivalent to the one 

proposed in the early work [20] for the case of the equal interfacial energies. In their work 

[20], in order to handle the unequal interfacial energies, the higher order term in pi is added to 

the double well potential. However, such a model is not exactly reduced to the available 

thin-interface limit model. To deal with the unequal interface energies, in the present study, 
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we introduce the pi dependence of ω. In order to hold the condition given by eq. (4), ω({pi}) 

has to satisfy the following relation,  

{ }( ) 0=∂∂ ji ppω  at kjpk ,1,0 ∀= .   (6)  

The unequal interfacial energies are introduced by holding the following relation, 

{ }( ) ijip ωω 2
1=  at 0=kp ,   (7)  

where ωij denotes the potential height between i and j phases. In this study, we define ω({pi}) 

as follows,  

{ }( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

>

−

>

n
kjitri

iji
jiij

iji
jii pppppppp ωωω

,

22
1

,

222 ,   (8)  

with n>1. Here, ωtri is a constant related to the potential height for the mixture state of three 

phases. It is trivial to check that ω({pi}) in eq.(8) satisfies eqs.(6) and (7). Note that fpot is 

exactly reduced to the corresponding term in the available thin-interface limit model for the 

single phase solidification [21] at pk=0. The function ω({pi}) exhibits a discontinuity at pk=1 

as { }( )ip
p

k
ω

1
lim

→
= (1/2)(ωjkpj

2+ωkipi
2)/(pj

2+pi
2). However, the discontinuity vanishes in fpot and 

there is no problem in the numerical simulations. In eq.(8), the term multiplied by ωtri plays 

an auxiliary role in raising the potential height for the mixture state of three phases, of which 

the contribution is determined by ωtri and n. Our preliminary calculations showed that this 

term is quite useful in suppressing the formation of the extra phase when the difference 

between the interfacial energies is large. It should be stressed that the unequal interfacial 

energies are considered in fpot which satisfies the condition of eq.(4) and keeps the consistency 
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with the available quantitative phase-field model.   

The third term in the integrand of eq.(5) represents the contribution of the free 

energies of the bulk phases, yielding the driving force for the solidification. fi
0(ci,T) is the free 

energy density of i phase given as a function of the concentration of i phase, ci, and 

temperature T. gi({pi}) is the interpolating function and we adopt the following form devised 

in the early work [20], 

{ }( ) ( ) ( )[ ] ( ){ }591115
4

22
2

−+−−+−= iijkii
i

ii ppppppppg ,   (9)  

This function gi({pi}) reduces to the polynomial ( )ipg~ =pi
3(10-15pi+6pi

2) on i-j and i-k 

interfaces when the normalization condition eq.(1) is imposed [20].  

As mentioned above, the free energy functional proposed in this study is formulated 

to remove the extra phase in the interface and this model can deal with the unequal interfacial 

energies. It should be noticed that when pk=0, this free energy functional reads  

( ) ( ) ( ) ( ) ( )( ) ( )∫ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++−+∇= dVTcfpgTcfpgpppF jjiiiiiiiji ,~1,~1

2
00222

2

ωε .   (10)  

This is exactly the same as the free energy functional proposed in the quantitative phase-field 

modeling for the single phase solidification [21].  

 

2.2. Time evolution equations  

As mentioned in the previous section, the time evolution of phase fields is described 

by the time-dependent Ginzburg-Landau equation (2). In the free energy functional given in 
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eq.(5), three concentration fields, {ci}, are used as the variables. As in the conventional 

multi-phase-field models [6-9], these concentrations obey the mixture rule, c=Σpici. Also, 

following Kim, Kim, Suzuki’s (KKS) model [23], the condition for the equal chemical 

potential, ∂fi/∂ci =∂fj/∂cj= ∂fk/∂ck=μc, is introduced to make the steady state profiles of the 

phase fields independent of the concentration fields in the interface region. Then, the 

functional derivative of F on the right-hand side of eq.(3) is written as, 

{ }( ) ( )( )iiiii
i

ppppp
p
F 2112

2
1 22 −−+∇−= ωε

δ
δ  

{ }( ) ( ) ( )∑∑ −
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

+
j

jcj
i

j

j
jj

i

i cf
p
g

pp
p
p μω 22 1 .  (11)  

The last term on the right-hand side of eq.(11) represents the thermodynamic driving force for 

the solidification. In dilute solution limit, the driving force term can be approximated as, 

( )j
k

ej
j

ekmjcj cccRTvcf −+−≈− −
,,

1μ ,   (12)  

where vm is the molar volume, R is the gas constant and k
ejc ,  is the concentration in j phase in 

equilibrium with k phase. In the expression of eq.(12), k phase corresponds to a reference 

phase. When j=k, fk−μcck is given as −vm
-1RTck. In our numerical computation, the reference 

phase was chosen to be the liquid phase.  

The time evolution equation (2) is different from the one in the conventional model 

in the light of the fact that a different value is assigned to the mobility for different two-phase 

interface in the conventional model. In eq.(2), we introduced the dependence of the mobility 

on the phase field in order to handle the different mobility for the different interface without 



 11

the formation of the extra phase [20]. M({pj}) is defined in this study as follows, 

{ }( )
1

,,
2

−

>>
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

iji
ji

iji
jiijj ppppMpM ,   (13)  

where Mij is the mobility for i-j interface. When pk=0, M({pi}) is given as M({pi})=2Mij. This 

function contains the discontinuity at pk=1. However, it does not cause any problem in 

practice.  

The time evolution of the concentration field, c, is described by the following 

diffusion equation,  

( )atct
c JJ +−∇=

∂
∂ ,   (14)  

where Jc is the solute flux and Jat is the antitrapping current. Jc is given as [6], 

{ }( )∑ ∇−=
i

iiic cppDJ ,   (15)  

where D({pi}) is the diffusion coefficient of pi dependent. In this study, we use the relation 

ci=kijcj with the partition coefficient kij=ci/cj, since our focus is placed on the dilute solid 

solution. To keep the consistency with the single phase solidification model [21], in this study, 

we define D({pi}) as follows,  

{ }( )
1−

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
= ∑∑

i
iij

i
iijii pkpkDpD ,   (16)  

with a reference phase j. Di is the diffusion coefficient of solute element in i phase. Then, the 

solute flux is expressed by the relatively simple form,  

∑ ∇−=
i

iiic cpDJ .   (17)  
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An assumption should be necessarily introduced in the extension of the antitrapping 

current approach to the two-phase solidification process, since no thin-interface limit analysis 

is available for the mixture state of three phases. We tested several possibilities for this 

extension and found that the approach proposed in Ref. [20] results in the best convergence 

behavior. Then, in this study, the antitrapping current for an arbitrary value of the solid 

diffusivity [21] is extended as follows,  

( ) ( )∑
> ∂

∂
−⋅−=

iji
i

i
ij

ij
ijjiat t

pcca
,

2 nnnJ
ω
ε ,   (18)  

where ni denotes the unit vector normal to the contour surface of pi phase field as given by 

iii pp ∇∇−=n . aij is the coefficient of which the form depends on the type of interpolating 

functions used in the model. In the present model, the coefficient aij is given by [21],  

[ ] ( )ijijiijjij DkDa χΨ−=
22

1 ,   (19)  

with  

( ) [ ] ijjiijijij DDk χχ −−=Ψ 1
2
11 ,   (20)   

where χij is a quantity associated with the solute concentration field at the i-j interface. As 

discussed in Ref. [21], in this approach, χij is regarded as a parameter controlling the 

convergence behavior of the output with respect to the interface thickness, W.  

The most important fact in the present model is that the equations (2) and (14) reduce 

to the following equations at pk=0,   



 13

( )( ) ( ) ( )( )cjijiiiiiiiji
i

ij

ccffpppppp
t
p

M
μωε −−−−−−−−∇=

∂
∂ 2222 13021121 ,  (21)  
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t
c

ω
ε2 .   (22)  

These equations are exactly identical to those in the quantitative phase-field model developed 

in Ref. [21]. It should not be necessary to repeat here the asymptotic analysis of these 

equations. It was demonstrated in Ref. [21] that the model given by eqs. (21) and (22) can be 

mapped onto the FBP in the thin-interface limit and it allows the quantitatively accurate 

simulation with a finite value of W. Compared with the earlier work in Ref. [20], the present 

model is advantageous in terms of the fact that the solid diffusions and the unequal interfacial 

energies are taken into account.  

 

2.3. Relationships between parameters   

The relationships between the phenomenological parameters in the phase-field model 

and the measurable quantities are discussed. For a planar i-j interface, the steady state profile 

of pi phase field is analytically expressed by solving eq.(21) as follows,  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ij
i W

xp
2

tanh1
2
1 ,   (23)  

where Wij=ε/(ωij)1/2 corresponds to the thickness of i-j interface. Also, the i-j interfacial energy, 

σij, is represented by  

ijij ωεσ
23

1
= .   (24)  
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It is noted that ε does not depend on the type of interface and, hence, Wij should be chosen so 

that the product σijWij is independent of the type of interface. Then, ε and ωij are uniquely 

determined under a given set of σij.  

According to the thin-interface limit analysis, the mobility Mij is given, under the 

condition of vanishing kinetic coefficient, as follows [21],  

( )( ) ( )
1

,,
,

2
2 1

4
15

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Ψ−−

⋅
⋅

= ijij
j
ei

i
ejij

m

ijm

jij
ij cck

v
RT

D
aM χ
ω

ε ,   (25)  

where Tm,ij is the transition temperature between i and j phases of pure element and a2 is the 

constant depending on the forms of interpolating functions used in this model and it is given 

in the present model as a2=0.6276···.  

 

3. Computational details  

We carried out the simulation for the peritectic reaction of carbon steel, 

liquid(L)+ferrite(δ)→austenite(γ), based on the present model to check the convergence 

behavior of the output with respect to the interface thickness, Wij. For convenience, in the 

following discussion, we use the notation γ, δ and L for the index in variable such as pL, σγδ 

instead of i=1, 2 and 3.  

Equations (2) and (14) were discretized based on standard second-order finite 

difference formula with the squire grid spacing, Δx. We performed two-dimensional 

simulations for the isothermal peritectic reaction process, focusing on the growth of plate-like 
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γ phase. The system of our focus is schematically illustrated in Fig. 1. The system has a 

square shape with zero flux boundary condition along all the boundaries. The edge lengths are 

denoted by Wx and Wy. There is a flat δ-L interface. The initial concentrations of δ and L 

phases are given as L
ec ,δ  and δ

eLc , , respectively, at the holding temperature. In the initial state, 

there is a semicircular γ phase with a diameter, di, and a concentration, cγ
0.  

The γ phase grows along the δ-L interface (y direction). The velocity of the front 

edge of the growing γ phase, viz., the peritectic reaction rate was calculated at several degrees 

of undercooling from the peritectic reaction temperature, ΔT, until the steady state was 

realized. Our preliminary simulations showed that the velocity takes almost a constant value 

typically after t=2.0×10-4s for ΔT=5 K and t=1.0×10-4s for ΔT=10 K. The time step was set to 

be Δt=5×10-11−2×10-10s, depending on Δx and ΔT. It was observed in our preliminary 

simulations that small system size incurs a size effect that the steady state velocity 

appreciably depends on the values of Wx and Wy. The values of Wx and Wy were accordingly 

chosen in each condition to be large enough to avoid such a size effect. On the other hand, the 

values of cγ
0 and di were found to be irrelevant to the steady state velocity. In all the 

calculations presented here, we employed 0
γc = L

ec ,γ  and di=40×10-8 m. The interface 

thicknesses were set to be Wγδ=2.0×Δx, WδL=σγδWγδ/σδL and WγL=σγδWγδ/σγL. ωtri in eq.(8) 

was given as ωtri=ωδL+ ωγL+ ωγδ, unless otherwise stated. The parameter χij was set to be χij=0 

for all the interfaces. The computation with χij=0 yields quite reasonable convergence 
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behavior for the dendrite growth [21] and this is also the case for the peritectic reaction, as 

demonstrated in the next section. The other input parameters employed in this study are listed 

in Table 1.  

 

4. Results and discussion  

As described in the introduction, the conventional models involve the anomalous 

interface effects and the magnitude of these effects scales with the interface thickness. Shown 

in Fig. 2 is the dependence of the growing velocity of γ phase (peritectic reaction rate), Vp, on 

the interface thickness Wγδ. The degree of undercooling is ΔT=10 K. In these calculations, the 

thicknesses of the δ-L and γ-L interfaces were also varied according to the relations 

WδL=σγδWγδ/σδL and WγL=σγδWγδ/σγL as discussed in the previous section. The values of ε, ωij, 

ωtri and Mij were varied accordingly. The system size was chosen to be Wx≥4×10-6 m and Wy≥

2×10-6 m. Three types of square symbols represent the results calculated with the assumption 

of the equal interfacial energies, σδL= σγL= σγδ=2.04 J·m-2. The full square and half-open 

square symbols indicate the results for n=1.4 and n=2.0, respectively. The reason for the 

choice of the special value, n=1.4, will be explained later. The open square symbols represent 

the results for n=0.0 and ωtri=0.0. In this case, the model is actually equivalent to the model of 

Ref. [20], except that the solid diffusions are taken into account in the present model. One can 

see that all the results merge into almost the single curve as the interface thickness decreases. 
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However, a well converged value seems to be not achieved even for the smallest value of Wγδ 

tested here. Importantly the convergence behavior depends on the value of n. The simulation 

with n=1.4 yields the most reasonable convergence behavior. It is noticed that the extra phase 

does not form in each interface region in the simulation for the equal interfacial energies. The 

difference in the convergence behavior originates from the difference in the potential height 

for the mixture state of three phases which is called the additional potential here. Among these 

cases, the additional potential height is the lowest in the simulation for n=0.0 and is the 

highest for n=1.4. Hence, it is seen that the increase in the additional potential height leads to 

the better convergence behavior, which should be ascribable to narrowing of the region for the 

mixture state of three phases near the triple junction.  

Three types of the circular symbols in Fig. 2 indicate the velocities calculated with 

the unequal interfacial energies listed in Table 1. The results for n=1.4 and n=2.0 are shown 

by full and half-full circle symbols, respectively. Also, the results for n=0.0 and ωtri=0.0 are 

indicated by the open symbols. The simulation with the unequal interfacial energies involves 

the problem associated with the extra phase in the interface. Especially, the extra phase is 

prone to form in the interface of the highest interfacial energy, specifically, the γ−δ interface 

in this system. The phase field profiles across the γ−δ interface far from the triple junction are 

shown in Fig. 3(a). The result for n =1.4 and Wγδ=1.0×10-8 m is presented in Fig. 3(a). The 

enlargement of the phase field profiles in the vicinity of pi=0 is shown in Fig. 3(b) where the 
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profiles of pL for n=0.0 and 2.0 are added. It is seen that the spatial profile of pL depends on 

the value of n. When there is no additional potential (n=0.0 and ωtri=0.0), the extra phase 

exists in the γ−δ interface. The peak position of pL is located not at the center of the γ−δ 

interface but on the δ phase side. In other words, the δ-L interface configuration appears 

inside the γ-δ interface. This is because the δ-L interface possesses the lowest interfacial 

energy in this system and it incurs the tendency of the δ-L interface configuration to form. 

The maximum value of pL is reduced by introducing the additional potential (n=2.0). Most 

importantly, the extra phase vanishes for n=1.4. It is clear in Fig. 2 that the simulation for 

n=1.4 exhibits the excellent convergence behavior.  

In Fig. 3(b), the peak value of pL for n=0.0 is higher than the one for n=2.0. However 

the difference in the peak value is not significantly large. Therefore, there is actually only a 

slight difference between these cases in the migration velocity of the γ−δ interface far from 

the triple junction. The appreciable difference between the peritectic reaction rates in Fig. 2 

(especially at Wγδ=1.0×10-8m) originates from the formation of the extra phase near the triple 

junction. For this discussion, we employ the square sum of phase fields, ps=pL
2+pδ

2+pγ
2. ps 

varies from 0.5 to 1.0 across the two-phase interface and it takes the minimum value of ps=1/3 

at the triple junction. The contour lines of ps near the triple junction for n=0.0, 1.4 and 2.0 are 

shown in Fig. 4. These are the results calculated with Wγδ=1.0×10-8m. The solid lines indicate 

the level 0.5 contour lines of phase fields. The cross-hatched region represents the region for 
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ps≤0.5 and, hence, the mixture state of three phases forms in this region. It is clear that the 

mixture state is confined into a narrow region when the additional potential contribution is 

large (Fig. 4(b)). When the contribution of the additional potential is reduced (Fig. 4(c)), the 

region for the mixture state is extended to each interface region and especially to the γ−δ 

interface region. When the addition potential is removed (Fig. 4(a)), the region for the mixture 

state is substantially extended to the γ-δ interface region. Then, the motion of the interface in 

this region cannot be appropriately described due to the existence of the extra phase. The 

antitrapping current does not properly work and the anomalous interface effects become 

significant in this region. As a result, the peritectic reaction rate calculated for n=0.0 is quite 

different from those for n=2.0 and 1.4 even for the smallest value of Wγδ in Fig. 2. In addition, 

as detailed in the supplementary material, the formation of the extra phase cannot be 

suppressed only by decreasing the interface thickness when the additional potential is not 

introduced. In Fig. 2, therefore, the result for n=0.0 seems to be converged to a different value 

from the one for n=1.4. 

In the present model, the contribution of the additional potential increases with the 

decrease in n and with the increase in ωtri. As discussed in the supplementary material, the 

formation of the extra phase can be effectively suppressed by using the small value of n 

and/or the larger value of ωtri in the present model. The convergence behavior can be thereby 

improved. However, when the contribution of the additional potential is too large, the 
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calculation becomes unstable. When we tried n=1.2 and 1.3 with ωtri=ωδL+ ωγL+ ωγδ, the 

calculations were not stable. Since the excellent convergence was demonstrated for n=1.4 and 

ωtri=ωLδ+ ωLγ+ ωδγ, we employed these values in the following calculations.  

The dependence of Vp at ΔT=10 K on Wγδ is shown in Fig. 5(a). These are the results 

for the unequal interfacial energies. For comparison, we performed the same simulation based 

on a model without the antitrapping current and with D({pi})=DLpL+Dδpδ+Dγpγ in eq.(15), 

which is called the standard model here. It is noted that this standard model is free from the 

problem of the extra phase in the interface, while it involves the spurious interface effects in 

the motion of the two-phase interface (chemical potential jump at the interface and surface 

diffusion). It is seen that the present model exhibits the well-converged value even for a 

relatively large value of Wγδ =3.0×10-8 m. On the other hand, the result of the standard model 

largely depends on the interface thickness and the result is not well converged even for the 

smallest value of Wγδ =1.0×10-8 m tested here. The same simulations were performed for 

ΔT=5 K and the results are shown in Fig. 5(b). The system size was chosen to be Wx≥6×10−6m 

and Wy≥3×10−6m. The smallest value of Wγδ was set to be 2.0×10-8 m in the light of the 

computational burden. It is again demonstrated that the convergence behavior obtained by the 

present model is excellent as compared with that by the standard model.  

The steady state shape of the interfaces near the triple junction at ΔT=10 K is shown 

in Fig. 6 (a). The origin of y axis corresponds to the center of triple junction and the origin of 
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x axis is the initial position of δ-L interface. These lines represent the level 0.5 contour lines 

of phase fields. The shape of the interfaces near the triple junction is almost independent of 

the interface thickness in the present model, while the results of the standard model depend on 

the interface thickness. In Fig. 6(a), the deviation of the δ−L interface from the initial position 

indicates the melting of δ phase near the growth front of γ phase. This steady state shape near 

the junction represents the well-known feature in the peritectic reaction process, as recently 

demonstrated in the quantitative phase-field simulation without the solid diffusion [29]. More 

detailed analysis on the peritectic reaction in the carbon steel is reported elsewhere [30]. 

Figure 6 (b) shows the concentration profiles along x direction at y=−0.3 μm. The circular and 

square symbols represent the results of the present and the standard models, respectively. One 

can see that the concentration profiles are also independent of the interface thickness in the 

present model.  

As demonstrated above, the present model exhibits the excellent convergence 

behavior of the outcomes with respect to the interface thickness. Although the detail is not 

discussed here, it was confirmed that the present model successfully reproduces the 

equilibrium relation of contact angles between interfaces near the triple junction described by 

Young’s rule within an accuracy of less than 1o near the peritectic temperature [30].  

 

5. Conclusions  
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In this study, we developed the quantitative phase-field model for two-phase 

solidification processes. This model is consistent with the available quantitative phase-field 

model for the single phase solidification. Hence, the free boundary problem is recovered with 

a finite value of interface thickness in describing the motion of the interfaces. Importantly, 

this model can be applied to the system with arbitrary values of the solid diffusivities and 

interfacial energies. In this study, we investigated the performance of this model, focusing on 

the peritectic reaction in the carbon steel. The excellent convergence behavior of the outcome 

was demonstrated. The extension of the present approach to the multi-component system is 

quite important task for a step further to the development of effective computational tool to 

quantitatively describe the microstructural evolution processes.  
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Table 1 Input parameters for Fe-C system used in the present study   

Quantity  Symbol Value used  

Molar volume  vm  7.7×10-6 m3/mol [24] 

Partition coefficient of δ−L phases kδL 0.179*)  

Partition coefficient of γ−L phases kγL 0.334*) 

Partition coefficient of γ−δ phases kγδ kγL/kδL  

Melting temperature of pure bcc-Fe  Tm,δL  1811 K*)  

Melting temperature of pure fcc-Fe Tm,γL  1801 K*) 

δ/γ transition temperature of pure Fe  Tm,γδ  1399 K*) 

Liquidus slope of δ phase  mδ 1828 K/mol fraction*) 

Liquidus slope of γ phase mγ 1399 K/mol fraction*) 

Interfacial energy of δ-L boundary  σδL  0.204 J/m2[24]  

Interfacial energy of γ-L boundary σγL  0.319 J/m2 [25] 

Interfacial energy of γ-δ boundary σδγ  0.370 J/m2 [26]  

Diffusion coefficient in L phase  DL  5.2×10-7·exp(−5.0×104·β) m2/s**) [27] 

Diffusion coefficient in δ phase Dδ  1.27×10-6 ·exp(−8.3×104·β) m2/s**) [27] 

Diffusion coefficient in γ phase Dγ  7.61×10-6 ·exp(−13.7×104·β) m2/s**) [27]
*)These values were estimated from the thermodynamic assessment of Ref. [28]. **) β=(R·T)−1  
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Fig. 1. Schematic illustration of the initial state in two-dimensional system used in this study.  
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Fig. 2. Dependence of the growing velocity of γ phase on interface thickness, Wγδ, calculated for n=0.0 

(open symbols), n=1.4(full symbols) and n=2.0 (half-full symbols). The degree of undercooling is ΔT=10 K. 

The square symbols correspond to the results for equal interfacial energies, while the circular symbols 

represent those for unequal interfacial energies.  
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Fig. 3 (a) Phase field profiles across γ−δ interface along x direction calculated for n=1.4 and Wγδ=1.0×10-8 

m at ΔT=10 K. For visual aid, one out of every 4 symbols is shown for each profile. (b) Enlargement of 

profile in the vicinity of pi=0 where pL profiles for n=0.0 and n=2.0 are also shown. One of every 8 

symbols is shown for these profiles.  
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Fig. 4. Contour lines (dashed lines) for the square sum of phase fields, ps, near the triple junction during the 

peritectic reaction, calculated (a) without the additional potential, (b) with n=1.4 and (c) with n=2.0. In 

each figures, the origin of the spatial coordinates correspond to the position of the triple junction 

(pL=pδ=pγ=1/3). The interval of the contour lines is Δps=0.1. The cross-hatched region indicates the region 

where ps≤0.5. The solid lines represent the level 0.5 contour lines of the phase fields.  
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Fig. 5. Convergence behavior of the velocity of growing γ phase with respect to the interface thickness, Wγδ, 

calculated for (a) ΔT=10 K and (b) ΔT=5K. The full and open symbols represent the results obtained by the 

present model and the standard model, respectively.  
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Fig. 6. (a) Level 0.5 contours of phase fields in the steady state at ΔT=10 K. (b) Concentration profiles 

along x direction at y=−0.3 μm in Fig. (a). For visual aid, one out of every 8 symbols is shown for each 

profile.  
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A. Dependence of fpot on n and wtri 
The Ginzburg-Landau-type free energy functional in the present model is described 

in eq.(5). The potential barrier between the bulk phases, fpot, is written as follows,  
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where ωij denotes the two-phase potential height between i and j phases. In eq.(S-1), the 

term, ( )n
kjitri ppp⋅ω , represents the additional potential. The contribution of the 

additional potential to fpot is entirely determined by the values of n and ωtri. Here, we 
show the dependence of fpot on the values on n and ωtri. 

As discussed in the section 2.3, ωij can be calculated as follows,  

ij

ij
ij W

σ
ω

⋅
=

23
,   (S-2)  

where σij and Wij are the interfacial energy and the interface thickness for i-j interface, 
respectively. Here, we used the values of σij listed in Table 1. The interface thicknesses 
were set to be Wγδ=1×10-8m and WδL=σγδWγδ/σδL and WγL=σγδWγδ/σγL. Figure S1 shows 
the contour lines of fpot calculated without the additional potential. The contour lines 
were drawn in the Gibbs simplex. The Gibbs simplex is the equilateral triangle, where 
each vertex represents the different phase, δ, γ or liquid. The value of the phase field is 
determined by the distance to the edge opposite to the corresponding vertex [20]. The 
interval of the contour lines is Δfpot=5×105 J/m3. The local minima exist at each vertex. 
The two-phase potential height (the maximum value on the edge) is the highest at the 
γ-δ edge and is the lowest at the δ-L edge. The global maximum exists not at the γ-δ 
edge but inside the simplex, a point very close to the γ-δ edge, although it cannot be 
clearly seen in Fig. S1. It is noted that the maximum value is not significantly higher 
than the two-phase potential height for the γ-δ interface. As described in the section 4, 
the pL profile exhibits the “spike” in the γ-δ interface when the additional potential is 
not introduced.  

For convenience, we introduce the parameter, ω*=ωδL+ ωγL+ ωγδ. Figure S2 
shows the potential surfaces of fpot calculated for ωtri=ω* and n=1.1, 1.4, 2.0 and 3.0. 
The potential surface for n=3.0(Fig. S2(d)) is not substantially different from the one 
without the additional potential shown in Fig. S1. As the value of n decreases, the 
maximum value increases and the maximum point gradually moves toward the center, 
namely, pL=pδ=pγ=1/3. Figure S3 represents the potential surfaces calculated for n=2.0 
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and ωtri=2ω*, 3ω* and 7ω*. As the value of ωtri increases, the maximum value increases 
and the maximum point gradually moves toward the center.  

From Figs. S1-S3, one can grasp that the decrease in n and/or the increase in 
ωtri raises the potential height for the mixture state of three phases. Therefore, the 
formation of the extra phase can be suppressed by using the small value of n and the 
large value of ωtri in the present model. As shown in Fig. 2, we can improve the 
convergence behavior of the peritectic reaction rate with respect to the interface 
thickness by increasing the contribution of the additional potential. Therefore, we 
generally expect that the combination of the small value of n and the large value of ωtri 
yields the excellent result.  

As shown in Figs. S2 and S3, the variation of the potential surface fpot due to 
the increment of ωtri is similar to that due to the decrement of n. Hence, in our 
preliminary calculations, the value of ωtri was fixed to be ωtri=ω* and different values of 
n were tested. When we tried n=1.2 and 1.3 with ωtri=ω*, the calculations were not 
stable in the present condition. Since the calculation for n=1.4 and ωtri=ω* yields the 
reasonable convergence behavior without the formation of the extra phase, we 
employed n=1.4 and ωtri=ω* in the present study.  

It is noted that the formation of the extra phase originates from the difference in 
σij and thus the difference in ωij. From eq.(S-2), one can comprehend that the difference 
in ωij increases with the decrease in Wij. Figure S4 shows the spatial profiles of pL 
across the γ−δ interface far from the triple junction, calculated without the additional 
potential (n=0.0) for ΔT=10 K. It is seen that as Wγδ decreases, the peak profile becomes 
sharp and the peak position moves toward the center position of the γ-δ interface. 
Importantly, the peak value increases with the decrease in Wγδ. Hence, the problem with 
the formation of the extra phase cannot be removed only by the reduction of the 
interface thickness.  
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Fig. S1. Potential surface of fpot in the Gibbs simplex. The interval of the contour lines is Δfpot=5×105 J/m3. The 
additional potential is not introduced.  

 

 

  
Fig. S2. Potential surfaces of fpot in the Gibbs simplex calculated for ωtri=ω* and (a) n=1.1, (b) n=1.4, (c) n=2.0 and 
(d) n=3.0. In each figure, the interval of the contour lines is Δfpot=5×105 J/m3.  
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Fig. S3. Potential surfaces of fpot in the Gibbs simplex calculated for n=2.0 and (a) ωtri=2ω*, (b) ωtri=3ω* 
and (c) ωtri=7ω*. In each figure, the interval of the contour lines is Δfpot=5×105 J/m3. 
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B. Difference in convergence behavior between the cases of equal and unequal 
interfacial energies 

In the early works for the quantitative phase-field modeling [11, 13, 20, 21], the 
effects of thin-interface corrections were discussed based on the convergence curve with 
respect to W/d0 where d0 is the chemical capillary length. In the present model, the 
chemical capillary length depends on the type of interface as expressed by d0,ij. Wij/d0,ij 
is calculated in this model as follows,  
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When the simulations for the unequal interfacial energy and the conditions ΔT=10 K 
and Wγδ≤3.0×10-8m are considered (Fig. 4), the values of Wij/d0,ij are always less than 
10.2 for the δ-L interface, 2.9 for the γ-L interface and 0.36 for the γ-δ interface. Also, in 
the calculations for ΔT=5 K and Wγδ≤4.0×10-8m, the values of W/d0 are less than 12.3 
for the δ-L interface, 3.4 for the γ-L interface and 0.50 for the γ-δ interface. Judging 
from the convergence curves reported in the early works [11,13,21], these values of 
Wij/d0,ij corresponds to relatively small values where one can generally expect the well 
converged result. In fact, almost the constant value is observed in Fig. 4. However, the 
results for the equal interfacial energies seem to be not converged even for the smallest 
value of Wγδ used in this study. This point is discussed here.  

Figure 2 shows that the convergence of the results for the equal interfacial 
energy is slower than that for the unequal interfacial energy. The steady state shape of 
the interfaces near the triple junction at ΔT=10 K is shown in Fig. S5(a). These are the 
results for the equal interfacial energy. One sees that the steady state shape is not well 
converged in the range of Wγδ tested here. The steady state shape for the equal 
interfacial energy is compared with that for the unequal interfacial energy in Fig. S5(b). 
The curvatures of γ−δ and γ−L interfaces near the junction in the former case are larger 
than those in the latter case, as is expected from the balance between the interfacial 
energies near the junction (Young’s rule). The velocity of growing γ phase (peritectic 
reaction rate) for the equal interfacial energy is much higher than the one for unequal 
interfacial energy as is seen in Fig. 2. Therefore, the peritectic reaction for the equal 
interfacial energy involves the relatively large curvatures and the high migration 
velocities of the interfaces. The anomalous interface effect becomes significant in this 
situation, as is realized from the asymptotic analysis [13, 21]. This should be the reason 
why the convergence of the results for the equal interfacial energy is slow.    
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Fig. S5. (a) Steady state shapes of the interfaces near the triple junction at ΔT=10 K for the case of equal 
interfacial energy. (b) Comparison between the steady state shapes near the triple junction for equal 
interfacial energy (solid line) and unequal interfacial energy (dashed line). The interface thickness Wγδ is 
5.0×10-9m for the former case and 1.0×10-8m for the latter case. In each figure, the origin of y axis is the 
position of the triple junction and the origin of x axis corresponds to the initial position of L-δ interface.  
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