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Droplet coalescence process under electric fields in an immiscible polymer blend
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The droplet coalescence process was investigated in immiscible polymer blends when subjected to a step
electric field. We present sequential three-dimensional images captured during the process with a confocal
scanning laser microscope. Characteristic lengths parallel and perpendicular to the electric field were obtained
from the spatial correlation functions of the images. It was found that the droplet growth rate increased with
both the electric field and the volume fraction of droplets. A function describing the droplet growth rate was
derived from theory using the “hierarchical model” and was found to be in good agreement with the experi-
mental results.
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I. INTRODUCTION

The electrorheological �ER� effect in immiscible polymer
blends, where a large viscosity change is induced when an
electric field is applied, has attracted much interest from both
the fundamental and application sides of science. The ER
effect is closely related to morphological changes �1–6�,
which may be caused by shear flow and Maxwell stresses
arising from mismatch of electric properties such as permit-
tivity and conductivity between the two phases. In general,
the ER effect appears under shear flow, but it has been found
that columns are also formed along the electric field without
shear flow, and the elastic modulus of the columnar structure
increases with the electric field �7�. In our previous paper �7�,
we demonstrated a new system combining a confocal laser
scanning microscope �CLSM� and a rheometer that enabled
simultaneous three-dimensional �3D� observations and rheo-
logical measurements. From this work, it was seen that the
elongation and coalescence of droplets appeared to play im-
portant roles in the formation process of the columnar struc-
ture under electric fields; hence, we now turn our attention to
these processes.

One proposed application for these materials is, for ex-
ample, using the coalescence under electric fields to remove
water droplets from oils. Several studies have observed ex-
perimentally the coalescence process of a pair of droplets
subjected to an electric field in order to elucidate the coales-
cence mechanism �8–10�. However, to the extent of our
knowledge, the coalescence process of multiple droplets has
not been reported to date.

In colloidal systems, on the other hand, the formation pro-
cess of the columnar structure �chain or bridge� under elec-
tric fields, where clusters consisting of particles grow larger
with time via aggregation �11–14�, has been well studied.
Furthermore, this formation process is well understood in
terms of the hierarchical model �15� to be described later.
The droplet coalescence process may be similar to the aggre-
gation process of the colloidal particles, which implies that
this model may be applicable to the immiscible polymer

blends studied here. In the present paper, we first present
sequential 3D images captured during the droplet coales-
cence process after applying a step electric field. Then we
derive the time dependence of the average droplet size from
spatial correlation functions from the images, and from the
results obtained by changing the strength of the electric field
applied, a scaling property is derived. Lastly, we show that
the hierarchical model can successfully represent the time
evolution of the droplet coalescence process as observed ex-
perimentally.

II. EXPERIMENT

We used an immiscible polymer blend of a liquid-
crystalline polymer �LCP� �16� �Fig. 1� and polyisobutylene
�PIB�. All the experiments were performed at 25 °C, and
LCP was in the isotropic phase at this temperature. However,
it should be noted that mesogens of LCP play a role in en-
hancing the permittivity and conductivity. We used PIB be-
cause it has low permittivity and conductivity in comparison
to LCP, and the refractive indices of the fluids are closely
matched, which is necessary for the observation of the struc-
tures with a CSLM. The viscosity, relative dielectric con-
stant, conductivity, and refractive index of LCP at 25 °C are
65 Pa s, 15, 4�10−9 �−1 m−1, and 1.486, respectively;
those of PIB are 7.8 Pa s, 2.6, 5�10−11 �−1 m−1, and
1.485, respectively. For the CSLM observations a small
amount of fluorescent dye, IANBD amide �Molecular
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FIG. 1. Chemical structure of LCP.
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Probes�, was added to LCP before mixing with PIB. It was
confirmed that the dye did not dissolve in PIB. The wave-
length of excitation was 488 nm, and a filter of 570 nm for
the detection of light was used. Mixtures were made with
volume ratios of LCP:PIB=1:6, 1:10, and 1:14. In the ab-
sence of an electric field, LCP was dispersed in PIB as drop-
lets in this blend.

A schematic of the system is shown in Fig. 2. The sample
was sandwiched between a bottom glass plate with an ITO-
coated electrode and the rotating metal plate of a rheometer
�MCR301, Anton Paar�. The diameter of the rotating plate
was 35 mm, and the gap between the plates was 200 �m.
Observations were made through the bottom glass plate with
a CSLM �IX71, Olympus and CSU22, Yokogawa�. To avoid
ionic migration we applied ac electric fields of 512 Hz via a
synthesizer �Multifunction Synthesizer 1940, NF Electric In-
struments� and a high voltage amplifier �model 609C-6,
Trek�. We constructed 3D images by using a piezoactuator
�P-721.10, PI� attached to the objective lens for vertical dis-
placement. We applied a triangular voltage of 0.3 Hz to the
piezoactuator, so that the objective lens or the focal plane of
the microscope oscillated vertically between 32 and 145 �m
above the bottom glass surface. The frame rate of the CSLM
was 60 frames per second, so that 100 images were captured

per half period, from which one 3D image was constructed.
We successfully obtained clear 3D animations.

III. RESULTS

In the absence of an electric field LCP was dispersed in
PIB as droplets in this polymer blend. Before each measure-
ment a preshear was applied for 20 min at 200 s−1 to attain
a steady state. Figures 3�a� and 3�b� show the sequential 3D
images obtained at �a� 2 and �b� 4 kVamp /mm, for �=0.14
�LCP:PIB=1:6�, where the subscript in “V” indicates the
amplitude of the ac voltages �see movies 1 and 2 �17��. At
t=0 before applying the electric field without shear, the drop-
let radius was �2 �m. Immediately after applying the elec-
tric field, the droplets began to coalesce due to the induced
dipole-dipole interactions, resulting in coarsening of the
structure. When this blend was subjected to higher electric
fields, not only the coalescence of droplets, but also the for-
mation of columns took place �Fig. 3�b��. The coalescence
rate increased with both the amplitude of the ac electric field
and the density of droplets. This is because the dipole-dipole
interaction is proportional to the square of the applied elec-
tric field and is inversely proportional to the fourth power of
the distance between two droplets, as will be described later.

In these experiments we have succeeded in observing the
coalescence process of two droplets, as shown in Fig. 4. A
pair of droplets elongated along the electric field approach
each other to reduce the interdroplet distance and then coa-
lesce into a large droplet. Immediately after coalescence the
droplet is strongly deformed, but then gradually relaxes to an
equilibrium shape.

Under electric fields droplets are elongated and become
prolate spheroids. The lengths of the major and minor axes
were estimated from the normalized spatial correlation func-
tion, defined as

C�r� =
�S�r�S�0�� − �S�0��2

�S�0�2� − �S�0��2 , �1�

where S�r�=1 in the bright region �LCP� and 0 in the dark
region �PIB�, and �¯ � means the spatial average. Clearly,
C�r� is anisotropic for spheroids. We can define two correla-
tion lengths, �c and �a, which correspond to the major and
minor axes, respectively, as follows. In 3D space, C�r� takes
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FIG. 2. Schematic of the system combining a CSLM and a
rheometer.
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FIG. 3. Morphological changes
after applying ac electric fields of
�a� 2 and �b� 4 kVamp /mm with a
frequency of 512 Hz. The electric
fields were applied at t=0. The de-
formation defined as D= �c−a� /
�c+a� was calculated for each im-
age. In �a� D=0.0 at 0, 20, and 35
s, D=0.1 at 100 s, and in �b� D
=0.0 at 0 s, D=0.32 at 20 s, D
=0.5 at 35 s, D is impossible to
calculate at 100 s because a co-
lumnar structure is formed.
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the maximum of 1 at the origin and monotonically decreases.
The correlation lengths �c and �a are defined as the distances
along the major and minor axes at which the correlation
function equals 1/2. These correlation lengths can be related
to the lengths of the major and minor axes, c and a, by c
�1.44�c and a�1.44�a �see the Appendix�, where we have
assumed that spheroids with the same aspect ratio and size
are randomly and sparsely dispersed. In our results, however,
the droplet shape and size have some degree of distribution,
so the obtained values of c and a should be regarded as
averages. Figures 5�a� and 5�b� show the time dependencies
of c and a, respectively, at several amplitudes of the ac elec-
tric field. In Fig. 5�b�, we could not obtain the length of the
major axis at extended times because of the formation of
columns. In terms of the deformation, defined as D= �c
−a� / �c+a�, it was found that D increased with time, and the
column formation started at approximately D=0.4 almost ir-
respective of the applied electric field. Data for D�0.4 in
Fig. 5�b� were not plotted, while in Fig. 5�a� all the data were
plotted, and the data for D�0.4 and D�0.4 are distin-
guished by open and closed symbols, respectively.

The growth rates of the lengths of both the major and
minor axes increased when increasing the electric field. As
can be seen in Fig. 5�a�, the length of the minor axis, a,
increases exponentially with time in the early stage �D
�0.4�, but in the late stage �D�0.4� the growth rate slows,
and the size is almost constant. This indicates that once the
columnar structure is formed there is hardly any coalescence
of these columns. The initial slopes in Fig. 5�b� are steeper
than those in Fig. 5�a� for the same electric field. This dif-
ference may be due to elongation. The droplet deformation D
when subjected to an electric field is proportional to the ra-

dius without the electric field �18�; hence, as droplets grow
larger with time the growth rate of the major axis c is accel-
erated while that of the minor axis a is reduced. The expo-
nential growth is discussed in detail in the next section.

IV. DISCUSSION

First, let us consider a simple model without elongation,
that is, all the droplets maintain a spherical shape during the
coalescence process. From dimensional analysis the radius r
is given as

r = r0f	�0Erms
2 t

	

 , �2�

where r0 is the initial droplet radius, 	 is the viscosity of
PIB, �0 is the dielectric constant of vacuum, Erms is the root
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FIG. 4. Sequential images taken during the coalescence process
of a pair of droplets in an electric field of 3 kVamp /mm.
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FIG. 5. �Color online� Time dependencies of �a� a and �b� c at
several amplitudes of ac electric field for �=0.14 �LCP:PIB
=1:6�. Open and closed symbols in �a� are for D�0.4 and D
�0.4, respectively.
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mean square of the ac electric field, and f�x� is a scaling
function. In Fig. 6 we replotted the data of Fig. 5 as a func-
tion of �0Erms

2 t /	. Note that the initial radius r0 at each value
of electric field is almost the same in our experiments due to
the applied preshear. The growth of a seems to obey the
scaling relation as shown in Fig. 6�a�, while in Fig. 6�b� it
appears that of c does not. This is natural because the defor-
mation D increases with time, so that the structure at each
time is not similar to the others, resulting in a breakdown of
the scaling relation. Although the above simple model is not
perfectly applicable to the present system, we can calculate
the growth rate from the model to examine the volume frac-
tion dependence and then compare these results to those of
an improved model, which we propose, that takes into ac-
count this deformation.

In the calculation, we used a hierarchical model �15�. In
this model, it is assumed that at t=0 spherical droplets of the
same radius are uniformly dispersed, and that after time T1

pairs of droplets coalesce to form larger spherical droplets
with double the volume, and then these doublets coalesce to
form droplets with quadruple the initial volume after a fur-
ther time T2, and so on. In order to determine the time Tn
required for droplets of radius rn−1=2�n−1�/3r0 to coalesce and
form droplets of radius rn=2n/3r0, we consider the time evo-
lution of the average distance between nearest-neighbor
droplets, R.

The electrostatic interaction energy necessary to estimate
the electrostatic attraction force between a pair of droplets is
expressed by using the point-dipole approximation:

u�r,
� = −
1

4��0�2

d2

R3 �3 cos2 
 − 1� , �3a�

where 
 is the angle between the electric field and a line
between the two droplets, �2 is the relative dielectric constant
of the matrix, and d is the induced dipole moment:

d = 4��0�2�Er3, �3b�

with

���1,�2� =
�1 − �2

�1 + 2�2
, �3c�

where �1 is the relative dielectric constant of the droplets. In
general, the effective polarizability ���1 ,�2� depends on the
conductivities 
1 �droplet� and 
2 �matrix� and the frequency
f of the applied electric field; so � j �j=1,2� in Eq. �3c�
should be replaced with �̃ j =� j +
 j / �i2��0f�. To avoid con-
duction we used ac electric fields of 512 Hz in our experi-
ments, at which ����̃1 , �̃2�� /���1 ,�2�=1.000 04.

For simplicity, putting 
=0 in Eq. �3a�, the electrostatic
attraction force can be estimated as follows:

Felectro � 24�
�0�2�2Erms

2 r6

R4 , �4�

where we have replaced E in Eq. �3b� with Erms because the
droplets cannot follow the oscillating electric field. Since the
friction coefficient of a droplet of radius r is 6�	r, the time
evolution of R is given by

6�	r
dR

dt
= − 48��0�2�2Erms

2 r2	 r

R

4

. �5�

Now if we assume that after the nth step, that is, at time tn
=
i=1

n Ti, the droplets are homogeneously dispersed, then the
average distance between droplets, Rn, is expressed as Rn
= f�−1/3rn, where � and rn are the volume fraction of droplets
and the radius of droplets after the nth step, respectively, and
f is a constant depending on the spatial distribution of the
droplets. The solution of Eq. �5� is

t − tn−1 = −
	

40�0�2�2Erms
2 rn−1

5 �R�t�5 − Rn−1
5 � , �6�

where we have used an initial condition of R=Rn−1 at t
= tn−1. From this equation Tn= tn−tn−1 is easily obtained by
putting R�tn�=0,
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FIG. 6. �Color online� Plots of �a� a and �b� c vs �0Erms
2 t /	 for

�=0.14 �LCP:PIB=1:6�. Theoretical values are also plotted for
the spheroid and sphere models.
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Tn =
	

40�0�2�2Erms
2 	Rn−1

rn−1

5

= C
	

�0�2�2Erms
2 �−5/3, �7�

where C= f5 /40. Note that Tn is independent of the step for
the sphere model, so that we define the characteristic time as
�=Tn. Thus, t�=tn�=n� and r�=rn�=2n/3r0 yield

r = 2t/3�r0 = r0 exp	p
�0Erms

2 t

	

 , �8a�

with

p =
ln 2

3C
�2�2�5/3, �8b�

indicating that the radius increases exponentially with time,
as seen in Fig. 6�a�, and the growth rate depends on the
volume fraction as �5/3.

We measured the volume fraction dependence of p to con-
firm whether Eq. �8b� holds, despite the aforementioned
limitations of this simplified model. Figure 7 shows a semi-
logarithmic plot of the length of the minor axis a versus the
scaled time �0Erms

2 t /	 under various electric fields E0
=2 ,3 ,4 ,5 kVamp /mm and for volume fractions �=0.14
�LCP:PIB=1:6�, 0.091 �1:10�, and 0.067 �1:14�. The data at
each volume fraction fall almost on a straight line irrespec-
tive of the electric field, and the slope increases with the
volume fraction, as predicted from the above theory. Figure 8
shows the volume fraction dependence of the slope p ob-
tained from Fig. 7, where the measurements were repeated
twice at the same volume fraction. The slope p seems to
obey a power law with an exponent of 5/3. By using the
least-squares method the coefficient C in Eq. �8b� was deter-
mined as C�2.2, which is used for the following analyses.

Calculated values from Eq. �8� with C�2.2 and �=0.14
are plotted as solid lines in Figs. 6�a� and 6�b�, where the two
lines are the same because we assumed that droplets are

spherical. The discrepancy between the experiment and the
theory in Fig. 6�b� may arise from this assumption. In the
discussion that follows, we will take into account the droplet
deformation under electric fields.

According to Torza et al., the time-averaged deformation
of a droplet under an ac electric field, D= �c−a� / �c+a�, is
given theoretically as �18�

D =
9�0�2

16�
�Erms

2 r , �9�

where � is a function of dielectric constants, conductivities,
viscosities, and the frequency of the ac electric field; � is the
interfacial tension; and r is the radius of the droplet without
an electric field. Note that the deformation D oscillates in an
ac electric field, but it is negligible in our experiments. Equa-
tion �9� means that the deformation is in proportion to the
square of the electric field and the radius of droplet. From the
experimental values of c and a we calculated D= �c−a� / �c
+a� and r=�3a2c at various electric fields and volume frac-
tions, and plotted D vs Erms

2 r in Fig. 9. D is almost propor-
tional to Erms

2 r, although the data are scattered to some de-
gree. The proportionality constant was determined as
�5.3�0.1��10−9 mVrms

−2 by the least-squares method. We
will use this constant for the following numerical calcula-
tions to obtain the deformation at a given electric field.

For a spheroid the effective polarizability � in Eq. �3c�
should be modified �19�:

� =
1

3

�1 − �2

�1 + ��1 − �2�n�z� , �10a�
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n�z� =
1 − e2

2e3 	ln
1 + e

1 − e
− 2e
 , �10b�

where e is the eccentricity, defined as

e =�1 −
a2

c2 =�1 − 	1 − D

1 + D

2

. �10c�

Since � is a function of D, which increases with time, Tn in
Eq. �7� depends on the step. From the above equations, it is
easily understood that � is an increasing function of D, so
that the growth rate should be accelerated with time, result-
ing in a deviation from the exponential growth for the simple
sphere model. In the spheroid model we have to add Ti. At
tn=
i=1

n Ti, the lengths of the major and minor axes are ob-
tained from D= �c−a� / �c+a�, r=�3a2c, and r�=rn�=2n/3r0 as

a = 2n/3r0	1 − D

1 + D

1/3

, �11a�

c = 2n/3r0	1 + D

1 − D

2/3

, �11b�

where D can be calculated using �5.3�0.1��10−9 mVrms
−2 .

In the calculation of Ti, for simplicity we use Eq. �7� for the
sphere model, although the friction coefficient should be
modified in Eq. �5�.

Figures 10�a� and 10�b� show the time dependencies of a
and c, respectively, calculated at several amplitudes of the ac
electric field for �=0.14. Dotted lines are added for the
sphere model. As for the length of the minor axis a, the
deviation from the sphere model is small, whereas the length
of the major axis c deviates from the sphere model signifi-
cantly as the electric field is increased. It is now clear why a
almost obeys exponential growth but c does not: the increase
in the deformation D accelerates the growth rate of droplet
volume, while it reduces the growth rate of a, resulting in a

cancellation. In contrast, the growth rate of c is further ac-
celerated. We plotted these theoretical values as broken lines
in Fig. 6 to compare to the experimental results, and a good
agreement is clearly seen, validating the spheroid model.

V. CONCLUSIONS

We have succeeded in observing the coalescence process
in droplet-dispersed immiscible blends in three dimensions
when subjected to a step electric field. Immediately after
applying the electric field, the droplets began to coalesce due
to the induced dipole-dipole interactions, and the average
droplet size increased with time. In addition, the droplets
were elongated along the electric field, and the deformation
increased with the elapsed time. The length of the minor axis
grew almost exponentially with time, while that of the major
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axis grew faster than exponential. For the model, we first
derived the exponential growth from a simple sphere model
where all the droplets were assumed to be spherical and
droplet growth obeyed the hierarchical model. Results
showed that the growth rate is proportional to the square of
the applied electric field and the volume fraction to the
power of 5/3, which was confirmed experimentally for the
minor axis. Next, a spheroid model was proposed to incor-
porate the droplet deformation, which modifies the effective
polarizability. The results from this model reproduced well
the growth rates of both c and a obtained from the experi-
ment.
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APPENDIX: RELATION BETWEEN THE LENGTHS OF
THE MAJOR AND MINOR AXES OF SPHEROIDS

AND THE CORRELATION LENGTHS

We can calculate the spatial correlation function of a
spheroid-dispersed system by using the theory developed
from the Avrami model �20� by Sekimoto �21�. This theory
allows for the overlap of spheroids, but clearly in our system
there is no overlap. In the theory, the spheroids �in the origi-
nal theory the shape is arbitrary� are randomly distributed, so
that some of them must overlap each other. The discrepancy
between the model and our system may be resolved by only

considering the case when the spheroids are sparsely dis-
persed. Therefore, we derive the correlation function at small
volume fractions of spheroids.

We assume that the spheroids are of the same aspect ratio
and size. According to the theory, the volume fraction of the
spheroids, �, is given as

� = 1 − exp�− nV0� , �A1�

where n is the number density of spheroids and V0 is the
volume of a spheroid. Note that this equation is valid for all
volume fractions. The spatial correlation function is ex-
pressed as

�S�r�S�0�� = 1 − 2�1 − �� + �1 − ��2exp�nVover�r�� ,

�A2�

where Vover�r� is the overlapped volume of two spheroids
whose centers are at a distance r from each other. Therefore,
the normalized correlation function defined in Eq. �1�, C�r�,
becomes

C�r� =
exp�nVover�r�� − 1

exp�nV0� − 1
. �A3�

When the volume fraction is small, that is, nVover�r��nV0
�1, this equation can be approximated as

C�r� =
Vover�r�

V0
. �A4�

This equation is independent of the number density, and
therefore the two correlation lengths parallel and perpendicu-
lar to the applied electric field defined in the text can be
related to the lengths of the major and minor axes of the
spheroid: c�1.44�c and a�1.44�a.
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