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A UNIQUENESS THEOREM AND
THE MYRBERG PHENOMENON

MIKIHIRO HAYASHI AND MITSURU NAKAI

Abstract. The Dirichlet irregularity of the origin which is a boundary point

of a Zalcman domain R is shown to be sufficient but not necessary for the oc-
currence of the Myrberg phenomenon H∞(R̃) = H∞(R) ◦ϕ for a two sheeted
unlimited smooth covering surface R̃ of R with the projection map ϕ. The
importance of the uniqueness theorem in such a study of the Myrberg phe-

nomenon is stressed. An invalidity condition of the Myrberg phenomenon for
the covering surface (R̃, R, ϕ) is also considerd.

1. Introduction

1.1. We denote by H∞(W ) the Banach space of bounded holomorphic functions
f on a Riemann surface W equipped with the supremum norm ∥f∥∞. Let W̃ be
an unlimited possibly infinitely branched covering surface of a Riemann surface W
with the projection map ϕ. We say that the Myrberg phenomenon occurs for the
covering surface (W̃ ,W,ϕ) if we have

H∞(W̃ ) = H∞(W ) ◦ ϕ.(1.1)

We are particulary interested in the case when W̃ is an unlimited two sheeted
smooth (i.e. unbranched) covering surface of a bounded plane region W (cf. [5],
[6], [7], [8], [4]). In this paper we consider the case W is a certain Zalcman domain
described below.

1.2. We denote by ∆(c, r) (∆̄(c, r), resp.) the open (closed, resp.) disc in the
complex plane C with radius r > 0 centered at c. For simplicity we denote by ∆
and ∆0 the unit disc ∆(0, 1) and the punctured unit disc ∆(0, 1)\{0}, respectively.
Let (cn)n≥1 be a strictly decreasing sequence with 0 < cn < 1 converging to 0 and
(rn)n≥1 a sequence of positive numbers such that

cn+1 + rn+1 < cn − rn (n ∈ N), c1 + r1 < 1,(1.2)

where N is the set of positive integers. The condition (1.2) simply says that discs
∆̄(cn, rn) are contained in ∆0 and mutually disjoint. Following [16] we consider the

To complete the present work the first (second, resp.) named author was supported in part

by Grant-in-Aid for Scientific Research, No. 07640154 (07640196, 08640194, 09640180, 09640230,
resp.), Japanese Ministry of Education, Science and Culture.

1



2 M. HAYASHI AND M. NAKAI

domain

R := R(cn, rn) := ∆0 \
∪
n∈N

∆̄(cn, rn),(1.3)

which serves as the simplest example of plane regions of infinite connectivity in
various problems related to the class of bounded holomorphic functions (cf. e.g.
[2]). A region R with the form as in (1.3) will be referred to as a Zalcman domain,
or an L-domain in the terminology of [16].

1.3. Let (cn)n≥1 and R be as in 1.2. Consider an unlimited two sheeted covering
surface ∆̃0 of ∆0 with {cn : n ∈ N} as the set of projections of its branch points. The
projection map is denoted by ϕ. The covering surface (∆̃0,∆0, ϕ) naturally gives
rise to a covering surface (R̃, R, ϕ) which is an unlimited smooth (i.e. unbranched)
two sheeted covering surface. In his celebrated paper [10] (see also [14]) Myrberg
first pointed out that (1.1) holds for (∆̃0,∆0, ϕ). This is the reason why the name
Myrberg is attached to the relation (1.1).

Myrberg’s proof goes as follows. Choose an arbitrary g in H∞(∆̃0) and we are
to show that g(z+) = g(z−) for every z in ∆0, where ϕ−1(z) = {z+, z−} under the
convention that z+ = z− for z = cn (n ∈ N). Consider the function f in H∞(∆0)
determined by

f(z) = (g(z+) − g(z−))2

for every z in ∆0. By the Riemann removability theorem f can be continued to ∆
so as to be in H∞(∆). Since f(cn) = 0 (n ∈ N) and cn → 0 (n → ∞), the classical
uniqueness theorem implies f ≡ 0 and we are done.

Looking at this proof one might feel that the presence of too many branch points
{ϕ−1(cn) : n ∈ N} is essential in the occurrence of the Myrberg phenomenon for
(∆̃0,∆0, ϕ) and that (1.1) is no longer true for the smooth covering surface (R̃, R, ϕ).
For this reason it was a bit surprising when we found (cf. [5]) that the Myrberg
phenomenon can occur even for a certain (R̃, R, ϕ) in spite of the complete lack
of branch points. One of the main purpose of this paper is to clarify why such a
phenomenon can occur. We will show in §3 that there is a case where a kind of
uniqueness theorem can hold for H∞(R) at z = 0 and that, as in the original case of
Myrberg, this uniqueness theorem yields the validity of the Myrberg phenomenon
for this (R̃, R, ϕ). The uniqueness theorem for H∞(R) at z = 0 we have in mind is
the following: if limz<0,z→0 f (n)(z) = 0 for every n = 0, 1, . . . for an f in H∞(R),
then f ≡ 0 on R.

1.4. To facilitate our study, hereafter throughout this paper unless the contrary is
explicitly stated, we restrict {cn : n ∈ N} to the special sequence cn = 2−n(n ∈ N)
and we introduce a sequence (N(n))n≥1 to relate (rn)n≥1 with (cn)n≥1 by

rn = cN(n)
n = 2−nN(n) (n ∈ N).(1.4)

The condition (1.2) in the present case takes the following form:

2−nN(n) + 2−(n+1)N(n+1) < 2−(n+1) (n ∈ N).(1.5)

Observe that (1.5) implies N(n) > 1 + 1/n (n ∈ N) and conversely N(n) > 1 +
2/n(n ∈ N) implies (1.5). The sequence (N(n))n≥1 with (1.5) will be referred to
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as being admissible. We will thus consider, using the notation R(N(n)) in place of
R(2−n, 2−nN(n)) for simplicity, the following special Zalcman domain

R := R(N(n)) := ∆0 \
∪
n∈N

∆̄(2−n, 2−nN(n)),(1.6)

which varies depending upon the choice of admissible sequence (N(n))n≥1 while
the sequence (2−n)n≥1 of centers are always fixed.

1.5. We are then interested in finding conditions on (N(n))n≥1 under which the
Myrberg phenomenon occurs or does not occur for the covering surface (R̃, R, ϕ)
with R = R(N(n)). We obtained in our former papers ([5], [6]) the following result.

Theorem A. If the point z = 0 is irregular for the region R = R(N(n)) in the
sense of potential theory (or equivalently, (N(n))n≥1 diverges so rapidly as to satisfy∑

n≥1 1/N(n) < ∞), then the Myrberg phenomenon occurs for the covering surface
(R̃, R, ϕ).

It is a natural question to ask whether the sufficiency condition (i.e. the irregu-
larity at z = 0 ) in the above result is also necessary for the validity of the Myrberg
phenomenon for (R̃, R, ϕ) or not. The main purpose of this paper is to answer the
question in the negative. This will be achieved as follows. We first prove in §4
below, as mentioned above in 1.3, the main theorem that the validity of what we
call the uniqueness theorem for H∞(R) at z = 0 implies the occurrence of the Myr-
berg phenomenon for (R̃, R, ϕ) (Theorem 4.1). Although it is not really needed, we
prove in §5 below that the irregularity of z = 0 implies the validity of the unique-
ness theorem for H∞(R) at z = 0 (Proposition 5.1), and by this together with the
above main result we obtain an alternate proof of Theorem A above as Theorem
5.1. We then prove in §6 below that a kind of quasi analyticity condition at z = 0
for R again implies the uniqueness theorem for H∞(R) at z = 0 (Proposition 6.1).
Once again using the main theorem 4.1 we thus obtain the new result that what
we call the quasi analyticity condition at z = 0 implies the validity of the Myrberg
phenomenon for (R̃, R, ϕ)(Theorem 6.1). In §7 below we give an example of an
admissible sequence (N(n))n≥1 giving the regularity of z = 0 and at the same time
the quasi analyticity of z = 0, which deduces the above negative solution required
(Theorem 7.1).

In the final §8 below we append a study to seek the invalidity condition for
the Myrberg phenomenon, which is a negative approach to pursue the complete
condition for the occurence of the Myrberg phenomenon. We will show that the
slowly increasingness condition

sup
n∈N

n

(
N(n) − n + 1

2

)
< ∞

implies the invalidity of the Myrberg phenomenon for (R̃, R, ϕ) with R = R(N(n))
(Theorem 8.1).
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2. The Cauchy integral formula

2.1. Let R = R(cn, rn) be a Zalcman domain in (1.3). For simplicity we denote
by ∆n the closed disc ∆̄(cn, rn) and by Γn the circle ∂∆n as the set but given
negative orientation for n ∈ N whereas we denote by ∆0 the punctured open unit
disc ∆(0, 1) \ {0} and we denote by Γ0 the circle ∂∆(0, 1) with the usual positive
orientation. Then we have

R = ∆0 \
∪
n∈N

∆n.

Any function f in H∞(R) has nontangential boundary values almost everywhere
on each Γn defining a function in L∞(Γn), which we also denote by f so that f(ζ)
can be considered for almost every ζ in each Γn (n = 0, 1, . . . ). Then we have the
following Cauchy integral formula for functions f in H∞(R) (cf. e.g. [16],[2]):

f (ℓ)(z) =
∞∑

n=0

ℓ!
2πi

∫
Γn

f(ζ)
(ζ − z)ℓ+1

dζ (z ∈ R ; ℓ = 0, 1, . . . ),(2.1)

where f (ℓ) is the ℓthderivative of f on R with the convention f (0) = f . It is
sometimes convenient to consider f to be contained in L∞(Γ) with Γ = ∪∞

n=0Γn

and to use the notation
ℓ!

2πi

∫
Γ

f(ζ)
(ζ − z)ℓ+1

dζ

to mean the right hand side of (2.1).
To show the validity of (2.1) we consider the positive number δm that is the

additive mean of cm+1 +rm+1 and cm−rm (m ∈ N) and we denote by γm the circle
|z| = δm with negative orientation. For each z in R we take a sufficiently large m
such that z ∈ Rm, the region bounded by Γ0,Γ1, . . . , Γm and γm. The region

Rε
m := {w ∈ Rm : dist(w, ∂Rm) > ε}

is a relatively compact subregion of Rm such that ∂Rε
m consists of m + 2 mutually

disjoint circle concentric to each corresponding component of ∂Rm for sufficiently
small ε > 0. The usual Cauchy integral formula yields

f (ℓ)(z) =
ℓ!

2πi

∫
∂Rε

m

f(ζ)
(ζ − z)ℓ+1

dζ.

Since f |∂Rε
m is uniformly bounded as ε ↓ 0 and converges to f |∂Rm almost every-

where in a suitable parametrization as ε ↓ 0, the Lebesgue dominated convergence
theorem implies

f (ℓ)(z) =
ℓ!

2πi

∫
∂Rm

f(ζ)
(ζ − z)ℓ+1

dζ

=
∑

0≤n≤m

ℓ!
2πi

∫
Γn

f(ζ)
(ζ − z)ℓ+1

dζ +
ℓ!

2πi

∫
γm

f(ζ)
(ζ − z)ℓ+1

dζ.

The integral over γm is bounded by ℓ!(supR |f |)δm/(|z| − δm)ℓ+1 and thus goes to
zero as m → ∞, which yields (2.1).
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2.2. Thus far no restrictions are imposed upon (cn, rn)n≥1 except for the condition
(1.2), by which the best conclusion we could make is (2.1). We now consider the
following condition for (cn, rn)n≥1:

∞∑
n=1

rn(cn − rn)−(ℓ+1) < ∞ (for all ℓ = 0, 1, . . . ).(2.2)

Under the condition (2.2) it is easy to see that

∞∑
n=0

ℓ!
2πi

∫
Γn

f(ζ)
ζℓ+1

dζ =
ℓ!

2πi

∫
Γ

f(ζ)
ζℓ+1

dζ

is well defined, which we denote by f (ℓ)(0):

f (ℓ)(0) =
ℓ!

2πi

∫
Γ

f(ζ)
ζℓ+1

dζ.(2.3)

Clearly the formal ℓthderivative f (ℓ) of f at z = 0 just defined coincides with the
genuine ℓthderivative of f at z = 0 if f is holomorphic at z = 0. It is also important
that under the condition (2.2) we have

f (ℓ)(0) = lim
z<0,z→0

f (ℓ)(z) (ℓ = 0, 1, . . . ).(2.4)

In fact, observe that
∫
Γn

|dζ| = 2πrn and |f(ζ)/(ζ − z)ℓ+1| is dominated by
(supR |f |) ·(cn−rn)−(ℓ+1) on Γn for z in the negative real line, and hence |f(ζ)/(ζ−
z)ℓ+1| is dominated by an integrable step function on Γ for every z < 0. We can
thus apply the Lebesgue dominated convergence theorem to deduce (2.4) by making
z → 0 (z < 0) in (2.1). (cf. [3], where (2.4) is proved for more general domains.)

2.3. Assuming (2.2) we can associate the following functions Fℓ(z) with f(z) given
by

Fℓ(z) :=
1

2πi

∫
Γ

f(ζ)
ζℓ(ζ − z)

dζ (z ∈ R ; ℓ = 0, 1, . . . ).(2.5)

Clearly the right hand side of the above is well defined for every z ∈ R ∪ {0} and

F0(z) ≡ f(z) (z ∈ R), ℓ!Fℓ(0) = f (ℓ)(0) (ℓ ∈ N).(2.6)

By a simple direct calculation using (2.1) (ℓ = 0), (2.3) and (2.5), we obtain the
following identity:

f(z) −
ℓ−1∑
k=0

f (k)(0)
k!

zk = zℓFℓ(z) (ℓ = 0, 1, . . . ).(2.7)

If cn = 2−n and rn = 2−nN(n), we consider the following divergence condition
for (N(n))n≥1 :

lim
n→∞

N(n) = ∞.(2.8)
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The condition above assures more than sufficiently (N(n))n≥1 satisfy (1.5) if the
first few terms are modified, if necessary. Since

∞∑
n=1

rn(cn − rn)−ℓ ≤
∞∑

n=1

2−nN(n)(2−n/2)−ℓ =
∞∑

n=1

2−n(N(n)−ℓ−ℓ/n)

for ℓ = 1, 2, . . . , the condition (2.8) implies (2.2). The following result now follows
instantly from (2.7).

Lemma 2.1. Suppose an admissible sequence (N(n))n≥1 satisfies (2.8). Then the
condition f (ℓ)(0) = 0 (ℓ = 0, 1, . . . ) for an f in H∞(R) holds if and only if

f(z) ≡ zℓFℓ(z) (z ∈ R; ℓ = 0, 1, . . . ).(2.9)

3. The uniqueness theorem

3.1. In this section 3 we also consider a general Zalcman domain R(cn, rn) (cf. 1.2)
in addition to the special Zalcman domain R(N(n)). We say that the uniqueness
theorem is valid for H∞(R(cn, rn)) at z = 0 if the following condition is satisfied:
if an f in H∞(R(cn, rn)) satisfies the condition

lim
z<0,z→0

f (ℓ)(z) = 0 (ℓ = 0, 1, . . . ),(3.1)

then the function f vanishes identically on R(cn, rn). It is an interesting but difficult
problem to find a complete condition even for admissible sequences (N(n))n≥1 to
give the validity of the uniqueness theorem for H∞(R(N(n))) at z = 0. However
the following partial result will be sufficient for our present purpose.

Proposition 3.1. If the uniqueness theorem is valid for H∞(R(N(n))) at z = 0,
then (N(n))n≥1 increases so rapidly as to satisfy the condition (2.8): limn→∞ N(n)
= ∞.

Unfortunately the converse of this is not true as will be shown later in 8.1 by
the example (n/α)n≥1 with α ≥ 2. Two sufficient conditions will be given in
Propositions 5.1 and 6.1 below. The proof of the above proposition will be given
in 3.2–3.4.

3.2. Proof of Proposition 3.1. We only have to show that the uniqueness theorem
is invalid for H∞(R) (R = R(N(n))) at z = 0 if the condition (2.8) does not
hold. Thus we assume that lim infn→∞ N(n) < ∞, which implies the existence of
a positive constant µ such that {n ∈ N : N(n) ≤ µ} is an infinite set. Fix an
arbitrary sequence (µn)n≥1 of positive numbers µn satisfying

µn ≥ max(µ, 2), lim
n→∞

µn = lim
n→∞

(n − µn) = ∞

(e.g. µn = µ + 2 + n/2). Then we can find an increasing sequence (νn)n≥1 of
positive integers νn such that

N(νn) ≤ µ (n ∈ N)(3.2)
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and

αn := (n − µn) − 1
νn

n−1∑
k=1

νk → ∞ (n ∈ N; as n → ∞)(3.3)

(e.g. νn ≥ 2
n−µn

∑n−1
k=1 νk when n is large). Using these sequences (µn)n≥1 and

(νn)n≥1 we define a new sequence (cn)n≥1 of centers cn and also a new sequence
(rn)n≥1 of radii rn by

cn := 2−νn , rn := 2−νnµn (n ∈ N).

In view of rn ≤ 2−νnN(νn) (n ∈ N) by (3.2), we see that

S := R(cn, rn) ⊃ R := R(2−n, 2−nN(n)) = R(N(n)).

Hence, in order to show the invalidity of the uniqueness theorem for H∞(R), it
suffices to show that the uniqueness theorem for H∞(S) is invalid. For this purpose
we only have to construct a nonconstant f in H∞(S) satisfying (3.1). Consider the
infinite product

f(z) :=
∏
n∈N

(
1 +

cn

z − cn

)
(z ∈ S),

which will be seen in the sequel to be a required function. We consider auxiliary
functions

fpm(z) :=
∏

p<n≤m

(
1 +

cn

z − cn

)
(z ∈ S)

for p + 1, m ∈ N (p < m), and set

fp(z) := lim
m→∞

fpm(z).

In particular f0(z) = f(z).
For simplicity we set qn(z) := cn

z−cn
(n ∈ N). Since

|qn(z)| ≤ 2cn/|z| (|z| ≥ cp; n > p),

we see that fp(z) defines a meromorphic function on 0 < |z| ≤ ∞ with {cn : n > p}
as its pole set. Hence fp is holomorphic on (S \ {0}) ∪ (∪1≤n≤p∆n) and a fortiori
on S \ {0}, where we have set ∆n := ∆(cn, rn) (n ∈ N) only in this proof.

3.3. We wish to show that fp ∈ H∞(S), i.e., supz∈S |fp(z)| < ∞, for each p ∈ N.
For this purpose we first show that

sup
z∈∂∆k

|fpm(z)| ≤ Ap(3.4)

for p < k ≤ m, where Ap is a constant depending only on p. Since we have chosen
as µk ≥ 2, it follows that

εk := 2νkrk = 2−νk(µk−1) < 2−1(k ∈ N).
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Firstly we see that there is a positive constant B such that

Bpk :=
∏

p<n<k

1
1 − (1 + εk)2−(νk−νn)

≤ B (p + 1, k ∈ N, p + 1 < k).

Clearly, we see that νk − νn ≥ k − n. If k > n, then (1 + εk)2−(νk−νn) < (3/2) ·
2−(k−n) < 1. Noting that (1 − x)−1 is increasing for x < 1, we have

Bpk ≤
∏

p<n<k

1
1 − (3/2)2−(k−n)

=
∏

1≤j≤k−p−1

1
1 − (3/2)2−j

≤
∏
j≥2

1
1 − 3 · 2−j

=
∏
j≥2

(
1 +

3 · 2−j

1 − 3 · 2−j

)
=: B (p + 1, k ∈ N, p + 1 < k).

Similarly there is a positive constant C such that

Ckm :=
∏

k<n≤m

1 − εk

1 − εk − 2−(νn−νk)
≤ C (k,m ∈ N, k < m).

Fixing k ∈ N, we next evaluate

Pn := max
z∈∂∆k

|1 + qn(z)|

for three cases separately: 1 ≤ n < k, n = k, n > k.
The case 1 ≤ n < k: we have

Pn = max
z∈∂∆k

∣∣∣∣ z

z − 2−νn

∣∣∣∣ ≤ 2−νk + rk

2−νn − 2−νk − rk
=

(1 + 2νkrk)2−νk

2−νn − (1 + 2νkrk)2−νk

=
(1 + εk)2−(νk−νn)

1 − (1 + εk)2−(νk−νn)
≤ 2 · 2−(νk−νn)

1 − (1 + εk)2−(νk−νn)
.

The case n = k: we have

Pn = max
z∈∂∆n

∣∣∣∣ z

z − 2−νn

∣∣∣∣ =
2−νk + rk

rk
=

1 + εk

2νkrk
≤ 2 · 2νk(µk−1).

The case n > k: we have

Pn = max
z∈∂∆k

|1 + qn(z)| ≤ 1 + max
z∈∂∆k

|qn(z)| = 1 + max
z∈∂∆k

∣∣∣∣ 2−νn

z − 2−νn

∣∣∣∣
=1 +

2−νn

(2−νk − rk) − 2−νn
=

1 − εk

1 − εk − 2−(νn−νk)
.

In view of (3.3) we deduce that for p < k ≤ m

Mk := max
z∈∂∆k

|fpm(z)| ≤
∏

p<n≤m

Pn =

 ∏
p<n<k

Pn

 · Pk ·

 ∏
k<n≤m

Pn


≤

(
2k−p−12−

∑
p<n<k

(νk−νn)
Bpk

)
· (2 · 2νk(µk−1)) · Ckm

=2k−p2−(k−p−µk)νk+
∑

p<n<k
νn · BpkCkm

≤2νk2−(αk−p)νk · BpkCkm ≤ BC2−(αk−p−1)νk .
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From our choice of the sequence νk and the definition of αk in (3.3), it follows that
the value

Ap = BC max
k>p

2−(αk−p−1)νk

is finite for each p = 0, 1, . . . , and we conclude (3.4).
Note that the rational function fpm(z) is holomorphic on Ĉ \ {cp+1, . . . , cm},

where Ĉ : |z| ≤ ∞. The maximum principle yields |fpm(z)| ≤ Ap (z ∈ S). Since
fp = limm→∞ fpm, we conclude fp ∈ H∞(S).

3.4. It only remains to show that

lim
z<0,z→0

f (ℓ)(z) = 0 (ℓ = 0, 1, . . . ).

First we show that the domain S = R(cn, rn) satisfies the condition (2.2). Noting
cn = 2−νn , rn = 2−νnµn , we have

∞∑
n=1

rn(cn − rn)−(ℓ+1) ≤
∞∑

n=1

rn(cn/2)−(ℓ+1) =
∞∑

n=1

2−νnµn+(νn+1)(ℓ+1)

=
∞∑

n=1

2−νn(µn−ℓ−1−(ℓ+1)/νn).

Since νn ≥ n and µn → ∞ by the way (µn)n≥1 was chosen, the final sum converges
for ℓ = 0, 1, . . . . We can now apply the results obtained in 2.2–2.3 to the functions
fp(z) in H∞(S). Using (2.4), (2.5) and (2.6), we have

ℓ!Fpℓ(0) = f (ℓ)
p (0) = lim

z<0,z→0
f (ℓ)

p (z) (p, ℓ = 0, 1, . . . ),(3.5)

where

Fpℓ(z) :=
1

2πi

∫
Γ

fp(ζ)
ζℓ(ζ − z)

dζ (z ∈ S, Γ := ∂S \ {0}; p, ℓ = 0, 1, . . . ).

We now prove F0ℓ(0) = f (ℓ)(0) = 0 by induction on ℓ. Note that

f(z) = f1(z)
z

z − c1
.

Since f1(0) = limz<0,z→0 f1(z) exists by (3.5), we have F00(0) = f(0) = f1(0)·0 = 0.
This proves the case ℓ = 0. Suppose that F0ℓ(0) = f (ℓ)(0) = 0 for 0 ≤ ℓ < k already
have been proved. Then, we have f(z) = zkF0k(z) by (2.7). Note that

F0k(z) = f0,k+1(z)fk+1(z)/zk = fk+1(z) · z
∏

1≤n≤k+1

1
z − cn

.

Applying (3.5) to the function fk+1 with ℓ = 0, fk+1(0) = limz<0,z→0 fk+1(z) exists.
Thus F0k(0) = fk+1(0) · 0 = 0. We conclude f (k)(0) = F0k(0) = 0 as desired.
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4. The main theorem

4.1. It is likely to happen that the Myrberg phenomenon occured for (R̃, R, ϕ)
( R = R(N(n)) ) if rn = 2−nN(n) decreases enough rapidly as n → ∞ since the
Myrberg phenomenon as its prototype occurs for the extreme case (∆̃0,∆0, ϕ) when
each rn reduces to rn = 0 (n ∈ N). The same is true of the uniqueness theorem for
H∞(R) ( R = R((N(n)) ). We now show as the main theorem of this paper that
the rapidity of the decrease to make the latter valid is sufficient for the former to
occur.

Theorem 4.1. If the uniqueness theorem is valid for H∞(R) (R = R(N(n)) at
z = 0, then the Myrberg phenomenon occurs for the covering surface (R̃, R, ϕ).

4.2. Proof of Theorem 4.1. Take an arbitrary g in H∞(R̃) with which an f in
H∞(R) is determined by the following relation:

f(z) = (g(z+) − g(z−))2(4.1)

for every z in R, where ϕ−1(z) = {z+, z−}. We have to show that f is identically
zero on R. Without loss of generality we may assume that |g| ≤ 1/2 on R̃ so that
|f | ≤ 1 on R. By Proposition 3.1 we have

lim
n→∞

N(n) = ∞.(4.2)

For sufficiently large positive integers n we consider annuli

An = {z : 2−nN(n) < |z − 2−n| < 2−n−2},

which are contained in R. We choose a coordinate w on the annulus ϕ−1(An) so
as to satisfy the relation ϕ(w) = w2 + 2−n. Then ϕ−1(An) is represented by w as

ϕ−1(An) = {w : 2−nN(n)/2 < |w| < 2−n/2−1}

and w = ϕ−1(z) as w =
√

z − 2−n.
Take the concentric circle γn : |w| = (2−nN(n)/2 · 2−n/2−1)1/2 in the annulus

ϕ−1(An). We will estimate the diameter diam(g(γn)) of the image curve g(γn) of
γn under the mapping g. For simplicity we set 2−nN(n)/2 = a and 2−n/2−1 = b.
Then ϕ−1(An) is {a < |w| < b} and γn : |w| =

√
ab. Taking w in γn we use the

Cauchy integral formula to deduce

|g′(w)| =

∣∣∣∣∣ 1
2πi

∫
|ω|=b

g(ω)
(ω − w)2

dω − 1
2πi

∫
|ω|=a

g(ω)
(ω − w)2

dω

∣∣∣∣∣
≤ 1

2π

(∫
|ω|=b

1/2
(b −

√
ab)2

|dω| +
∫
|ω|=a

1/2
(
√

ab − a)2
|dω|

)

=
1

(
√

b −
√

a)2
.
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Using this estimate we see that

diam (g(γn)) ≤1
2

∫
γn

|g′(w)||dw| ≤ π
√

ab

(
√

b −
√

a)2

=π

√
a/b

(1 −
√

a/b)2
= π

(2−nN(n)/22n/2+1)1/2(
1 − (2−nN(n)/22n/2+1)1/2

)2 .

Therefore we obtain the desired estimates

diam (g(γn)) ≤ 2−nN(n)/8

for all sufficiently large n. We set

ρn := 2−n + 2−nN(n)/22−n/2−1.

The point ρn is in An for every sufficiently large n and (ρn)+ and (ρn)− belong to
γn, where we have set ϕ−1(ρn) = {(ρn)+, (ρn)−}. Hence we have

|f(ρn)| = |g((ρn)+) − g((ρn)−)|2 ≤ (diam(g(γn)))2 ≤ 2−nN(n)/4.

Since ρℓ
n > 2−ℓn for every ℓ = 0, 1, . . . , we see by the above estimate that |f(ρn)/ρℓ

n|
≤ 2−n(N(n)/4−ℓ) and we conclude that

lim
m→∞

f(ρm)/ρℓ
m = 0 (ℓ = 0, 1, . . . ).(4.3)

We now maintain that the following limits exist (cf. (2.5)):

lim
m→∞

Fℓ(ρm) = Fℓ(0) =
f (ℓ)(0)

ℓ!
(ℓ = 0, 1, . . . ).(4.4)

For this purpose we estimate the absolute value of the integrand in the integral
defining Fℓ(ρm) on every integrating domain ∂∆n separately for sufficiently large
m. First for n = m

max
ζ∈∂∆n

∣∣∣∣ f(ζ)
ζℓ(ζ − ρn)

∣∣∣∣ ≤ 1
(2−n − 2−nN(n))ℓ(2−nN(n)/22−n/2−1 − 2−nN(n))

≤ 2/
(
2−ℓn · 2−nN(n)/22−n/2−1

)
≤ 22nN(n)/3

since n = m is sufficiently large. Next for sufficiently large n with n ̸= m we have

max
ζ∈∂∆n

∣∣∣∣ f(ζ)
ζℓ(ζ − ρm)

∣∣∣∣ ≤ 1
(2−n − 2−nN(n))ℓ · 2−nN(n)/2

≤ 22nN(n)/3.

Thus the absolute value of the integrand in the integral defining Fℓ(ρm) is dom-
inated by an integrable step function independent of m. Therefore the Lebesgue
dominated convergence theorem allows us to take the limit under the integral sign
to conclude the required relation (4.4).

We finally prove inductively that f(z) = zℓFℓ(z) and f (ℓ)(0) = 0 for every
ℓ = 0, 1, . . . (cf. Lemma 2.1). Observe that F0(z) = f(z), and (4.3) and (4.4) for
ℓ = 0 assure that f (0)(0) = 0. By (2.7) for ℓ = 1 we see that f(z) = z1F1(z). By
assuming f(z) = zℓFℓ(z) and f (k)(0) = 0 for 0 ≤ k ≤ ℓ, (2.7) for ℓ + 1 again yields

f(z) − f (ℓ+1)(0)
(ℓ + 1)!

zℓ+1 = zℓ+2Fℓ+2(z).
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This implies that
f (ℓ+1)(0)
(ℓ + 1)!

=
f(ρm)
ρℓ+1

m

− ρmFℓ+2(ρm).

By (4.3) for ℓ+1 and (4.4) for ℓ+2 we see on making m → ∞ in the above identity
that f(ℓ+1)(0)

(ℓ+1)! = 0−0 ·Fℓ+2(0) = 0. By the mathematical induction we can conclude
that f (ℓ)(0) = 0 (ℓ = 0, 1, . . . ). Therefore the validity of the uniqueness theorem
for H∞(R) at 0 yields that f ≡ 0 on R.

5. Irregular boundary point

5.1. We suppose that the radii 2−nN(n) of removed discs ∆n of R = R(N(n))
decrease so rapidly as to satisfy

∞∑
n=1

1/N(n) < ∞,(5.1)

which of course implies N(n) → ∞ (n → ∞). The condition is equivalent to
∞∑

n=1

n/ log(1/2−nN(n)) < ∞,(5.2)

which is nothing but the Wiener criterion (cf. e.g. p.104 in [15] or (5.1.15′) in [9]):
(5.2) is necessary and sufficient for the point z = 0 to be an irregular boundary
point of the region R in the sense of potential theory. Thus assuming (5.1) amounts
to the same to assuming that the point z = 0 is irregular for the region R. We have
the following result (cf. [11]).

Proposition 5.1. If the condition (5.1) is satisfied for R = R(N(n)) (i.e. if the
origin 0 is irregular for the region R), then the uniqueness theorem is valid for
H∞(R) at 0.

5.2. Proof of Proposition 5.1. Choose an arbitrary f in H∞(R) with limz<0,z→0

f (ℓ)(z) = 0 for every ℓ = 0, 1, . . . . We have to show that f ≡ 0 on R. Contrariwise
we assume that f ̸≡ 0 on R. Without loss of generality we may suppose that |f | < 1
on R. Thus log(1/|f(z)|) is a positive superharmonic function on R.

We take another sequence of closed discs ∆′
n := ∆̄(2−n, (2−nN(n))1/2) (n =

1, 2, . . . ). These discs are mutually disjoint for sufficiently large n. By changing
the radii suitably, if necessary, for the first finite number of discs ∆′

n under the
restrictions ∆′

n ⊃ ∆n, we may assume that ∆′
n are all contained in ∆0 and mutually

disjoint. Consider the region

S := ∆0 \
∞∪

n=1

∆′
n.

We maintain that there exists a positive harmonic function h(z) on S with boundary
values zero on ∂S \ {0} such that

0 < h(z) < log(1/|z|) (z ∈ S).(5.3)

Observe that the condition (5.2) is equivalent to
∑∞

n=1 n/ log
(
1/(2−nN(n))1/2

)
< ∞

so that the point z = 0 is also an irregular boundary point for the smaller region
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S in the sense of the Dirichlet problem. Let G(z, ζ) be the Green function for the
region S. The Bouligand theorem says that

lim sup
ζ∈S,ζ→0

G(z, ζ) > 0

for one and hence for every z in R. By the Harnack inequality, there exists a
sequence {ζn} in S converging to 0 such that (G(z, ζn))n≥1 converges to a positive
harmonic function h(z) locally uniformly on S. Since each G(z, ζn) has vanishing
boundary values on ∂S \ {0} and each component ∂∆′

n of ∂S \ {0} is a circle,
considering an annular subdomain of S with ∂∆′

n as its inside boundary circle,
an application of the maximum principle for harmonic functions shows that the
limit function h(z) must have boundary values zero on ∂S \ {0}. Moreover, by the
comparison principle, we have

G(z, ζn) < log
∣∣∣∣1 − ζ̄nz

z − ζn

∣∣∣∣ (z ∈ S \ {ζn}).

On letting n → ∞, we obtain (5.3). Since we have (2.8), by Lemma 2.1 the condition
limz<0,z→0 f (ℓ)(z) = 0 (ℓ = 0, 1, . . . ) is equivalent to f(z) = zℓFℓ(z) (z ∈ R) for
every ℓ = 1, 2, . . . . By (2.8) we see that

Cℓ := sup
z∈S

|Fℓ(z)| ≤
∞∑

n=0

1
2π

∫
∂∆n

1
|ζ|ℓ(2−nN(n)/2 − 2−nN(n))

|dζ| < ∞

for every ℓ = 0, 1, . . . . Hence, we have |f(z)| ≤ Cℓ|z|ℓ for z in S̄\{0}, or equivalently,
log(1/|f(z)|) dominates the function ℓ log(1/|z|) − log Cℓ for every ℓ = 0, 1, . . . .
Hence in particular by (5.3) we obtain

log
1

|f(z)|
≥ ℓh(z) − log Cℓ (z ∈ S \ {0}; ℓ = 0, 1, . . . ).(5.4)

Fix an arbitrary positive number ε and consider the superharmonic function

s(z) = sℓ,ε(z) := log
1

|f(z)|
+ ε log

1
|z|

− ℓh(z)

on S̄ \ {0}. Clearly s ≥ 0 on ∂S \ {0}. By (5.4) and by the presence of the term
ε log 1

|z| , we have limz∈S,z→0 s(z) = +∞. Therefore we can conclude that

lim inf
z∈S,z→ζ

s(z) ≥ 0 (ζ ∈ ∂S).

By the minimum principle for superharmonic functions we see that s(z) = sℓ,ε(z) ≥
0 (z ∈ S). On letting ε tend to zero we now conclude that

log
1

|f(z)|
≥ ℓh(z) (ℓ = 0, 1, . . . )

for any z in S, which is a desired contradiction.
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5.3. In view of the main theorem 4.1 and Proposition 5.1 we obtain the following
result (Theorem A, cf. [5], [6]).

Theorem 5.1. If the origin 0 is an irregular boundary point of R = R(N(n)) in
the sense of potential theory, then the Myrberg phenomenon occurs for the surface
(R̃, R, ϕ).

6. Quasi analytic character

6.1. With an admissible sequence (N(n))n≥1 we associate a sequence (M(ℓ))ℓ≥1

in N ∪ {∞} determined by the following relation

M(ℓ) := min{m ∈ N : N(ν) ≥ ℓ + 2 (ν ≥ m)}(6.1)

under the convention min ∅ = +∞. Clearly (M(ℓ))ℓ≥1 is a nondecreasing sequence
divergent to ∞; (M(ℓ))ℓ≥1 ⊂ N if and only if limn→∞ N(n) = ∞. Roughly speaking
the more (N(n))n≥1 diverges to ∞ rapidly, the more (M(ℓ))ℓ≥1 diverges to ∞
slowly, and vice versa. In terms of the associated sequence (M(ℓ))ℓ≥1 we consider
the following condition for the sequence (N(n))n≥1:

∞∑
ℓ=1

1/2M(ℓ) = ∞.(6.2)

This condition clearly assures that (M(ℓ))ℓ≥1 ⊂ N so that (N(n))n≥1 satisfies (2.8).
We will later see that this condition (6.2) has nothing to do with the condition
(5.1), i.e. the boundary point z = 0 of the region R = R(N(n)) may or may not be
irregular in the sense of potential theory. We maintain the following result (cf. [12]).

Proposition 6.1. If (N(n))n≥1 diverges to ∞ so rapidly as to satisfy the condition
(6.2), then the uniqueness theorem is valid for H∞(R) (R = R(N(n)) at z = 0.

The proof will be given in 6.3 below. From the above result combined with the
main theorem 4.1 we immediately derive the following result.

Theorem 6.1. If the sequence (N(n))n≥1 satisfies (6.2), then the Myrberg phe-
nomenon occurs for the covering surface (R̃, R, ϕ).

6.2. Before proceeding to the proof of Proposition 6.1 we insert here the following
celebrated classical result which will be essentially made use of below in the next
Subsection 6.3. Assume that a holomorphic function g(z) defined on the disc W =
∆(−1/4, 1/4) = {z : |z + 1/4| < 1/4} touching the origin z = 0 satisfies the
inequalities:

|g(z)| ≤ Cτℓ|z|ℓ (z ∈ W ; ℓ = 0, 1, . . . ),(6.3)

where C is a positive constant independent of ℓ and (τℓ)ℓ≥1 is a sequence of positive
numbers. Then the following result holds.
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Lemma 6.1 (The Carleman uniqueness theorem). If the sequence (τℓ)ℓ≥1

satisfies the condition

∞∑
ℓ=1

(τℓ)−1/ℓ = ∞,(6.4)

then the function g(z) vanishes identically on the disc W .

This is a part and actually a trivial variant of the Ostrowski theorem [13], which is
partly a generalization and partly a reformulation of the original Carleman Theorem
[1]. We recommend for the reader unfamiliar with the proof of the above lemma
to read §1 in pp. 194-205 of the above Ostrowski old paper [13], which presents a
clear and easily readable reasoning.

6.3. Proof of Proposition 6.1. Take an arbitrary f ∈ H∞(R) with f (ℓ)(0) = 0
(ℓ = 0, 1, . . . ). We are to show that f ≡ 0 on R. We first estimate |Fℓ(z)| given
by (2.5) for f when z varies in the disc W = ∆(−1/4, 1/4) which is contained in R
and whose periphery contains the origin 0. The result is :

sup
z∈W

|Fℓ(z)| ≤ σℓ
∞∑

n=0

2n(ℓ+1−N(n)) (ℓ = 1, 2, . . . ),(6.5)

where σ = supℓ∈N 2(1+1/ℓ)∥f∥1/ℓ
∞ (∥f∥∞ = supR |f |) is a finite constant. Here we

understand that the term corresponding to n = 0 is 1 in the summation of the right
hand side of (6.5). To show (6.5) observe that

|Fℓ(z)| ≤
∞∑

n=0

1
2π

∫
Γn

∥f∥∞
|ζ|ℓ|ζ − z|

|dζ|

for z in W . First for n = 0, since |ζ| = 1 and |ζ − z| ≥ 1/2 for z ∈ W and ζ ∈ Γ0,
we have

1
2π

∫
Γ0

∥f∥∞
|ζ|ℓ|ζ − z|

|dζ| ≤ 2∥f∥∞ < σℓ.

Next, for n ≥ 1, since |ζ|, |ζ − z| ≥ 2−(n+1) for z ∈ W and ζ ∈ Γn, we have

1
2π

∫
Γn

∥f∥∞
|ζ|ℓ|ζ − z|

|dζ| ≤(2n+1)ℓ+1∥f∥∞2−nN(n)

≤σℓ2n(ℓ+1−N(n)).

Hence we can conclude that (6.5) is valid.
From (6.5) we derive the inequalities

|f(z)| ≤ σℓ2ℓM(ℓ)|z|ℓ (z ∈ W ; ℓ ≥ 2).(6.6)

Since f(z) = zℓFℓ(z), for the proof of (6.6), we only have to show that

sup
z∈W

|Fℓ(z)| ≤ σℓ2ℓM(ℓ) (z ∈ W ; ℓ ≥ 2).
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But in view of (6.5) it is sufficient to prove that
∞∑

n=0

2n(ℓ+1−N(n)) ≤ 2ℓM(ℓ) (ℓ ≥ 2).

This is shown as follows. We view the left hand side of the above as the sum∑
0≤n<M(ℓ)

2n(ℓ+1−N(n)) +
∑

n≥M(ℓ)

2n(ℓ+1−N(n)).

By recalling the definition of M(ℓ) we see that N(n) ≥ 1 trivially for all n and
hence for 0 ≤ n < M(ℓ) and that N(n) ≥ ℓ + 2 for n ≥ M(ℓ). Therefore the above
is dominated by ∑

0≤n<M(ℓ)

2ℓn +
∑

n≥M(ℓ)

2−n =
2ℓM(ℓ) − 1

2ℓ − 1
+ 21−M(ℓ),

which is at most 2ℓM(ℓ) if ℓ ≥ 2.
Now apply Lemma 6.1 to g = f |W . The condition (6.3) is valid for C =

max(1, ∥f∥∞) and τℓ := σℓ2ℓM(ℓ). By (6.2) we see that
∞∑

ℓ=1

(τℓ)−1/ℓ = σ−1
∞∑

ℓ=1

1/2M(ℓ) = ∞,

i.e. (6.4) is satisfied. Therefore, by Lemma 6.1, f |W = 0 and hence f vanishes
identically on R.

7. Regular boundary point

7.1. We now come to the stage of being able to answer negatively, as one of the
main purposes of this paper, to the question whether the irregularity of the point
z = 0 in Theorem A or Theorem 5.1 is also necessary for the validity of the Myrberg
phenomenon for (R̃, R, ϕ).

Theorem 7.1. There is an R = R(N(n)) such that z = 0 is a regular boundary
point of R in the sense of potential theory and yet the Myrberg phenomenon is valid
for the surface (R̃, R, ϕ).

In view of Theorem 6.1 we only have to show the existence of an admissible
sequence (N(n))n≥1 satisfying (6.2) and not satisfying (5.1). We denote by Q (I,
resp.) the family of admissible sequences (N(n))n≥1 satisfying the condition (6.2) (
(5.1), resp.). We also denote by N the family of all admissible sequence (N(n))n≥1

satisfying (2.8): limn→∞ N(n) = ∞. Clearly Q∪I ⊂ N . Then our main task is to
show that Q\I is not empty, which is achieved below in Subsection 7.5. In passing
we will also remark that I \ Q, Q∩ I, and N \ (Q∪ I) are all not empty.

It may also be convenient to introduce the notation U (M, resp.) to mean the
family of admissible sequence (N(n))n≥1 such that the uniqueness theorem is valid
for H∞(R) at z = 0 (the Myrberg phenomenon is valid for (R̃, R, ϕ), resp.), where
R = R(N(n)). Then what we have shown in this paper may be restated as the
string of inclusion relations:

Q∪ I ⊂ U ⊂ M∩N ⊂ M.
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An important open question is to determine whether the three inclusions in the
above string are proper or not. This problem is completely left open for future
study.

7.2. Proof of I \ Q ̸= ∅. We maintain that (n2)n≥1 ∈ I \ Q. Since
∑

n≥1 1/n2 <

∞, (n2)n≥1 certainly belongs to I. By the definition of the associated sequence
(M(ℓ))ℓ≥1 of (n2)n≥1, we have

M(ℓ) =
[√

ℓ + 2
]∗

(ℓ ∈ N),

where [·]∗ is the modified Gaussian symbol, i.e. [ξ]∗ is the smallest integer not less
than the real number ξ. Since M(ℓ) >

√
ℓ, we have

∑
ℓ∈N

1/2M(ℓ) ≤
∑
ℓ∈N

1/2
√

ℓ =
∑
k∈N

 ∑
k2≤ℓ<(k+1)2

1/2
√

ℓ


≤

∑
k∈N

(2k + 1)/2k < ∞

and thus (n2)n≥1 does not belong to Q and therefore belongs to I \ Q, as desired.

7.3. Proof of Q∩I ̸= ∅. We claim that (2n)n≥1 ∈ Q∩I. Since
∑

n≥1 1/2n < ∞,
(2n)n≥1 ∈ I. By the definition of the associated sequence (M(ℓ))ℓ≥1 of (2n)n≥1,
we have

M(ℓ) = [log2(ℓ + 2)]∗ (ℓ ∈ N).

Since M(ℓ) ≤ log2 2(ℓ + 2), we see that 1/2M(ℓ) ≥ 1/2(ℓ + 2) and thus∑
ℓ∈N

1/2M(ℓ) ≥
∑
ℓ∈N

1/2(ℓ + 2) = ∞

or (2n)n≥1 ∈ Q. Therefore (2n)n≥1 ∈ Q ∩ I.

7.4. Proof of N \ (Q∪I) ̸= ∅. We will see that (n/α)n≥1 ∈ N \ (Q∪I) for every
fixed α > 0. Since (n/α)n≥1 → ∞ (n → ∞), we trivially have (n/α)n≥1 ∈ N . It
is also clear that (n/α)n≥1 /∈ I, i.e.

∑
n≥1 1/(n/α) = ∞. By the definition of the

associated sequence (M(ℓ))ℓ≥1 of (n/α)n≥1, we have

M(ℓ) = [(ℓ + 2)α]∗ (ℓ ∈ N).

Since M(ℓ) ≥ (ℓ + 2)α, we have∑
ℓ∈N

1/2M(ℓ) ≤
∑
ℓ∈N

1/2(ℓ+2)α = 2−2α
∑
ℓ∈N

(1/2α)ℓ < ∞

or (N(n))n≥1 does not belong to Q. Therefore we conclude that (n/α)n≥1 ∈ N \
(Q∪ I).
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7.5. Proof of Q\I ≠ ∅ (cf. [12]). We will construct a sequence belonging to Q\I.
First we consider an auxiliary sequence (νm)m≥0 in N ∪ {0} given inductively as
follows:

νm+1 = νm + 2νm (m = 0, 1, . . . ), ν0 = 0.(7.1)

Therefore the sequence (νm)m≥0 increases considerably rapidly; the first few terms
are (νm)m≥0 = (0, 1, 3, 11, 2059, . . . ). The sequence (νm)m≥0 is used to divide N
into infinite blocks (Nm)m≥1 as follows: N = ∪m∈NNm with

Nm = {n ∈ N : νm−1 + 1 ≤ n < νm} (m ∈ N).

The first few blocks of (Nm)m≥1 are

{1}, {2, 3}, {4, 5, 6, 7, 8, 9, 10, 11}, {12, 13, . . . , 2058, 2059}, . . . .

Observe that the last term in each block forms the sequence (νm)m≥1. The sequence
(N(n))n≥1 is now given by the following:

N(n) = νm + 2 (n ∈ Nm; m ∈ N).(7.2)

Thus N(n) is a constant νm + 2 on each block Nm and therefore the sequence
(N(n))n≥1 looks like

(N(n))n≥1 = (3, 5, 5, 13, 13, 13, 13, 13, 13, 13, 13, 2061, . . . , 2061, . . . ).

We need to know the associated sequence (M(ℓ))ℓ≥1 with the present sequence
(N(n))n≥1 given by (7.2). By the definition of M(ℓ) we instantly see that

M(νm + ν) = νm + 1 (1 ≤ ν ≤ 2νm)(7.3)

for every m = 0, 1, . . . so that (M(ℓ))ℓ≥1 looks like

(M(ℓ))ℓ≥1 = (1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 12, . . . , 12, . . . ).

We now see that (N(n))n≥1 ∈ Q. In fact,

∑
ℓ∈N

1/2M(ℓ) =
∑

0≤m<∞

 ∑
1≤ν≤2νm

1/2M(νm+ν)


≥

∑
0≤m<∞

(
1/2νm+1

)
· 2νm =

∑
0≤m<∞

1/2 = ∞.

We complete the proof by showing that (N(n))n≥1 /∈ I. Since N(νm + ν) =
νm+1 + 2 = νm + 2νm + 2 (1 ≤ ν ≤ 2νm) and since ν2−ν → 0 as ν → ∞, the
evaluation goes as follows:

∑
n∈N

1/N(n) =
∑

0≤m<∞

 ∑
1≤ν≤2νm

1/N(νm + ν)

 =
∑

0≤m<∞

2νm/(νm + 2νm + 2)

=
∑

0≤m<∞

1/
(
1 + (νm + 2)2−νm

)
= ∞,

Hence (N(n))n≥1 given by (7.2) belongs to Q \ I.
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8. Invalidity of the Myrberg phenomenon

8.1. Thus far we have been concerned with the positive direction on the validity
of the Myrberg phenomenon. In this last section we turn to the negative direction.
Recall ([7]) that the Myrberg phenomenon is valid for the surface (R̃, R, ϕ) (R =
R(N(n)) ) if and only if there is a point a ∈ R such that f(a+) = f(a−) for every
f ∈ H∞(R̃), where ϕ−1(a) = {a+, a−}. Thus to maintain the invalidity of the
Myrberg phenomenon for (R̃, R, ϕ) we only have to exhibit an f ∈ H∞(R̃) with
f(a+) ̸= f(a−) for one and hence sufficiently more than needed for every a ∈ R.
For this purpose we consider the situation that the sequence (N(n))n≥1 is slowly
increasing in the sense that

sup
n∈N

n

(
N(n) − n + 1

2

)
< ∞.(8.1)

A typical example of such a sequence is (n/α)n≥1 with α ≥ 2. Then we have the
following result.

Theorem 8.1. If the condition (8.1) is satisfied, then the Myrberg phenomenon is
invalid for the surface (R̃, R, ϕ) (R = R(N(n)) ).

The proof of this theorem will be given in Subsection 8.3 below. In view of the
main theorem 4.1 we can immediately deduce from the above the following result.

Corollary 8.1. If the condition (8.1) is satisfied, then the uniqueness theorem is
invalid for H∞(R) (R = R(N(n)) ) at z = 0.

We have seen in §3 that U ⊂ N in the notation of §7. By the above result we
see that (n/α)n≥1 ∈ N \U with α ≥ 2, i.e. the condition (2.8) is necessary but not
sufficient for the validity of the uniqueness theorem for H∞(R(N(n))) at z = 0.

8.2. Consider the infinite product p(z) for each z in Ĉ \ {0} (where Ĉ : |z| ≤ ∞)
given by

p(z) :=
∏
n∈N

(
1 +

2−n

z − 2−n

)
=

∏
n∈N

z

z − 2−n
.(8.2)

Since |2−m/(z − 2−m)| ≤ 2−(m−1)/|z| (|z| ≥ 2−(n−1); m ≥ n) for every n ∈ N,
p(z) converges almost uniformly on Ĉ \ {0} and hence p(z) is certainly a meromor-
phic function on Ĉ \ {0} with {2−n : n ∈ N} as its pole set. In particular, p(z) is
holomorphic on R̄ \ {0} ( R = R(N(n)) ). The meaning of the condition (8.1) is
clarified by the following assertion.

Proposition 8.1. The function p(z) in (8.2) belongs to H∞(R) (R = R(N(n)))
if and only if the condition (8.1) is satisfied.

The proof of this result will be given below in Subsections 8.4–8.6.
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8.3. Proof of Theorem 8.1. Since (8.1) is assumed, Proposition 8.1 yields p ∈
H∞(R). Regarding the function p(z) as the product of functions z2/(z−2−2n+1)(z−
2−2n) (n ∈ N), we see that the square root f :=

√
p defines a single valued holo-

morphic function on R̃ so that f ∈ H∞(R̃). For any a ∈ R, let ϕ−1(a) = {a+, a−}.
Since f2 − p = 0, we have f(a+)f(a−) = −p(a) ̸= 0 and f(a+) + f(a−) = 0 so that
f(a+) ̸= f(a−), i.e. f separates ϕ−1(a) for every a ∈ R.

8.4. Proof of Proposition 8.1. The proof is divided into three steps. The first
step given in this subsection 8.4, a general observation on the boundedness of p on
R is made. The necessity of (8.1) is given as the second step in Subsection 8.5.
In the final subsections 8.6–8.7, the sufficiency of (8.1) is given as the third step.
For simplicity we write rn := 2−nN(n) and qn(z) := 2−n/(z − 2−n) (n ∈ N) in this
proof. Then the condition (8.1) takes the following form:

inf
n∈N

2
n(n+1)

2 · rn > 0.

Recall that p(z) is holomorphic not only on R but also on R̄ \ {0}. We can thus
consider

Mn := max
z∈∂∆n

|p(z)| (n ∈ N),(8.3)

which constitute a sequence (Mn)n≥1 of finite positive numbers. Let γn be the
circle |z| = 2−n − rn. In view of γn ∩ ∂∆n = {2−n − rn} (one point set) and

|1 + qm(z)| =
|z|

|z − 2−m|
=

2−n − rn

|z − 2−m|
(z ∈ γn)

for each m ∈ N, we see that

max
z∈γn

|1 + qm(z)| =(2−n − rn)/ min
z∈γn

|z − 2−m|

=(2−n − rn)/|2−n − rn − 2−m| = |1 + qm(2−n − rn)|.

Hence we have

max
z∈γn

|p(z)| =|p(2−n − rn)| ≤ Mn (n ∈ N).

Set Rn := R ∩ {|z| > 2−n − rn} and R′
n := {|z| > 2−n − rn} \

∪
1≤k≤n ∆k. By the

maximum modulus principle for holomorphic functions, we see that

sup
z∈Rn

|p(z)| = sup
z∈R′

n

|p(z)| = max{M1, . . . ,Mn} (n ∈ N).

From this it follows that

sup
z∈R

|p(z)| = sup
n∈N

Mn(8.4)

since p is holomorphic in Ĉ \ {0} ∪ {2−n : n ∈ N} and hence |p| does not take its
supremum over R on Γ0.
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8.5. We show, owing a lot to Professor Akio Osada, the necessity of the condition
(8.1), i.e. infn∈N 2n(n+1)/2 · rn > 0, for p(z) to be bounded on R. We consider the
sequence (An)n≥1 given by A1 := 1 and

An :=
∏

1≤j<n

(
1 +

2−j

1 − 2−j

)
(n = 2, 3, . . . ).

The sequence (An)n≥1 is increasingly convergent to the limit

A := lim
n→∞

An =
∏
j∈N

(
1 +

2−j

1 − 2−j

)
∈ (1,∞).

In terms of these quantities we obtain

A · An ·
(
2

n(n+1)
2 · rn

)−1

≤ Mn (n ∈ N).(8.5)

To show this, observe that

log |p(z)| =
∑

m∈N\{n}

log
∣∣∣∣ z

z − 2−m

∣∣∣∣ + log |z| − log rn

for z = 2−n + rneiθ ∈ ∂∆n. From (8.3) it follows that

1
2π

∫
∂∆n

log |p(z)|dθ ≤ log Mn.

Applying the Gauss mean value theorem to the left hand side of the above we
obtain ∑

m∈N\{n}

log
∣∣∣∣ 2−n

2−n − 2−m

∣∣∣∣ + log 2−n − log rn ≤ log Mn,

or equivalently( ∏
m<n

2−n

2−m − 2−n

)
·

( ∏
m>n

2−n

2−n − 2−m

)
· 2−n

rn
≤ Mn.

The first factor of the left hand side of the above equals∏
m<n

2−(n−m)

1 − 2−(n−m)
=

∏
1≤j<n

2−j

1 − 2−j
= 2−(1+2+···+(n−1))

∏
1≤j<n

1
1 − 2−j

=2−n(n−1)/2
∏

1≤j<n

(
1 +

2−j

1 − 2−j

)
= 2−n(n−1)/2An.

The second factor is equal to∏
m>n

1
1 − 2−(m−n)

=
∏
j≥1

1
1 − 2−j

=
∏
j≥1

(
1 +

2−j

1 − 2−j

)
= A.

Summing up these observations, we deduce (8.5).
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Note that AAn > A2
n > A2

1 > 1. Hence (8.5) and (8.4) imply

2n(n+1)/2 · rn ≥ AAn/Mn > 1/ sup
R

|p| > 0,

which assures the validity of (8.1).

8.6. Finally we prove the sufficiency of the condition of (8.1), i.e. infn∈N 2n(n+1)/2·
rn > 0, for p(z) to be bounded on R. Put εn := 2nrn (n ∈ N). Since 2−(n+1) /∈ ∆n,
we see that εn < 1/2. We next show that

Mn ≤ (1 + εn)n · BnCn ·
(
2n(n+1)/2 · rn

)−1

(n ∈ N),(8.6)

where

Bn :=
∏

1≤j<n

(
1 +

(1 + εn)2−j

1 − (1 + εn)2−j

)
, Cn :=

∏
j∈N

(
1 +

2−j

1 − εn − 2−j

)
.

Obviously, the two sequences (Bn)n≥1 and (Cn)n≥1 are bounded.
To prove (8.6) we only have to estimate each term of |p(z)| =

∏
m≥1 |1 + qm(z)|

from above on ∂∆n. For this purpose, fixing an n, we evaluate

Qm := max
z∈∂∆n

|1 + qm(z)|

separately for three cases: m < n, m = n, and m > n.
The case m < n: ∆n is situated on the left hand side of 2−m and thus the

minimal distance from points in ∂∆n to 2−m is 2−m − (2−n + rn) and the maximal
distance from points in ∂∆n to the origin z = 0 is 2−n + rn. Hence we have

Qm = max
z∈∂∆n

∣∣∣∣ z

z − 2−m

∣∣∣∣ ≤ 2−n + rn

2−m − 2−n − rn

=
(1 + 2nrn)2−n

2−m − (1 + 2nrn)2−n
=

(1 + εn)2−(n−m)

1 − (1 + εn)2−(n−m)
.

The case m = n: This time the distance from points in ∂∆n to 2−n is the constant
rn and the maximal distance from points in ∂∆n to the origin 0 is 2−n + rn. Thus,
as above, we have

Qn = max
z∈∂∆n

∣∣∣∣ z

z − 2−n

∣∣∣∣ =
2−n + rn

rn
=

(1 + 2nrn)2−n

rn
=

1 + εn

2nrn
.

The case m > n: Since ∆n is situated on the right hand side of 2−m, the
minimal distance from points in ∂∆n to 2−m is (2−n − rn) − 2−m. Hence, on
viewing |1 + qm(z)| ≤ 1 + |qm(z)|, we have

Qm ≤1 + max
z∈∂∆n

∣∣∣∣ 2−m

z − 2−m

∣∣∣∣ ≤ 1 +
2−m

(2−n − rn) − 2−m

=1 +
2−m

(1 − 2nrn)2−n − 2−m
= 1 +

2−(m−n)

(1 − εn) − 2−(m−n)
.
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In view of

Mn = max
z∈∂∆n

|p(z)| ≤
∏

m∈N

Qm =

( ∏
m<n

Qm

)
· Qn ·

( ∏
m>n

Qm

)
,

we estimate each of the three factors on the rightmost term of the above separately.
First we have∏

m<n

Qm ≤
∏

m<n

(1 + εn)2−(n−m)

1 − (1 + εn)2−(n−m)
=

∏
1≤j<n

(1 + εn)2−j

1 − (1 + εn)2−j

=(1 + εn)n−1 · 2−(1+2+···+(n−1))
∏

1≤j<n

1
1 − (1 + εn)2−j

=(1 + εn)n−1 · 2−n(n−1)/2
∏

1≤j<n

(
1 +

(1 + εn)2−j

1 − (1 + εn)2−j

)
=(1 + εn)n−1 · 2−n(n−1)/2 · Bn,

which together with the estimate of Qn implies( ∏
m<n

Qm

)
· Qn ≤(1 + εn)n ·

(
2n(n+1)/2 · rn

)−1

· Bn.

Finally we have∏
m>n

Qm ≤
∏

m>n

(
1 +

2−(m−n)

(1 − εn) − 2−(m−n)

)
=

∏
j∈N

(
1 +

2−j

1 − εn − 2−j

)
= Cn.

Thus the inequality (8.6) has been established.

8.7. Let us look at the right hand side of (8.6). By virtue of εn < 1/2, (Bn)n≥1

and (Cn)n≥1 are bounded sequences. Since we are assuming (8.1), the last factor
also form a bounded sequence

(
(2n(n+1)/2 · rn)−1

)
n≥1

. Unfortunately the sequence
((1 + εn)n)n≥1 may not be bounded. For example, since the choice rn = 2−n/4
(n ∈ N) gives an admissible (N(n))n≥1 satisfying (8.1), it may happen that εn = 1/4
so that ((1 + εn)n)n≥1 = (5n/4n)n≥1 is not bounded. To eliminate this undesirable
situation, set δ := infn∈N 2n(n+1)/2rn > 0. Then

r′n := 2−n(n+1)/2 · δ ≤ rn (n ∈ N).

By using ∆̄(2−n, r′n) in place of ∆n = ∆̄(2−n, rn) (n ∈ N), we replace R by S :=
∆0 \ ∪n∈N∆̄(2−n, r′n). Since S ⊃ R, the boundedness of p(z) on S implies that of
p(z) on R. For this reason we may assume from the beginning that

rn = 2−n(n+1)/2 · δ (δ > 0; n ∈ N)

in oder to prove the boundedness of p(z). Then, for sufficiently large n,

εn = 2nrn = 2−n(n−1)/2 · δ ≤ 1/n

and therefore

(1 + εn)n ≤ (1 + 1/n)n < e.
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This finishes the proof of the boundedness of the sequence (Mn)n≥1 and a fortiori
that of the boundedness of p(z) on R.
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10. P. J. Myrberg, Über die Analytische Fortsetzung von beschränkten Funktionen, Ann. Acad.

Sci. Fenn., Ser. A, 58 (1949), 1–7.
11. M. Nakai, Valuations on meromorphic functions of bounded type, Trans. Amer. Math. Soc.,

309 (1988), 231–252.
12. , On the existence of H∞-barrier, Rev. Roumanie Math. Pures Appl., 36 (1991),

161–167.
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