
 

Instructions for use

Title Design of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting in a synergistic effect on
selectivity and cellular uptake

Author(s) Takara, Kazuhiro; Hatakeyama, Hiroto; Ohga, Noritaka; Hida, Kyoko; Harashima, Hideyoshi

Citation INTERNATIONAL JOURNAL OF PHARMACEUTICS, 396(1-2), 143-148
https://doi.org/10.1016/j.ijpharm.2010.05.002

Issue Date 2010-08-30

Doc URL http://hdl.handle.net/2115/46736

Type article (author version)

Additional Information There are other files related to this item in HUSCAP. Check the above URL.

File Information IntJPharm.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


 1 

Title: 

Design of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting 

in a synergistic effect on selectivity and cellular uptake 

 

Author: 

Kazuhiro Takaraa, Hiroto Hatakeyamaa, Noritaka Ohgab, Kyoko Hidab, Hideyoshi 

Harashimaa*. 

 

Affiliation: 

aLaboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido 

University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan; b Division of Vascular Biology, 

Hokkaido University Graduate School of Dental Medicine, Hokkaido University, Kita 13 

Nishi 7, Kita-ku, Sapporo 060-0812, Japan 

 

*Corresponding author: 

Hideyoshi Harashima, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 

Hokkaido, 060-0812, Japan.  

Telephone: +81-11-706-3919 

Fax: +81-11-706-4879 

E-mail: harasima@pharm.hokudai.ac.jp 

 

 



 2 

Abstract 

In this study, a dual-ligand liposomal system comprised of a specific ligand and a cell 

penetrating peptide (CPP) is described to enhance selectivity and cellular uptake. Dual-ligand 

PEGylated liposomes were prepared by modifying the end of the PEG with an NGR motif 

peptide, followed by a surface coating of the liposomes with stearylated oligoarginine 

(STR-RX). The NGR motif recognizes CD13, a marker protein located on tumor endothelial 

cells. A suitable number of RX units was determined to be R4, since it can be masked by the 

PEG aqueous layer. Although no enhanced cellular uptake was observed when a single 

modification of PEGylated liposomes with either NGR- or STR-R4 was used, the 

dual-modification with NGR and STR-R4 stimulated uptake of PEGylated liposomes by CD13 

positive cells, and this uptake was superior to that obtained by PEG-unmodified liposomes 

modified with STR-R4. The dual-ligand system shows a synergistic effect on cellular uptake. 

Collectively, the dual-ligand system promises to be useful in the development efficient and 

specific drug delivery systems. 
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1. Introduction 

The use of liposomes in drug delivery systems (DDS) is emerging as a viable class of 

therapeutics for use in the treatment of human diseases (Torchilin, 2005). Long-circulating 

liposomes, produced by modification with poly(ethylene glycol) (PEG) are able to passively 

accumulate in tumors via the enhanced permeability and retention (EPR) effect. To achieve 

further chemotherapeutic efficacy, tumor targeting PEGylated liposomes have been developed 

by attaching specific targeting ligands to the distal end of the PEG chain (Suzuki et al., 2008; 

Yamada et al., 2008; Fondell et al., 2010; Elbayoumi et al., 2080; Hatakeyama et al., 2007a). 

In general, specific interactions between ligands and target molecules induce the receptor 

mediated endocytosis of liposomes (Khalil et al., 2006a). Although it is possible to achieve 

active targeting via the use of specific ligands, receptor mediated endocytosis is a saturated 

pathway, which restricts the amount of liposomes that are available for cellular uptake. In 

addition, following cellular uptake, the endosomes fuse with lysosomes for degradation. Thus, 

the introduction of specific ligands onto PEGylated liposomes cannot be considered to be a 

complete solution for achieving the enhanced therapeutic activity.  

On the other hand, cell-penetrating peptides (CPPs) are widely utilized for the delivery of 

drugs and genes (El-Sayed et al., 2009). CPPs, also known as protein transduction domains 

(PTDs) are capable of entering cells efficiently, either alone or linked to, not only small 

molecules, but also bulky cargos such as peptides, proteins, oligonucleotides, plasmid DNA 



 4 

(pDNA), and liposomes. In the previous report, we described the development of stearylated 

octaarginine (STR-R8)-modified liposomal nanoparticles which are efficiently internalized 

into cells. The use of such products results a substantial increase in the intracellular 

transport of their cargos, which can include small molecules, pDNA, oligodeoxynucleotide 

(ODN), small interfering RNA (siRNA), and proteins in culture cells (Kogure et al., 2004; 

Nakamura et al., 2006; Nakamura et al.,2007; Suzuki et al.,2007). Despite the ability of CPPs 

to efficiently carry molecules into cells, it is not possible to apply CPPs-modified liposomes to 

in vivo systemic administration, due to of their non-specificity in cellular association and 

biodistribution.  

Taking both specific ligands-mediated active targeting and CCPs-mediated efficient 

intracellular delivery into consideration, a rational strategy designed to take advantage of a 

combination of both specific ligands and CPPs could allow PEGylated liposomes to be used as 

a more selective and efficient in vivo systemic application. In the present study, we described 

the development of a dual-ligand system, in which specific ligand-modified PEGylated 

liposomes are combined with CPPs, which function as cationic ligands. In order to develop an 

ideal dual-ligand system, it is important to manipulate each ligand so that its synergistic 

function is exerted at the correct time and location as follows: CPPs should be unfunctional 

and opsonin-free in the systemic circulation due to steric hindrance of the PEG layer. After 

their arrival at the target site, cellular association via specific ligands permits CPPs to exert 
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their powerful ability to internalize the liposomes into target cells due to the close proximity 

of the liposomes to the surface of the target cells.  

To address these issues, we examined the basic design and utility of a dual-ligand system 

in detail. The number of arginine residues was altered, in an attempt to find a suitable form 

of stearylated oligoarginine (STR-RX) for use in a dual-ligand system. CD13, a marker of 

angiogenic endothelial cells, which is recognized by the NGR peptide motif, was employed as a 

target molecule (Pastorino et al., 2003). The extent of cellular uptake of dual-ligand 

formulations were compared with that of single-ligand versions using not only model cells but 

also primary cultured tumor endothelial cells that has been isolated from tumor xenografts.  
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2. Materials and Methods 

2.1. Materials 

Cholesterol (Chol), distearoyl-sn-glycero-3-phoshoethanolamine-N-[methoxy(polyethylene 

glycol)-2000] (PEG-DSPE), rhodamine-labeled DOPE (Rho-DOPE) were purchased from 

AVANTI Polar Lipids (Alabaster, AL, U.S.A.). PEG-DSPE with a functional maleimide 

moiety at the terminal end of PEG: N-[(3-maleimide-1-oxopropyl) aminopropyl 

polyethyleneglycol-carbamyl] distearoylphosphatidyl-ethanolamine (Mal-PEG-DSPE) and 

egg phosphatidylcholine (EPC) were purchased from Nippon Oil and Fat Co. (Tokyo, Japan). 

Stearylated octaarginine (STR-R8), hexaarginine (STR-R6), tetraarginine (STR-R4), and 

diarginine (STR-R2) was purchased from PolyPeptide Laboratories (San Diego, CA, U.S.A). 

NGR motif peptide, CYGGRGNG was purchased from Sigma Genosys Japan (Ishikari, Japan). 

Rat Anti Mouse CD13 antibody was purchased from AbD Serotec (Oxford, U.K.). Alexa Fluor 

488 labeled goat anti-rat IgG was purchased from Invitrogen (Carlsbad, CA, U.S.A.). FITC 

labeled anti-CD31 was obtained by eBioscience (San Diego, CA, U.S.A.). FITC-BS1-B4 was 

purchased from by Vector Laboratories (Burlingame, CA, U.S.A.). All other chemicals used 

were commercially available reagent-grade products. 

 

2.2. Synthesis of NGR peptide conjugated PEG-lipid (NGR-PEG-lipid) 

Equimolar quantities of NGR motif peptide and Mal-PEG-DSPE were mixed in water at 
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room temperature for 24 hr. Conjugation of the peptide to Mal-PEG-DSPE was confirmed by 

determining the molecular weight of the resulting NGR-PEG-DSPE using MALDI-TOF MS 

(obsd. Mn=3719.64, calcd. Mn= 3720.82). 

 

2.3. Preparation of liposomes 

Liposomes were prepared from EPC, Chol and Rho-DOPE (molar ratio: 70:30:1). All lipids 

were dissolved in a chloroform/ethanol solution. After evaporation under nitrogen gas, the 

dried lipid film was hydrated in PBS. The lipid film in PBS was sonicated for approximately 

30 sec in a bath-type sonicator (AU-25C, Aiwa, Tokyo, Japan), followed by sonication for 

approximately 10 min in a probe-type sonicator (S3000, Misonix, NY, U.S.A.). For 

modification of the prepared liposomes with STR-RX, PEG-DSPE, or NGR-PEG-DSPE, 

liposomes were incubated with the indicated amounts of STR-RX, PEG-DSPE, or 

NGR-PEG-DSPE for 60 min at 55℃, 950 rpm in a SHAKING INCUBATOR SI-300 (AS ONE, 

Osaka, Japan). The average diameter and the zeta-potential of the prepared liposomes were 

measured using a Zetasizer Nano ZS ZEN3600 (MALVERN Instrument, Worchestershire, 

U.K.). 

 

2.4. Isolation of tumor endothelial (TE) cells  

SM-ECs, melanoma TE cells, were isolated as described previously (Ohga et al., 2009) In 
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brief, SM-ECs were isolated from xenografted melanoma tissues (A375SM) in nude mice aged 

8–12 weeks (Sankyo Labo, Tokyo, Japan). SM-ECs were isolated using a magnetic cell sorting 

system (Miltenyi Biotec, Tokyo, Japan) according to the manufacturer’s instructions using a 

FITC–anti-CD31 antibody. CD31-positive cells were sorted and plated onto 1.5% 

gelatin-coated culture plates and grown in EGM-2 MV (Clonetics, Walkersville, MD, U.S.A.) 

and 15% FBS. Diphtheria toxin (500 ng/mL; Calbiochem, San Diego, CA, U.S.A.) was added to 

SM-EC subcultures to kill any remaining human tumor cells. The isolated SM-ECs were 

purified by a second round of purification, using the FITC–BS1-B4 antibody, and purity was 

determined by flow cytometry. Peripheral blood-derived endothelial cells (EPCs) were isolated 

and grown as previously described with minor modifications (Beaidry et al., 2007). Briefly, 

mouse peripheral blood was obtained by cardiocentesis. Peripheral blood mononuclear cells 

(PBMCs) were isolated using a Histopaque 1077 (Sigma Chemical Co., St. Louis, MO, U.S.A.) 

and centrifuged as per the manufacturer’s instructions. The intermediate phase was collected 

and washed with HBSS before resuspension in EGM-2 MV supplemented with 15% FBS. 

PBMCs (1 × 106 per well) were seeded onto 12-well tissue culture plates coated with 0.5% 

gelatin (Sigma Chemical Co., St. Louis, MO, U.S.A.) and a 2 μg/mL solution of human 

fibronectin (Chemicon International, Temecula, CA, USA). Cells were passaged at a 1:3 ratio 

until they reached 90% confluence. PBMCs were regarded as EPCs, since they were 

Sca-1-positive in culture. All animal procedures were carried out in compliance with the 
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Hokkaido University guidelines, and the protocols were approved by the Institutional Animal 

Care and Use Committee. 

 

2.5. Cell cultures 

MS-1 cells were cultured in DMEM (SIGMA-Aldrich, St. Louis, MO, U.S.A.) supplemented 

with 10% heat-inactivated fetal bovine serum, penicillin (100 U/ml), streptomycin (100 g/ml) 

at 37 ℃ in an atmosphere of 5％ CO2 and 95％ humidity. TE cells were cultured in BulletKit 

(LONZA, Basel, Switzerland) supplemented with penicillin (100 U/ml), streptomycin (100 

g/ml) at 37 ℃ in an atmosphere of 5% CO2 and 95% humidity. 

 

2.6. Determination of CD13 expression  

Cells were detached by treatment with trypsin-EDTA and incubated with anti CD13 

antibodies, followed by incubation with secondary antibodies labeled with Alexa 488 for 20 

min at 4 ℃. Ten thousand cells per sample were analyzed using a FACSVantageSE flow 

cytometer (BD, San Jose, CA, U.S.A.). 

 

2.7. Evaluation of cellular uptake of liposomes 

MS-1 and TE cells were seeded on 24-well plates (40,000 cells per well) 1 day prior to 

evaluation. The prepared liposomes labeled with Rho-DOPE, were added to 500 l of 
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Krebs-Henseleit buffer (0.12 mM of final lipid concentration) and were incubated with cells 

for 3 hr at 37℃. After washing the cells with Krebs-Henseleit buffer, they were lysed with 

Reporter Lysis Buffer (Promega, Madison, WI, U.S.A), followed by centrifugation at 12,000 

rpm, for 5 min, at 4 ℃ to remove debris. Fluorescence intensity of rhodamine in the 

supernatant was determined using FP-750 Spectrofluorometer (JAS Co, Tokyo, Japan) 

(Excitation: 555 nm, Emission: 575 nm). 

 

2.8. Statistic analysis 

Comparisons between multiple treatments were made using one-way analysis of variance 

(ANOVA), followed by the Dunnett test. Pair-wise comparisons between treatments were 

made using a student’s t-test. A P-value of < 0.05 was considered to be significant. 
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3. Results  

3.1. Optimization of the number of arginine residue 

To develop the proposed dual-ligand system, it should be noted that CPP ligands are not 

functional in the presence of PEG. To identify a suitable CPP ligand for the dual-ligand 

system, we first evaluated the effect of the number of arginine residues contained in STR-RX 

on the cellular association of PEGylated liposomes (PEG-LPs). The concentrations of 

PEG-lipid and STR-RX were set at 5 mol% of the total lipid. The physical properties of the 

prepared formulations are listed in Table 1. The diameters of the liposomes (LPs) and 

PEG-LPs with or without STR-RX were similar. However, the zeta-potentials were increased, 

depending on the number of arginine residues, and PEGyaltation reduced the zeta-potentials 

due to the partial or complete masking of STR-RX on the surface by the aqueous layer of the 

PEG moiety. Cellular uptake of the prepared formulations was evaluated using TE cells as 

shown in Fig. 1. The amount of uptake was correlated with their zeta-potentials. Even though 

the modification of LP with STR-R2 resulted in a positive charged particle, cellular uptake 

was comparable to that of an arginine-unmodified LP. On the other hand, the use of other 

types of STR-RX (STR-R4, R6, and R8) resulted in an enhancement of the cellular uptake and 

this uptake was dependent on the number of arginine residues. Despite the presence of PEG, 

the STR-R6 and R8-modified PEG-LPs were both taken up efficiently by cells. However, the 

uptake of PEG-LP prepared using STR-R4 was significantly inhibited down to the amount of 
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arginine unmodified LP. These results indicate that STR-R4 is likely masked by the PEG 

layer and represents acceptable CPP for use in the dual-ligand system. 

 

3.2. Cellular uptake of PEGylated liposomes modified with single NGR ligand 

We next evaluated the single ligand-mediated cellular uptake of NGR modified PEG-LPs. 

The expression of CD13 on MS-1 and TE cells was confirmed by FACS analysis, as shown in 

Fig.2. Liposomes were modified with PEG-lipid or NGR-PEG-lipid at 1, 2, 5, 10, or 15 mol% of 

the total lipid. The PEG-LPs and NGR-PEG-LPs showed almost identical physical properties 

at every concentration of PEG-lipid, as shown in Table. 2. The amount of uptake of PEG-LPs 

was decreased with increasing the concentrations of PEG-lipid. Similar to PEG-LPs, 

NGR-PEG-LPs were not effective in either of the cell lines (Fig.3). Therefore, no enhancement 

in cellular uptake was observed in the case of the single ligand-mediated system.  

 

3.3. The evaluation of dual-ligand system on the cellular uptake 

To develop a dual-ligand system, we combined the NGR-PEG-LPs with STR-R4. Since the 

ability of CPPs to associate with cells is quite intense and non-specific, due to electrostatic 

interactions with negative molecules on the cell surface, conditions should be considered 

where specific ligands exert their selectivity in the presence of CPPs. Therefore, we explored 

suitable conditions that would permit STR-R4 to express the selectivity of the NGR ligand. As 
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a result, the optimal concentration of STR-R4 on the NGR-PEG-LPs was determined to be 

0.25 mol% of the total lipid. In this condition, the average diameters and zeta-potentials of 

NGR-PEG-LPs with STR-R4 (NGR-PEG/R4-LPs) remained unchanged, compared to 

NGR-PEG-LPs, as shown in Table 2. The cellular uptake of STR-R4 modified liposome 

(R4-LP) by MS-1 cells was 1.7-fold higher than that of unmodified liposome (LP) (Fig.4a gray 

bars), and the amount of PEG/R4-LP taken up was gradually decreased, depending on the 

concentration of PEG-lipid (Fig.4a open bars). These results indicate that PEGylation has a 

negative effect on cellular uptake. Comparisons of the relative amount of uptake are also 

summarized in Table 3, in which the uptake of LP is used as the control. On the other hand, 

the cellular uptake of the dual-ligand formulations (NGR-PEG/R4-LPs) was increased by 

2.7-fold, when the liposome was modified with 10 mol% NGR-PEG-lipid compared with LP 

(Fig 4a gray bar vs. black bars). The addition of a higher amount of PEG at 15 mol% resulted 

in a slight decrease in cellular uptake, probably because of the steric hinderance of PEG. 

Unlike the single-ligand formulations, the NGR ligand in the dual formulations facilitated 

cellular uptake when PEG-lipid was present in the range of 5 to 15 mol% of total lipid even 

though PEG exerted a negative effect on cellular uptake. These improvements can be 

attributed to specific interactions between NGR and the target CD13, and the resulting close 

proximity of R4 to the cell surface, which permits R4 to internalize the liposomes efficiently 

into the target cells. As shown in Fig. 4b, a synergistic effect of the dual-ligand system on 
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cellular uptake was also observed in TE cells with lower concentrations of NGR-PEG-lipid 

than were used in MS-1 cells, presumably because the optimal conditions for expressing the 

dual-ligand effect is different for each type of cells. The modification of STR-R8 as a CPP 

ligand in dual-ligand formulations (NGR-PEG/R8-LPs) also resulted in a synergistic effect on 

cellular uptake (Supplementary Fig. 1 and Table 1). These results suggest that a dual-ligand 

design has an ability of the PEGylated liposomes to further enhance the selectivity and the 

amount of cellular uptake. 
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4. Discussion 

Although the delivery of chemotherapeutics for cancer can be achieved via the use of 

PEGylated liposomes based on the EPR effect, PEGylation reduces the extent of interactions 

of liposomes with target tumor cells, resulting in a reduced cellular uptake and poor 

endosomal escape due to steric hindrance. Overall, this results in a significant loss in the 

pharmacological effect of the cargos. The crucial negative effect of PEGylation on activity at a 

target site is referred to as the “PEG dilemma”, which hampers further practical applications 

of liposomal drugs and macromolecules (Hatakeyama et al., 2007b). To overcome this, specific 

ligands such as transferrin, folic acids, peptides, or antibodies are used to modify the end of 

the PEG chain (Suzuki et al., 2008; Yamada et al., 2008; Fondell et al., 2010; Elbayoumi et al., 

2080). 

It has been reported that tumor endothelial cells are different from normal endothelial 

cells (Hida et al., 2008). Angiogenesis has an important role in tumor growth and metastasis. 

Therefore, anti-angiogenic therapy by targeting tumor endothelial cells has been an attractive 

and important strategy in cancer therapy. In the present study, CD13 was employed as the 

target molecule, since it is a known tumor endothelial marker. It has been reported that 

oligopeptides containing a NGR motif have the ability to recognize CD13, in which the NGR 

motif is conjugated directly to a chemotherapeutic drug or is attached to the PEGylated 

liposomes (van Hensbergen et al., 2002; Pastorino et al., 2003). However, as shown in Fig. 2 
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and Table 3, the effect of a single-modified NGR on the cellular uptake of PEGylated 

liposomes was minor or negligible, even in the case of CD13 positive cells. These results 

provide support for the conclusion that a specific ligand can provide targeting capability to 

liposomes but does not necessarily result in large amounts of liposomes being taken up by the 

target cells. To generate further therapeutic efficacy, attempts to develop dual-targeting 

systems that are mediated by two different kinds of targeting-ligands were made (Saul et al., 

2006; Murase et al., 2010). In fact, the dual-targeting system has the potential to show more 

efficient pharmacological effects, not only in vitro but also in vivo than the single modified 

version.  

Although the properties of CPPs suggest that they would be highly promising for in vitro 

delivery, there are serious disadvantages for in vivo systemic applications because of 

non-specific interactions between the cationic charge and biological components, resulting in 

inactivated or collapsed liposomal formulations. Therefore, the development of a strategy for 

a design that can control the properties of CPPs in an in vivo situation should confer 

additional potential for them when used for active targeting systems. In this study, we 

describe the development of a dual-ligand system mediated by specific ligands and CPPs, 

which results in enhanced selectivity and a more efficient cellular uptake, as illustrated in Fig. 

5.  

In the case of a dual-targeting system modified with two different kinds of specific ligand, 
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when two target receptors or molecules share the same endosomes or uptake route, the 

specificity and affinity of the dual-targeting system for the target cells appears to be 

synergistically increased. As a result, the amount of cellular uptake would be expected to be 

increased. On the other hand, when the uptake routes are mediated by two different kinds of 

ligand are different, it is likely that the effect of dual targeting for cellular association and 

uptake would be additive or minor. The pathway for specific ligands is mainly receptor 

mediated endocytosis which is saturable, thus limiting the amount of liposomes that can be 

taken up. Furthermore, when the target molecule does not trigger the cellular uptake, no 

targeting system internalizes cells, which results in a negligible pharmacological effect of the 

cargos. As mentioned above, the fate of cellular uptake for a dual-targeting system depends on 

the properties of the target molecules. In the case of a dual-ligand system modified with a 

specific ligand and a CPP, the cellular association of the system is dependent on the nature of 

the specific ligand. Subsequent cellular uptake is triggered not only by the specific interaction 

between the ligand and target molecules, but also by non-specific uptake mediated by the 

CPP ligand. It is quite likely that the magnitude of the uptake mediated by CPPs is larger 

than that mediated by specific ligands. Therefore, a characteristic of the cellular uptake of the 

dual-ligand system is that it would be unsaturated and independent of the properties of the 

target molecules. 

According to the results shown in Fig.1, STR-R4 appears to be favorable for use as a CPP 
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ligand because it is not functional in the presence of PEG, presumably due to masking by the 

aqueous layer of PEG. The calculated length of R4 and R8 was determined to be 1.63 and 3.41 

nm, respectively. The predicted depth of the PEG layer is around 3 nm in a mushroom 

configuration (Immordino et al., 2006). Based on the calculations, it is quite likely that R4 on 

the surface is fully masked by the PEG layer, but that R8 is only partially masked. 

The dual-ligand system modified with NGR and STR-R4 (NGR-PEG/R4-LP) exhibits a 

synergistic function on cellular uptake in MS-1 model cells in which CD13 is expressed (Fig. 

4a). The cellular uptake of PEG-unmodified R4-LP was increased by 1.7-fold. In the presence 

of 10 mol% PEG, PEG/R4-LP showed a slightly lower uptake (0.9-fold), and the cellular 

uptake of single ligand NGR-PEG-LP decreased to around half of the LP (0.6-fold) compared 

with LP, respectively (Table 3). Although either NGR or STR-R4 modification in PEGylated 

liposomes failed to increase their cellular uptake, the dual modification of NGR and STR-R4 

(NGR-PEG/R4-LP) at 10 mol% PEG-lipid stimulated uptake by 2.7-fold compared with LP. 

These results clearly indicate that the observed synergistic effect can be attributed to the 

dual-ligand formulation. Further evaluations were performed using TE cells, primary 

cultured tumor endothelial cells isolated from melanoma tumor xenograft mice. Even though 

the effect was lower than that observed for MS-1 cells, the dual-ligand system also functioned 

in TE cells. Therefore, this system has the possibility to be functional in in vivo tumor 

endothelial cells. 
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5. Conclusion 

   In the present study, we successfully developed a dual-ligand delivery system mediated by 

a specific ligand and a CPP ligand. Based on the design of the dual-ligand, STR-R4 appeared 

to be a suitable CPP. In the presence of PEG, modification of either specific the NGR ligand or 

STR-R4 had only a minor effect on cellular uptake, while the dual-modification of NGR and 

STR-R4 resulted in an enhanced uptake due to synergistic effects in CD13 positive cells. The 

proposed strategy holds considerable promise for the further development of in vivo 

applicable systems. 

 

 

 

 

 

 

 



 20 

Acknowledgements 

This study was supported by grants from the Special Education and Research Expenses of 

the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank Dr I. J. 

Fidler for providing the A375SM super-metastatic human malignant melanoma cell line. The 

authors also wish to thank Dr. Milton Feather for his helpful advice in writing the English 

manuscript. 



 21 

References 

Beaudry, P., Hida, Y., Udagawa, T. Alwayn, I.P., Greene, A.K., Arsenault, D., Folkman, J., 

Heymach, J.V., Ryeom, S., Puder, M., 2007. Endothelial progenitor cells contribute to 

accelerated liver regeneration. J. Pediatr. Surg. 42, 1190-1198. 

Di Matteo, P., Curnis, F., Longhi, R., Colombo, G., Sacchi, A., Crippa, L., Protti, M.P., Ponzoni, 

M., Toma, S., Corti, A., 2006. Immunogenic and structural properties of the Asn-Gly-Arg 

(NGR) tumor neovasculature-homing motif. Mol. Immunol. 43, 1509-1518.  

Elbayoumi, T.A., Torchilin, VP., 2080. Tumor-specific anti-nucleosome antibody improves 

therapeutic efficacy of doxorubicin-loaded long-circulating liposomes against primary and 

metastatic tumor in mice. Mol. Pharm. 6, 246-254. 

El-Sayed, A., Futaki, S., Harashima, H., 2009. Delivery of macromolecules using arginine-rich 

cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J. 11, 13-22.  

Fondell, A., Edwards, K., Ickenstein, L.M., Sjöberg, S., Carlsson, J., Gedda, L., 2010. 

Nuclisome: a novel concept for radionuclide therapy using targeting liposomes. Eur. J. 

Med. Mol. Imaging 37, 114-123. 

Hatakeyama, H., Akit,a H., Ishida, E., Hashimoto, K., Kobayashi, H., Aoki, T., Yasuda, J., 

Obata, K., Kikuchi, H., Ishida, T., Kiwada, H., Harashima, H., 2007a. Tumor targeting of 

doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int. J. Pharm. 342, 

194-200. 



 22 

Hatakeyama, H., Akita, H., Kogure, K., Oishi, M., Nagasaki, Y., Kihira, Y., Ueno, M., 

Kobayashi, H., Kikuchi, H., Harashima, H., 2007b. Development of a novel systemic gene 

delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 

14, 68-77. 

Immordino, M.L., Dosio, F., Cattel, L., 2006. Stealth liposomes: review of the basic science, 

rationale, and clinical applications, existing and potential. Int. J. Nanomed. 1, 297-315. 

Khalil, I.A., Kogure, K., Akita, H., Harashima, H. 2006a. Uptake pathways and subsequent 

intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58, 32-45. 

Khalil, I.A., Kogure. K., Futaki, S., Harashima, H., 2006b. High density of octaarginine 

stimulates macropinocytosis leading to efficient intracellular trafficking for gene 

expression. J. Biol. Chem. 281, 3544-3551. 

Kogure, K., Moriguchi, R., Sasaki, K., Ueno, M., Futaki, S., Harashima, H., 2004. 

Development of a non-viral multifunctional envelope-type nano device by a novel lipid 

film hydration method. J. Control. Release 98, 317-323. 

Murase, Y., Asai, T., Katanasaka, Y., Sugiyama, T., Shimizu, K., Maeda, N., Oku, N., 2010. A 

novel DDS strategy, ”dual-targeting”, and its application for antineovasclar therapy. 

Cancer Lett. 287, 165-171.  



 23 

Nakamura, Y., Kogure, K., Yamada, Y., Futaki, S., Harashima, H., 2006. Significant and 

prolonged antisense effect of a multifunctional envelope-type nano device encapsulating 

antisense oligodeoxynucleotide. J. Pharm. Pharmacol. 58, 431-437. 

Nakamura, Y., Kogure, K., Futaki, S., Harashima, H., 2007. Octaarginine-modified 

multifunctional envelope-type nano device for siRNA. J. Control. Release 119, 360-367. 

Ohga, N., Hida, K., Hida, Y., Muraki, C., Tsuchiya, K., Matsuda, K., Ohiro, Y., Totsuka, Y., 

Shindoh, M., 2009. Inhibitory effects of epigallocatechin-3 gallate, a polyphenol in green 

tea, on tumor-associated endothelial cells and endothelial progenitor cells. Cancer Sci. 

100, 1963-1970. 

Pastorino, F., Brignole, C., Marimpietri, D., Cilli, M., Gambini, C., Ribatti, D., Longhi, R., 

Allen, T.M., Corti, A., Ponzoni, M., 2003. Vascular damage and anti-angiogenic effects of 

tumor vessel-targeted liposomal chemotherapy. Cancer Res. 63, 7400-7406. 

Saul, J.M., Annapragada, A.V., Bellamkonda, R.V., 2006. A dual-ligand approach for 

enhancing targeting selectivity of therapeutic nanocarriers. J. Control. Release 114, 

277-287. 

Suzuki, R., Takizawa, T., Kuwata, Y., Mutoh, M., Ishiguro, N., Utoguchi, N., Shinohara, A., 

Eriguchi, M., Yanagie, H., Maruyama, K., 2008. Effective anti-tumor activity of 

oxaliplatin encapsulated in transferrin-PEG-liposome. Int. J. Pharm. 346, 143-150. 



 24 

Suzuki, R., Yamada, Y., Harashima, H., 2007. Efficient cytoplasmic protein delivery by means 

of a multifunctional envelope-type nano device. Biol. Pharm. Bull. 30, 758-762. 

Torchilin, V.P., 2005. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. 

Drug Discov. 4, 145-160. 

van Hensbergen, Y., Broxterman, H.J., Elderkamp, Y.W., Lankelma, J., Beers, J.C., Heijn, M., 

Boven, E., Hoekman, K., Pinedo, H.M., 2002. A doxorubicin-CNGRC-peptide conjugate 

with prodrug properties. Biochem. Pharmacol. 63, 897-908. 

Yamada, A., Taniguchi, Y., Kawano, K., Honda, T., Hattori, Y., Maitani, Y., 2008. Design of 

folate-linked liposomal doxorubicin to its antitumor effect in mice. Clin. Cancer Res. 14, 

8161-8168. 

 

 



 25 

Figure legends 

Figure 1 Effect of STR-RX on the cellular uptake 

TE cells were incubated with the indicated formulations for 3 hr, and cellular association then 

evaluated, as described in Materials and methods. The data are expressed as the mean ± SD 

(n=3). Comparisons between LP and PEG-LP were determined by the Student’s t-test. 

**P<0.01. 
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Figure 2 CD13 expression on MS-1 and TE cells 

The expression of CD13 on MS-1 and TE cells was confirmed by flow cytometry analysis as 

described in materials and methods. Gray lines indicate non-treatment, and black lines 

indicate the results with antibody treatment. 



 27 

Figure 3 Celluar uptake of single-ligand liposomes. 

Different formulations of liposomes were incubated with (a)MS-1 cells or (b)TE cells for 3 hr 

and the amount of cellular uptake was determined as described in Material and methods. 

Cellular uptake is expressed as mean ± SD (n=3). 
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Figure 4 Cellular uptake of dual-ligand liposomes 

Different formulations of liposomes were incubated with (a)MS-1 cells or (b)TE cells for 3 hr 

and the amount of cellular uptake was determined as described in Materials and methods. 

Cellular uptake is expressed as mean ± SD (n=3). The statistical differences v.s. LP were 

determined by one-way ANOVA followed by Dunnett test. #P<0.05, ##P<0.01. Comparisons 

between PEG and NGR-PEG were determined by Student’s t-test. *P<0.05, **P<0.01.  
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Figure 5 Schematic diagram illustrating a strategy of the dual-ligand system mediated by 

specific ligands and CPPs.  

CPPs should not be functional and free from oposonins due to steric hindrance of the PEG 

layer in the systemic circulation. While after arriving at the target site, cellular association 

via specific ligands results in CPPs exert their powerful ability to internalize the liposomes 

into target cells due to the close proximity of the liposomes to the surface of target cells. 
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Tables 

Table 1 Physical properties of liposomes and PEGylated liposomes with STR-RX 

size (nm)
zeta-potential

(mV)
size (nm)

zeta-potential

(mV)

Unmodified 98±8 -3±2 102±6 -1±1

STR-R2 98±7 18±3 101±9 0±0

STR-R4 98±6 32±3 102±10 11±6

STR-R6 97±7 42±8 97±6 21±5

STR-R8 98±6 45±4 99±5 33±4

Modification of PEG

‐ +
Type of STR-RX

 

The data are expressed as mean ± SD. (n=3) 
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Table 2 Physical properties of single- or dual-ligand liposomes 

Conc. of PEG-lipid Size (nm)

zeta-

potential

(mV)

Size (nm)

zeta-

potential

(mV)

Size (nm)

zeta-

potential

(mV)

Size (nm)

zeta-

potential

(mV)

0% 97±5 0.2±0.1 - - 89±5 2.2±1 - -

1% 101±2 0.2±0.2 103±1 -1.6±0.9 91±8 0.8±0.5 91±8 1.3±0.8

2% 100±6 -5.0±2.4 103±8 1.5±0.7 93±2 -0.1±0.1 99±3 0.8±0.6

5% 103±8 -0.8±0.1 102±2 -0.8±0.7 92±3 -0.2±0.1 91±2 -0.1±0.1

10% 100±5 -1.5±0.4 102±6 -2.5±0.8 90±4 -1.6±0.3 88±3 -0.9±0.1

15% 100±4 -2.1±0.5 99±2 -3.6±0.6 85±7 -3.2±0.6 93±6 -1.2±0.8

PEG-LP NGR-PEG-LP PEG/R4-LP NGR-PEG/R4-LP

 

The data are expressed as mean ± SD. (n=3) 

The conc. of PEG-lipid 0% means PEG-unmodified formulations (LP or R4-LP).  
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Table 3 Relative comparisons of cellular uptake obtained by the indicated formulations in 

MS-1 cells and TE cells 

PEG NGR-PEG PEG NGR-PEG

0

1 76% 84% 142% 146%

5 47% 63% 115% 210%

10 48% 58% 88% 266%

15 35% 40% 45% 164%

PEG NGR-PEG PEG NGR-PEG

0

1 89% 92% 82% 151%

2 64% 84% 67% 124%

5 58% 90% 65% 102%

Concentration

of PEG

(mol%)

Concentration

of PEG

(mol%)

100% 118%

Cell line : TE
STR-R4(-) STR-R4(+)

STR-R4(-)

100%

STR-R4(+)

170%

Cell line : MS-1

 

The uptake amount obtained by LP without PEG and STR-R4 is set as the control. 

Zero % of PEG conc. means PEG-unmodified formulations. 

 


