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Nonlinear dynamics around a rank-one saddle is investigated in a high energy regime above the reaction
threshold. The transition state (TS) is considered as a surface of a “point of no return” through which all
reactive trajectories pass only once in the process of climbing over the saddle before being captured in the

product state. A no-return TS ceases to exist above a certain high energy regime. However, even at high

energies where the no-return TS can no longer exist, it is shown that “an impenetrable barrier” in the
phase space robustly persists, which acts as a boundary between reactive and nonreactive trajectories. This
implies that we can yet predict the fate of reactions even when the no-return TS may not exist. As an
example, we show the analysis of dynamical systems theory for a hydrogen atom in crossed electric and

magnetic fields.

DOI: 10.1103/PhysRevLett.105.048304

The dynamics around rank-one saddles plays a crucial
role in the study of chemical reactions. This is because in
most chemical reactions there exists a saddle point be-
tween one stable structure (reactant) and another (product),
functioning as a “barrier” for the reaction. The occurrence
of the reaction is primarily determined by the possibility of
surmounting this barrier. Studies of the dynamics in the
vicinity of the saddle have made great contributions to the
calculation of reaction rates, as well as to physical insights
into not only reaction dynamics [1-6] but also, for ex-
ample, ionization of a hydrogen atom in crossed electric
and magnetic fields [7,8], isomerization of clusters [9], the
escape of asteroids from Mars [10], the diffusion of impu-
rities in crystalline materials [11], and the folding or un-
folding of proteins [12,13]. Among the central concepts in
the study of dynamics in the saddle region are the ‘“‘tran-
sition state” (TS) [14-21] and several invariant manifolds
[22,23]. The TS is originally defined as a surface dividing
the phase space into two distinct regions, i.e., reactant and
product, through which the system passes once and only
once when undergoing the reaction from one region before
being “captured” in the other region. In other words, the
TS separates the space into “‘before” and ‘“after” the
reaction. In turn, an invariant manifold is a set of points
in the phase space such that, once the system is in that
manifold, the system will stay in it perpetually. As a
consequence, no trajectory in the phase space can cross
the invariant manifold whose dimension is less than that of
the space by one from one side to the other. One of the
important invariant manifolds for understanding the reac-
tions is that which separates reactive trajectories from
nonreactive ones, so that once we know which side of the
manifold a given initial condition is, we can immediately
know, without any trajectory calculations, whether the
initial condition brings the system to the product or not.
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If the total energy of the system is only slightly above
the saddle point, the Hamiltonian can be well approxi-
mated by
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with the so-called normal mode coordinates (¢, ..., ¢,),
which diagonalize the potential energy, and their conjugate
momenta (py, ..., p,). Here we assign the unstable direc-
tion as mode 1, with the curvature of the potential — A2,
The other modes are vibrational modes with frequencies
;. We have introduced the following variables,
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which define a skewed coordinate system (x, £). The action

2

variable defined by / d;fxf is an invariant of motion with
the Hamiltonian given by Eq. (1). Therefore the trajectories
run along the hyperbolas given by / = const as shown in
Fig. 1(a).

Suppose that ¢ = —oo corresponds to the “‘reactant”
(i.e., before the reaction), and ¢ = +o0 to the “‘product”
(after the reaction). The trajectories with x > 0 and ¢ > 0
are “forward reactive” because they start from the reac-
tant, overcome the barrier, and go into the product (i.e., the
reaction occurs from the reactant to the product). On the
other hand, the trajectories with x <0 and & > 0 are ““for-
ward nonreactive” because they start from the reactant, but
are reflected by the barrier, and go back into the reactant.
Similarly, the trajectories with x < 0 and & < 0 are ‘“‘back-
ward reactive,” and those with x > 0 and & < 0 are “‘back-
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FIG. 1 (color online).

Phase space flows in the saddle region. (a) Flow for the case of harmonic approximation. (b) Representative

trajectories of the hydrogen atom in crossed electric and magnetic fields, with energy E = 0.05, projected on the partial normal form
coordinates. (c) Those with £ = (.15, projected on the minimal normal form coordinates.

ward nonreactive.” Thus the sets {x = 0} and {& = 0}
constitute the boundaries (=invariant manifolds) between
the reactive and the nonreactive trajectories.

As the total energy of the system increases, the harmonic
approximation Eq. (1) becomes no longer valid. We have
higher order terms in the Taylor expansion of the
Hamiltonian:
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where H' is a polynomial function containing cubic
and higher order terms. While H' can take any kind
of functional form, recent studies [7-9,22-27] have
found that it is possible to introduce a coordinate
transformation (X% & G evs G Por oo s D) — (X, €,
Ga ---»Gn> P .., Py) that casts the Hamiltonian into the
following form:
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that is, the total Hamiltonian depends on % and & only

through the action 1 s £ . Here f, and f, contain anhar-
monic terms, and in particular, f; is defined so that f; = 0
when [ = 0. It is easily seen that I is an invariant of
motion, so that we can have the same picture as Fig. 1(a)
just by replacing the names of the axes with ¥ and &. The
transformation is constructed by Lie canonical perturba-
tion theory [28,29] (a classical analog of Van Vleck per-
turbation theory [26]). The form of Eq. (4) is called

“partial normal form” (PNF) in the sense that only the
action of the reactive mode is transformed as an invariant,
which survives robustly even at a moderately high energy
regime (because resonance does not meet between the
reactive and nonreactive modes [7-9,22-27]). It is also
possible to construct a ‘““full normal form” that makes all
the actions transform as invariants of motion [7-10,22-25].
Since the normal form transformation is based on the
perturbation theory, one must be careful about its conver-
gence. In many cases the perturbation series suffer from
divergence mainly arising from the appearance of non-
linear resonances among the modes when the system has
significant nonlinear couplings at a high energy regime. In
general, the convergence improves when the transforma-
tion makes lesser action variables into invariants of motion
because the transformation is then closer to the identity
transformation.
In this Letter, we suggest another form of normal form
H()E’ é‘:’ QZ» LR C_]n’ ﬁZ’ . "pn)
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This functional form is closer to the original Hamiltonian
than the other normal forms in that it allows for any form of
g, and g,, but g, has a prefactor I. It is therefore expected
to have a better convergence property. Under the
Hamiltonian given by Eq. (5), the action variable / is no
longer an invariant of motion. However, it is shown by
simple calculations that the sets {¥ = 0} and {& = 0} still
make invariant manifolds. The set {¥ = 0} divides the
future of the reaction due to its invariance (no trajectory
can cross it). Here the transformation and the final form of
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the Hamiltonian are calculated by canonical perturbation
theory [28,29] as in the previous works [7-9,22-27]. The
difference is the choice of terms to be held in the final
Hamiltonian. In this Letter we call Eq. (5) “minimal
normal form” (MNF) because it is a minimal functional
form for obtaining the invariance of the manifolds.

To check the validity of the theory, we perform calcu-
lations by using a hydrogen atom in crossed electric and
magnetic fields as a model system [7,8],

1 1
H =2 (P + Py + P7) + S (XPy = YPy)

LN 2y _

R+8(X + Y?) — €X, (6)
where X, Y, Z are Cartesian coordinates, Py, Py, P their
conjugate momenta, and R = (X2 + Y2 + Z2)1/2, We use
&€ = 0.45 for illustration of the present theory. In this
system, there is a saddle point at X = —£~!/2 correspond-
ing to ionization.

The validity of the normal form theory can be estimated
by a microcanonical average of the residual error [30] in

the Hamiltonian AH &ef H — H, which would be zero if the
transformation were exact. In reality this is not exactly zero
because the perturbational construction of the transforma-
tion contains truncation errors. Thus the approximation is
better when the value of |H — H| is smaller. Figure 2
shows the microcanonical averages of the error in the
Hamiltonian as functions of the energy. The normal form
calculations are performed up to 8th order perturbation.
The resulting expression of the final Hamiltonian H in
MNF is available in an electronic database [31]. Phase
space points on the surface ¢; = 0, where ¢, is the normal
mode position coordinate along the reactive mode, were
randomly sampled with the constraint H = E and the root
mean square of AH is taken. The constraint ¢; = 0 makes
the sampling approximately ‘“‘on the top of the barrier.” As
the total energy increases, the normal forms become worse
due to higher nonlinearities, and at certain energy they
even become worse than the harmonic approximation.
Roughly, the larger error than the harmonic approximation
means divergence of the series because the error increases
as the order increases (the harmonic approximation is used
as the zeroth order).

Figures 1(b) and 1(c) show the flow in the phase space
by drawing some representative trajectories whose initial
conditions were sampled randomly. Panel (b) depicts the
trajectories at relatively low energy E = 0.05 projected on
the PNF coordinates. Since the PNF is a good description
at this energy (see Fig. 2), the action I = X £ is a good
invariant of motion. Consequently the trajectories follow
the hyperbolas given by constant action, without crossing
with each other in the phase space. We can see a clear
lamination in the picture of phase space flow. When the
total energy increases, the phase space structure experien-
ces a significant change. At E = (.15, the PNF is no longer

a valid description, whereas the MNF still gives a good
approximation to the true dynamics (see Fig. 2). Fig-
ure 1(c) shows the trajectories at this energy projected on
the MNF coordinates. Since the action variable is not an
invariant of motion in the MNF, the trajectories do not
follow the hyperbolas, and crossings of trajectories with
each other are also observed. One can no longer find a
laminar flow in the phase space. However, no trajectories
can cross the invariant manifolds {¥ = 0} and {& = 0} as
expected from the theory. We can still predict the fate of
the reaction by the sign of X.

Next we take statistics of the “fate” of trajectories.
Here, we sample 10000 initial conditions randomly on
the surface ¢; = 0. When numerically propagated forward
in time, the trajectory either goes out into the ionized
region or is captured in the vicinity of the proton. Table I
shows the number of the ionizing and the nonionizing
trajectories with the sign of the initial values of x. The
numbers in the parentheses correspond to the “failures” of
the theory in predicting the fate of the trajectory, compared
to the number out of the parentheses showing the number
of “successes.” We can find significant improvements by
MNF compared to the harmonic and PNF.

In summary, we have presented the analytical frame-
work which enables us to assign and predict the fate of
reaction even at a high energy regime. In Fig. 1(c), the
chosen system, no recrossing was found over the surface
g; = 0. Note however that this is not a general conse-
quence from Eq. (5), as we allow any functional forms of
g; and g,. What is exactly derived from the form of Eq. (5)
is the invariance of {¥ = 0} and {£& = 0}, not the no-
recrossing property of {g; = 0}. The significant point in
the present theory is that we can still find an “impenetrable
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FIG. 2 (color online). Microcanonical averages of errors of
normal form description calculated for a hydrogen atom in
crossed electric and magnetic fields. The circle, plus, and square
depict the error of harmonic approximation, partial normal form,
and minimal normal form, respectively.
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TABLE I. The numbers of sampled trajectories against the sign of their initial values of the reaction coordinate x and X. Here x is the
reaction coordinate in harmonic approximation, and ¥ those computed by either PNF or MNF.

Harmonic PNF MNF
Energy?® x>0 x<0 x>0 <0 x>0 <0
0.15 (ionizing) 5027 (1743) 6677 (93) 6765 5)
0.15 (nonionizing) 2) 3228 (67) 3163 3) 3227
0.2 (ionizing) 5025 (2026) 6786 (265) 7021 (30)
0.2 (nonionizing) 4) 2945 (326) 2623 21 2928

#At each energy, the upper figures are the numbers of trajectories that are numerically found to reach the ionized region, while the
lower figures are those captured in the well region, shown against the sign of the initial values of x and ¥. For example, out of the
10000 points randomly sampled on g; =0 at E=0.15, 4971 had x <0 (‘“predicted” to be nonionizing if the harmonic
approximation is correct). Of the 4971 trajectories, 1743 were numerically found to be ionizing (although the sign of x predicts
them as nonionizing), while 3228 were nonionizing.
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