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Internal electric field influence on tunneling anisotropic magnetoresistance
in epitaxial ferromagnet/n-GaAs junctions

Tetsuya Uemura,® Masanobu Harada, Ken-ichi Matsuda, and Masafumi Yamamoto
Division of Electronics for Informatics, Hokkaido University, Sapporo 060-0814, Japan

(Received 28 April 2010; accepted 2 June 2010; published online 24 June 2010)

A strong voltage-dependent tunneling anisotropic magnetoresistance (TAMR) effect was observed
in a fully epitaxial Co,MnSi/n-GaAs junction and a CospFesp/n-GaAs junction. Angular
dependence of the tunnel resistance showed uniaxial-type anisotropic tunnel resistance between the
[110] and [110] directions in the (001) plane. The voltage at which the TAMR effect was suppressed
was close to that at which the differential conductance reached a minimum in both samples,
suggesting that the strength and/or the sign of the internal electric field at the Co,MnSi/n-GaAs and
CosgFeso/n-GaAs junctions could be related to the voltage-dependent TAMR effect through
spin-orbit interaction. © 2010 American Institute of Physics. [doi:10.1063/1.3456558]

Spin-injection into semiconductors (SCs) has attracted
much interest for future-generation spintronic devices, such
as spin transistors' and spin light-emitting diodes.” In these
devices, ferromagnet (F)/SC heterojunctions are used to cre-
ate and detect a spin-polarized state in SCs. Thus, it is im-
portant to clarify spin-dependent transport properties of F/SC
junctions. Recently, a tunneling anisotropic magnetoresis-
tance (TAMR) effect, in which the tunnel resistance changes
depending on the magnetization direction of the F with re-
spect to the crystal axis, was observed in F/SC junctions.“’5
Moser et al.* observed uniaxial-type anisotropy of the tunnel
resistance with respect to the in-plane magnetization due to
the TAMR effect in Fe/GaAs/Au vertical junctions. We also
observed the TAMR effect in both single CosgFesy/n-GaAs
Schottky junctions and lateral CosyFesy/n-GaAs/CosyFes
junctions consisting of two CosgFesy/n-GaAs Schottky
junctions,5 and found that the TAMR effect possibly affects
the transport properties of SC spintronic devices consisting
of F/SC heterostructures, such as spin transistors.

One Co-based Heusler alloy, Co,MnSi, is a promising
candidate material for the ferromagnetic electrodes of
spintronic devices because it is theoretically predicted to be
half-metallic and has a high Curie temperature of 985 K.%7
We recently developed fully epitaxial magnetic tunnel
junctions (MTJs) with either a Co,MnSi thin film as a lower
electrode® or Co,MnSi thin films as both lower and upper
electrodes,gf]l with a MgO barrier in both cases, and
demonstrated high tunnel magnetoresistance (TMR) ratios
of up to 1135% at 4.2 K and 236% at room temperature
(RT),'™" indicating that Co,MnSi has high spin polarization.
In order to apply Co,MnSi to a ferromagnetic electrode as an
efficient spin injector into SCs, the basic transport
properties of Co,MnSi/SC heterojunctions should be clari-
fied. In this study, we investigated the bias-voltage depen-
dence of the TAMR effect in both Co,MnSi/n-GaAs and
CosgFeso/n-GaAs single junctions, and found that the volt-
age at which the TAMR effect was suppressed was close to
that at which the differential conductance reached a mini-
mum in both Co,MnSi/n-GaAs and CosyFes)/n-GaAs junc-
tions; this suggests that the strength and/or the sign of the
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internal electric field at the Co,MnSi/n-GaAs and
CosgFesg/n-GaAs junctions possibly affects the voltage-
dependent TAMR effect through the spin-orbit interaction
(SOI).

Layer structures consisting of (from the substrate side)
undoped GaAs (50 nm)/n"-GaAs (Si=2X10'® cm™,
750 nm)/n*-GaAs  (Si=3x 10" cm™, 30 nm)  were
grown by molecular beam epitaxy at 580 °C on a GaAs(001)
substrate. This layer structure was similar to that described in
Ref. 12, where electrical spin injection and detection using
an Fe electrode were reported. The n*-GaAs layer was in-
serted to reduce the Schottky barrier width, so that the tunnel
conduction was dominant. The sample was then capped with
an arsenic protective layer and transported to an ultrahigh-
vacuum magnetron-sputtering chamber with a base pressure
of about 6 X 1078 Pa. Prior to the growth of the F, the arsenic
cap was removed by heating the sample to 400 °C. A
20-nm-thick Co,MnSi film or a 20-nm-thick CosyFes, film
was grown by magnetron sputtering at RT. The Co,MnSi
film was in situ annealed at 350 °C for 15 min. right after
the deposition of the Co,MnSi film. The magnetoresistance
(MR) and differential conductance (G=dI/dV) of
Co,MnSi/n-GaAs junctions were measured at 4.2 K by the
conventional four-probe method. The bias-voltage was de-
fined with respect to the n-GaAs.

X-ray pole figure measurements confirmed that both
CosoFesq and Co,MnSi thin films were epitaxially grown on
the GaAs with a cube-on-cube relation. Thus, the crystal axis
direction described hereafter is common between CosyFes,
and GaAs, and between Co,MnSi and GaAs. Figure 1 shows
a polar plot of the junction resistance at 4.2 K for a
Co,MnSi/n-GaAs junction under a magnetic field of H
=3000 Oe. A bias voltage of —0.05 V was applied to the
Co,MnSi electrode. The polar angle in Fig. 1, which indi-
cates the direction of H with respect to the [110] direction of
the Co,MnSi, corresponds to the direction of the magnetiza-
tion of the Co,MnSi, because the magnetization was forced
to align along the direction of H under the sufficiently large
field of 3000 Oe. The figure clearly shows uniaxial-type an-
isotropic resistance with respect to the in-plane magnetiza-
tion direction. The resistance value took the maximum when

the magnetization was oriented to the [110] or [110] direc-
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FIG. 1. (Color online) A polar plot of the junction resistance for a
Co,MnSi/n-GaAs junction at 4.2 K under H=3000 Oe. The polar angle is
defined with respect to the [110] direction of the Co,MnSi electrode.

tion and the minimum when the magnetization was oriented
to the [110] or [110] direction. We will define R, and R,

as the resistance for MII[110] and MII[110], respectively.
The current-voltage characteristics of the Co,MnSi/n-GaAs
junctions show that the tunnel resistance for the Schottky
barrier formed at the Co,MnSi/n-GaAs interface was domi-
nant in the junction resistance compared with that of the
Co,MnSi electrode or the n-GaAs. Thus, the observed
anisotropic resistance was due to the TAMR effect rather
than an anisotropic magnetoresistance effect of the Co,MnSi
electrode or a local Hall effect in the n-GaAs due to a
stray field from the Co,MnSi electrode. Similar uniaxial-type
anisotropy in the tunnel resistance was observed in
CosgFesg/n-GaAs junctions5 and Fe/GaAs/Au junctions.4

Figures 2(a) and 2(b) show the bias-voltage dependence
of the MR ratio (r) for both Co,MnSi/n-GaAs and
CosgFesy/n-GaAs junctions. Here, r is defined by (R
—Ry19)/ R} 0. Positive r corresponds to R,7o> R, ;(, and nega-
tive r corresponds to R;jp<R;;o- We obtained r<<0O for
V<0 V and r>0 for V>0 V for a Co,MnSi/n-GaAs
junction, and obtained >0 for V<+0.2 V and r<0 for
V>+0.2 V for a CosgFesy/n-GaAs junction. The zero-
crossing voltage (V;), where the sign of r changes from
positive to negative or vice versa, was approximately 0 V
for the Co,MnSi/n-GaAs junction and +0.2 V for the
CosgFeso/n-GaAs junction. These results indicate that both
the magnitude and sign of r were dependent on both the
bias-voltage and the ferromagnetic electrode material.

Figures 2(c) and 2(d) show the G-V characteristics for
Co,MnSi/n-GaAs and CosyFesy/n-GaAs junctions. We ob-
served almost symmetric G-V characteristics regarding the
bias polarity for a Co,MnSi/n-GaAs junction and asymmet-
ric G-V characteristics for a CosyFesy/n-GaAs junction. Im-
portantly, the voltage for the G minimum (V,y;,) was almost
equal to V,, for both samples. This indicates that the strength
and/or the sign of the internal electric field at F/n-GaAs junc-
tions possibly relates to the voltage-dependent TAMR effect
as will be discussed later.

We will now discuss the origin of the bias-voltage de-
pendence of r shown in Figs. 2(a) and 2(b). The complex
bias-voltage dependence of r in terms of its sign and magni-
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FIG. 2. (Color online) The bias-voltage dependence of (a) MR ratio for
Co,MnSi/n-GaAs, (b) MR ratio for CosyFes/n-GaAs, (c) differential con-
ductance for Co,MnSi/n-GaAs, and (d) differential conductance of
CosgFesy/n-GaAs. The MR ratio (r) was defined by (R;7o—R;i0)/R;i0s
where R, and R, stand for the tunnel resistance when the magnetization

of the ferromagnetic electrode orients to the [110] and [110] directions,
respectively. The insets of Figs. 2(a) and 2(b) indicate a sketch of the effec-
tive tunnel barrier at the F/n-GaAs junctions when V=0.

tude can be explained in terms of two following features: (a)
|r| decreases monotonically with increasing |V| for both po-
larities of V and (b) r is zero-crossing at V=V, For the
CosgFesg/n-GaAs junction, V, is approximately 0.2 V, so r
reached the maximum at V=0 V due to (a) and its sign
changed at V=V, (=+0.2 V) due to (b). For the
Co,MnSi/n-GaAs junction, Vy=0 V, so features (a) and (b)
were competing at V=0 V, resulting in |r| reaching the
maximum at V= * 60 mV instead of 0 V. Feature (a) is simi-
lar to that observed in the bias-voltage dependence of the
TMR ratio of MTJs,"*™"° and its origin is possibly related to
some spin scattering through magnon excitation or caused by
magnetic impurities during tunneling or a two-step tunneling
process as is the case for MTJs.

We next consider the origin of feature (b). Positive
(negative) r means that R,7, is larger (smaller) than R,
from its definition. Recently, a theoretical model based on
the combination of Rashba and Dresselhaus SOIs was pro-
posed to explain the origin of the anisotropgl of tunnel resis-
tance observed in a Fe/GaAs/Au junction. 1617 We applied
this model to the tunnel resistance of the Co,MnSi/n-GaAs
and CosyFesy/n-GaAs junctions. The Hamiltonian for both
the Rashba and Dresselhaus SOIs is given by

Hgo= ook, — oyk,) + Blok, — oyk,) = wlk,k) - o,
(1)

where « and S are the effective Rashba and Dresselhaus
parameters; o=(0,,0,,0,) are the Pauli spin matrices; k,, k,
are the electron wave vector components, and w=(aky
+ Bk, —ak,—Bky,0) is the SOI-induced effective magnetic
field. Here, the x-axis and y-axis are, respectively, set to the
[100] and [010] direction, and the z-axis is set to the tunnel-
ing direction. Because of the anisotropy of w in the k,—k,
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TABLE I. Summary of the voltage at which the TAMR effect was sup-
pressed (V;) and the sign of the derivative of the MR ratio at V=V, for
different systems.

Vo
System (mV) Sign of dr/dr at V=V,
Co,MnSi/n-GaAs 0 Positive
CosoFesy/n-GaAs * 200 Negative
Fe/GaAs/Au ° 50 Positive

“Reference 4.
"Reference 5.

space, the tunneling probability of an electron depends on its
initial spin orientation, resulting in the anisotropy of tunnel
resistance between Ry and R;j,. The difference between
R0 and R,7, is then given by

Ri1o—Ri10=CapB, (2)

where C is a proportionalit;/ coefficient related to the aver-
aged Fermi wave number.'” Since « is proportional to the
strength of the z-component of the electric field at the F/n-
GaAs interface, the sign as well as its magnitude would be
voltage-dependent. Thus, one can explain the sign change in
r at V=V, if a is zero-crossing at V=V,,.

Given this model, the internal electric field becomes zero
at V=V, because a=0 at V=V|. This means that the flat-
band voltage (Vgg) is equal to V;,. Then, we assumed that the
Co,MnSi/n-GaAs junction has a symmetric potential (i.e.,
Veg=0 V), and that the CosoFesy/n-GaAs junction has a
trapezoidal potential with Vgg=0.2 V, as shown in the insets
of Figs. 2(a) and 2(b). Under these assumptions, we discuss
the relation between V; (i.e., =Vgg) and V,;,, which is the
voltage at which the differential conductance reaches a mini-
mum. Accordin% to Brinkman’s formula, Vgg is related to
Vin as follows: 8

2 -1
Vg = (— Eln T) Vinins (3)

where T is the tunneling probability of electrons under the
flat-band condition. Since Vgg=V,, V| is proportional to
Vimins Whose proportionality coefficient (i.e., [-2/3 In T]™!) is
positive. We found experimentally that V, was almost equal
to Vi for both Co,MnSi/n-GaAs and CosgFesy/n-GaAs
junctions, as shown in Figs. 2(a)-2(d). This result is consis-
tent with Eq. (3). Although the tunneling probability T for
the Co,MnSi/n-GaAs junction cannot be fitted by Eq. (3),
because V,;,=0, T for the CosoFeso/n-GaAs junction was
fitted to be approximately 0.2, which is a reasonable value
for electrons tunneling through a Schottky barrier. Thus,
these experimental findings support the SOI-based model.
Last, we discuss the ferromagnetic materials dependence
of the TAMR effect. Table I summarizes the value of V| and
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the sign of dr/dV at V=V, for different systems. The sign of
r changed from negative to positive with increasing V (or
dr/dV>0) for both the Co,MnSi and Fe electrodes, while it
changed from positive to negative for the CosyFes, electrode
with increasing V. Since the layer structures of the n-GaAs
are the same between the Co,MnSi/n-GaAs and the
CosgFesy/n-GaAs, the difference in the TAMR characteris-
tics between the samples in terms of the sign of » was due to
the difference of the ferromagnetic electrode material. If the
sign of parameter C in Eq. (2) depends on the ferromagnetic
materials, one can explain the ferromagnetic material depen-
dence of the MR ratio. To check the validity of this assump-
tion, however, further theoretical and experimental investiga-
tions are necessary.

In summary we observed the voltage-dependent TAMR
effect in both Co,MnSi/n-GaAs and CosyFes,/n-GaAs junc-
tions, and found that the strength and/or the sign of the in-
ternal electric field at F/n-GaAs junctions are possibly re-
lated to the voltage-dependent TAMR effect through the SOI.
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