942

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.5 MAY 2010

[PAPER Special Section on Formal Approach

Multi-Context Rewriting Induction with Termination Checkers

SUMMARY Inductive theorem proving plays an important role in the
field of formal verification of systems. The rewriting induction (RI) is a
method for inductive theorem proving proposed by Reddy. In order to
obtain successful proofs, it is very important to choose appropriate con-
texts (such as in which direction each equation should be oriented) when
applying RI inference rules. If the choice is not appropriate, the proce-
dure may diverge or the users have to come up with several lemmas to
prove together with the main theorem. Therefore we have a good reason to
consider parallel execution of several instances of the rewriting induction
procedure, each in charge of a distinguished single context in search of a
successful proof. In this paper, we propose a new procedure, called multi-
context rewriting induction, which efficiently simulates parallel execution
of rewriting induction procedures in a single process, based on the idea of
the multi-completion procedure. By the experiments with a well-known
problem set, we discuss the effectiveness of the proposed procedure when
searching along various contexts for a successful inductive proof.

key words: equational theorem proving, term rewriting systems, mathe-
matical induction, rewriting induction, multi-completion

1. Introduction

An inductive theorem is an equation over terms which holds
on recursively-defined data structures, such as natural num-
bers and lists. In the field of formal verification of informa-
tion systems, inductive theorem proving plays an important
role. In order to automatically prove inductive theorems in
equational logic, various methods have been proposed based
on the theory of term rewriting systems [10]-[12]. Among
them is a method called the rewriting induction (RI) pro-
posed by Reddy [17], which is a principle generalizing and
refining several procedures for proving inductive theorems
based on term rewriting. The RI method relies on the ter-
mination of the given term rewriting systems representing
the axioms, because if we have a terminating term rewrit-
ing system (i.e. there exists no infinite rewrite sequence),
then we can use the transitive closure of the corresponding
rewrite relation of the system as a well-founded order over
terms for the basis of induction. However, there exist strate-
gic issues coming from the nondeterminism in constructing
proofs, and therefore for guiding this procedure to success,
we need to choose appropriate proof steps. There are at least
three kinds of strategic issues: (1) which reduction order

Manuscript received July 17, 2009.
Manuscript revised November 10, 2009.

"The authors are with the Graduate School of Information
Science and Technology, Hokkaido University, Sapporo-shi, 060—
0814 Japan.

a) E-mail: haru@complex.eng.hokudai.ac.jp
b) E-mail: kurihara@ist.hokudai.ac.jp
DOI: 10.1587/transinf.E93.D.942

Haruhiko SATO'® and Masahito KURTHARA ™, Members

should be employed, (2) which (axiomatic or hypothetical)
rules should be employed for rewriting, and (3) which vari-
ables should be instantiated for induction. In general, it is
difficult to choose appropriate strategies leading to success
and if we chose an inappropriate one, then the inductive the-
orem prover would easily diverge. In the standard RI pro-
cedure, the strategy for (1) is fixed before starting the rea-
soning steps by specifying a reduction order, which is used
to ensure the termination of the axiomatic rewrite system
and decide the direction of hypothetical equations. The re-
duction order should be given by the user as an input. This
means that the user needs to decide a most difficult part of
the strategy beforehand and this has been making it really
hard to fully automate the RI-based inductive theorem prov-
ing.

In order to solve this problem, Aoto[2] proposed a
variant of RI, called the rewriting induction with termina-
tion checker (RIt), which, based on the work of Wehrman,
et al. [21], uses an external automated termination checker
instead of a specific reduction order. In this method, the
users need to provide no reduction orders. Moreover, they
can implicitly exploit modern termination proving methods
more powerful than the classical, simply parameterized re-
duction orders (such as recursive path orders and polyno-
mial orders). We should say that RIt, which solves the
strategic issue shown above as (1), has another issue instead:
(1) in which direction hypothetical equations should be ori-
ented. From the viewpoint of strategy, the use of termination
checkers gives us more flexibility in the orientation strategy,
because they increase the possibility of success in the ori-
entation and we can decide the direction of the equations
dynamically. In order to prove inductive theorems as auto-
matic as possible, we can strengthen this flexibility by try-
ing various strategies in parallel. However, if we physically
created and ran a number of parallel processes, such naive
parallelization would cause serious inefficiency.

In this paper, we present a new variant of rewriting
induction procedures, called multi-context rewriting induc-
tion (MRIt), based on the idea of the multi-completion [15],
[18], [19]. Our procedure efficiently simulates execution of
parallel RIt processes in a single process. By the experi-
ments, we will see that the procedure is actually useful for
trying various strategies and contexts in parallel and thus
guiding some of the promising processes to success. In par-
ticular, we demonstrate that there are inductive theorems
which are easily proved by MRIt but were not proved by
the standard RI or RIt unless the strategies and contexts were

Copyright © 2010 The Institute of Electronics, Information and Communication Engineers

SATO and KURIHARA: MULTI-CONTEXT REWRITING INDUCTION WITH TERMINATION CHECKERS

chosen correct or else auxiliary lemmas were discovered and
supplied.

The paper is organized as follows. We review the
rewriting induction and the multi-completion in Sect.2. In
Sect. 3, we discuss some strategic issues in RIt and present
the new procedure MRIt. In Sect.4, we report the results
of the experiments and discuss the effectiveness of the new
procedure. Section 5 contains the conclusion and possible
future work.

2. Preliminaries
2.1 Term Rewriting Systems

We briefly review basic notions for term rewriting sys-
tems [4], [6],[13],[20]. A signature ¥ is a set of func-
tion symbols, where each f € X is associated with a non-
negative integer n, the arity of f. Let V be a set of vari-
ables such that Z NV = (. The set T(X, V) of all Z-terms
over V is inductively defined as follows: V C T(Z, V) and if
ty..oty € T(E,V)and f € Z, then f(t,...,t,) € T(Z,V),
where n is the arity of f. We write s = ¢ when the terms
s and ¢ are identical. A term s is a subterm of t, if ei-
ther s = rort = f(t1,...,t,) and s is a subterm of some
t;. We denote the set of all variables contained in a term s
by V(s), and V(s) U V(¢) is denoted by V(s,f). A substi-
tution is a function o : V — T(X, V) such that o(x) # x
for only finitely many xs. Any substitution o can be ex-
tended to a mapping o : T(Z,V) — T(Z,V) by defining
o(f(s1,...,8:)) = flo(sy),...,0(s,)). Application o (s) of
o to s is also written as so. A term ¢ is an instance of a term
s if there exists a substitution o such that so = t. Two terms
s and ¢ are variants of each other and written as s = ¢, if s is
an instance of ¢ and vice versa: i.e., s and ¢ are syntactically
the same up to renaming variables. An encompassment or-
der T on a set of terms is defined by s O [iff some subterm
of sis an instance of / and s # I. A term is a ground term if it
contains no variables. A term ¢ is a ground instance of s if t
is a ground term and is an instance of s. The composition ot
of two substitutions o~ and T is defined as s(o1) = (so)T. A
substitution o is more general than a substitution o if there
is a substitution ¢ such that ¢’ = ¢§. For two terms s and ¢,
if there is a substitution o such that so = to, o is a unifier
of s and t. We denote the most general unifier of s and ¢ by
mgu(s,t). Let O be a new symbol which does not occur in
X U V. A context, denoted by C,isatermt € T(Z,V U {O})
with exactly one occurrence of O. C[s] denotes the term
obtained by replacing O in C with s. A rewrite rule / — r
is an ordered pair of terms such that / is not a variable and
every variable contained in r is also in I. A term rewrit-
ing system (TRS), denoted by R, is a set of rewrite rules.
The reduction relation —-xC T(X,V) X T(Z,V) is defined
by s —g t iff there exists a rule [— r € R, a context C,
and a substitution o such that s = C[lo] and C[ro] = t.
A term s is reducible if s —¢ t for some t; otherwise, s
is a normal form. A TRS R terminates if there is no infi-
nite rewrite sequence sy —g S —g ---. A relation R on

943

T(Z,V) is closed under substitution if s R t implies so R to
for any substitution 0. A relation R on T'(Z, V) is closed un-
der context if s R t implies C[s] R C[¢] for any context C.
A reduction order > is a well-founded strict partial order on
T(Z, V) that is closed under substitution and context. The
root symbol of a term s = f(sy,...,5,) is f and denoted
by root(s). The set of all defined symbols of R is defined
by Dg = {root(l) | I — r € R}. The set of all constructor
symbols of R is defined by Cg = £\ Dg. A term consisting
of only constructor symbols and variables is a constructor
term. The relation <—>;‘2 is the reflexive, symmetric, transitive
closure of the rewrite relation —g.

2.2 Rewriting Induction

The rewriting induction (RI), proposed by Reddy[17], is a
principle for proving inductive theorems in equational logic.
Before describing RI, let us briefly review basic notions. A
term is a basic term if its root symbol is a defined symbol
and its arguments are constructor terms. We denote all ba-
sic subterms of ¢ by B(¢). A TRS R is quasi-reducible (also
called ground-reducible) if every ground basic term is re-
ducible in R. An equation s = ¢ is an inductive theorem of
R if all its ground instances so = fo are equational con-
sequences of the equational axioms R (regarded as a set of
equations), i.e., so <—>;*Q to.

Given a set R of rewrite rules representing equational
axioms and a reduction order > containing R, RI is repre-
sented as an inference system working on a pair of a set of
equations & and a set of rewrite rules H. Intuitively, & rep-
resents conjectures (i.e., theorems and lemmas) to be proved
and H represents inductive hypotheses applicable to &. Fig-
ure 1 shows the inference rules of RI proposed in [1].

In Fig. 1, Expd denotes the function defined as fol-
lows:

Expd,(s,t) ={C[rlo =to | s = Clu],l - re R,
o = mgu(u,l),! : basic}

where, if necessary, the variables used in [— r should be
renamed in a one-to-one manner so that V(I,)N V(s,1) = 0.
Let s = ¢ be an equation such that it can be oriented from
s to t to form a rewrite rule s — ¢. Given such an equation
s = t and a basic subterm u of s, Expd, (s, f) carries out a
computation similar to the computation of critical pairs by
overlapping u with the basic left-hand sides / of rewrite rules
I — r of R. The resultant equations are collected in a set
and returned by Expd. Those equations will be used as new

DELETE (W {s = s}, H) F (E, H)

SIMPLIFY (EW{s=t},H)F(EU{s' =t}, H)
if s —»run S

ExpAND (W {s=t},H)F

(£ UExpd,, (s,t), HU{s — t})
ifu€ B(s)and s >t

Fig.1 Inference rules of RI

944

conjectures in the ExpanD inference rule for a case analysis
to cover the original conjecture s = ¢, if R is quasi-reducible.
In the succeeding inference steps, the rewrite rule s — ¢ can
be used as an inductive hypothesis.

The peLETE rule removes the trivial equation. The smm-
pLIFY rule reduces an equation using a rule of R and H.

We write (&, H) rg; (&', H’) if the latter may be ob-
tained from the former by one application of a rule of RI.
Given a set of equations &g, a quasi-reducible terminating
TRS R, and a reduction order > containing R, if we have
a derivation sequence (&, Ho) Frr (E1,Hi) Frr -+ FrI
(Ens H,) where Hy = &, = 0, then all equations in &, are
inductive theorems of R. It is known that quasi-reducibility
is decidable [16] and there is a simply exponential algorithm
for it [5]. The possible derivation depends on the choice of
the reduction order >. It means that its choice is important
for the success of inductive theorem proving with the rewrit-
ing induction.

Example 2.1: Let us consider the following TRS.

R = O+y — y
Tl s(x)+y — s(x+y)

Let > be the lexicographic path order induced by the prece-
dence + > s. We can prove the associativity of the addition

x+yY+z=x+Qy+2)
by the following derivation:

&+ +z=x+ @+ LD
ir+z2=0+01+2),
R < S(XI+}’1)+Z=S(x1)+()’1+2)},>
{(x+y+zox+(G+2)
(by ExpaND) where u = x +y
<{y1+z=y1+z, >

'_*

kI s(x1 + (y1 +2)) = s(x1 + (y1 +2)},

{x+y)+z-=>x+ @ +2)
(by 4 steps of SIMPLIFY)

oy D@+ +z2 > x+0+2))
(by 2 steps of DELETE)

where I, denote the reflexive and transitive closure of Fg;.

Note that in the first inference step, the Expd function
isused as follows. Letu = x+y, s = (x+y)+2z,t = x+(y+2),
and C = O+ z. With the rule / = 0 + y; — y; = r, obtained
by renaming the first rule of R, we have o = mgu(u,l) =
{x — 0,y — y;}, and the conjecture y; + z = 0 + (y; + 2) is
generated. Similarly, with the rule s(x;) + y; — s(x; + y;),
the conjecture s(x; + y1) + z = s(x1) + (y; + z) is generated.

In general, it is not straightforward to provide a suitable
reduction order and choose appropriate inference rules to be
applied in the reasoning steps.

Aoto [2] proposed a variant of the rewriting induction,
using an arbitrary termination checker instead of a reduction
order. The new system, called RlIt, is defined by modifying
the ExpanD rule as in Fig. 2. It allows us to use more power-
ful termination checking techniques. However, the necces-
sity of approprite choice of the direction of the equation in

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.5 MAY 2010

EXpPAND: (EW{s =1}, H)F
(E UExpd, (s,t), HU{s — t})
if u € B(s) and RUH U {s — t} terminates
Fig.2 Expand rule of RIt.
DELETE: (EUu{s=s},R)F(E,R)
ORIENT: (EU{s=t},R)F(E,RU{s —t})
if s =1
SIMPLIFY: (EU{s=t},R)F (EU{s=u},R)
ift > u
CoMPOSE: (E,RU{s = t})F (§,RU{s — u})
ift g u
CoLLapse: (E,RU{s—=t})F (EU{u=1t},R)
ifl =reR,s —{l—r} U and s J1
DEDUCE: (E,R)F(EU{s=1},R)

ifu—p sand u —pt

Fig.3 Inference rules of KB.

applying the EXPAND rule arises, because we can often orient
an equation in both directions.

2.3 Multi-Completion

Given a set &) of equations and a reduction order >, the stan-
dard Knuth-Bendix completion procedure (KB) [14] tries to
compute a convergent set R, of rewrite rules that is con-
tained in > and that induces the same equational theory as
&p. Starting from the initial state (&g, Ry), where Ry = 0,
the procedure obeys the inference system defined in Fig. 3 to
generate a sequence (&p, Ro) + (&1, Ry) F - -+ of deduction.
When the set of persistent equations &, = ;>0 ()i E; 18
empty, the procedure halts in success, and the resultant sys-
tem of persistent rewrite rules R, = ;=0 ()i R; is conflu-
ent, terminating (with every rule / — r satisfying / > r), and
satisfies & =g .

The multi-completion procedure MKB developed in
[15] accepts as input a finite ser O = {>,...,>,} of re-
duction orders as well as a set &, of equations. The mission
of the procedure is basically the same as KB: it tries to com-
pute a convergent set R,, of rewrite rules that is contained in
some >; and that induces the same equational theory as &p.
To achieve this mission, MKB simulates the execution of m
parallel processes P = {Py,..., Py}, with P; executing KB
for the reduction order >; and the common input &.

In order to efficiently simulate a lot of closely-related
inferences made in different processes, MKB exploits the
data structure called nodes and represents the state of the
procedure by a set of nodes. Let I = {1,2,...,m} be the set
of indexes for orders in O (also for processes in P). A node
is atuple (s : t,Rg, Ry, E), where s : ¢ (called a datum) is an
ordered pair of terms, and Ry, R, and E (called labels) are
subsets of [satisfying the following conditions (called label
conditions):

e RyNR =R NE=ENRy=0and
e [€ Ryimplies s >; ¢, and i € R; implies ¢ >; s.

Intuitively, Ry (resp. R;) denotes the set of indexes of
processes in which the current set of rules contains a rule

SATO and KURIHARA: MULTI-CONTEXT REWRITING INDUCTION WITH TERMINATION CHECKERS

s — t (resp. t — s). Similarly, E denotes the set of indexes
of processes in which the current set of equations contains
an equation s = ¢. The node (s : t, Ry, R}, E) is considered
to be identical with the node (z : s, Ry, Ry, E).

In the semantics of MKB, the following definition of
projections relates the information on nodes to the states of
processes. Letn = (s : t,Rp, R, E) be anode and i € I be
an index. The &-projection E[n, i] of n onto i is a (singleton
or empty) set of equations defined by

ifieE,
otherwise.

8[”, l] = { {S(Z:) t}’

Similarly, the R-projection R[n, i] of n onto i is a set of rules
defined by

{s > 1), ifieRy,
R[n,i] =3 {t— s}, ifieRy,
0, otherwise.

The definitions above are extended for a set NV of nodes, as
follows:

EIN, i] = US[n, i1, RIN,i] = UR[n, il

neN neN

Intuitively, &[N, i] (resp. R[N, i]) denotes the set of equa-
tions (resp. rewrite rules) held in the simulated process P;,
which is the ith process executing KB for the reduction order
>;, when the state of MKB is N.

DELETE: NU{(s:s5,0,0,E)} - NI E#0)

ORIENT: NU{(s:t,Ro,R1,EUE")} b
NU{(S:t,RoUE/,Rl,E>}
ifE A0, ENE =0,

and s =; t for all i € B’
REWRITE-1: N U{(s:t,Ro,R1,E)}

NU{ (s:t,Ro\ R,R1,E\ R) }
(s:u,RoNR,0,ENR)
if{lir R,) ENGE =y U,

t=1 and (RoUE)NR#D
REWRITE-2: N U{(s:t, Ro,R1,E)} - NU
(s:t,Ro\ R,R1 \ R,E\ R)
{ (s:u,RoNR,0,(RIUE)NR) }
if{lir R,) ENE =y,
t3l, and (RoOURTUE)NR#0
DEDUCE: NENU{(s:t,0,0,RNR")}
if (l:rR,...,...) €N,
{:r",R,...,...) EN,RNR #10,

U=} S, and uw —yp oyt
Ge: NU{(s:t,0,0,0)} - N

<S:t,R0,R1,E> -
(s : ', R{, R}, E")

N U {(S 1 t, Ro U Ré,Rl U RII,E”)}
if s:t and s’ : ¢/ are variants and

E" = (E\ (R)UR}))U(E"\ (RoURy))

SUBSUME: NU

Fig.4 Inference rules of MKB.

945

The MKB procedure is defined by the inference sys-
tem working on a set N of nodes, as given in Fig.4. The
DELETE, ORIENT, and DEDUCE rules simulate the counterparts
of KB, respectively. The smmpLIFY and composE rules of KB
are simulated by REWRITE-1 and REWRITE-2, while REWRITE-2
additionally simulates the coLLapst rule of KB. Gc and sus-
suME (called optional rules) do not necessarily simulate KB,
but can affect the efficiency of MKB.

Starting from the initial set of nodes,

No={(s:1,0,0,I)| s =1€ &},

the procedure generates a sequence Ny + Ny + ---. If, for
some N and i, E[N, i] is empty and all critical pairs of R[N, i]
have been created, MKB returns R[N, i] as the final result, as
the semantics of MKB shows that it is the convergent system
obtained from the successful KB sequence computed by the
process P;. Let = be = U r. The following proposition
states the soundness of MKB.

Proposition 2.2: If N + N’, then for all i € I,
(&[N, i], R[N, i]) += (E[N’,i], RIN’, i]).

3. Multi-Context Rewriting Induction

In this section, we show some examples in which the re-
sults of inductive theorem proving with RI are different, de-
pending on the ways of applying inference rules. Then we
present a new MKB-like procedure which enables us to fol-
low multiple reasoning paths in parallel.

3.1 Examples of Strategic Issues in RI

In this subsection, we show examples in which the choice of
appropriate contexts is important.

Example 3.1: Let us consider the following TRS [17].

f(0) - 0
f(s(0)) — s(0)
f(s(s(x))) = f(s(x))+(x)
9(0) — (s(0),0)
g(s(x)) — np(g(x))
np((x, y)) = (x+y, x)

R =

This example defines Fibonacci numbers in two ways:
a naive definition by f and an iterative definition by g. The
following equation, which represents the correctness of the
iterative definition with respect to the naive definition, is an
inductive theorem in R.

g(x) = (f(s(x)), f(x))

This conjecture can be proved in RI if we orient it from left
to right by choosing as a reduction order an appropriate one
such as the lexicographic path order (LPO) over the prece-
denceg>f>np>()>+>s>0.

Actually, expanding this equation by overlapping its
left-hand side with the fourth and fifth rules of R, we get

946

(s(0),0) = (f(s(0)), f(0))
np(g(x)) = (f(s(s(x))), f(s(x))),

both of which are simplified to trivial equations and deleted.
However, the RI procedure will diverge, if we orient the
original conjecture from right to left by choosing the LPO
with the precedence f > g > np > () > + > s > 0. In gen-
eral, it is not a trivial task to provide an appropriate reduc-
tion order, particularly when it should be automated. When
the ordering is inappropriate, we will often have to supply
additional conjectures as lemmas, such as

sum(g(x)) = f(s(x)) + f(x)
in addition to some axioms such as
sum({x, y)) — x+y

in our case. This example demonstrates that appropriate
(and automated) choice of the direction in the orientation
can sometimes reduce the burden of lemma discovery im-
posed on the users.

Example 3.2: We show another example [10] where we
need to choose appropriate orientation of conjectures.

[l@ys — ys
(x:x5)@ys — x : (xs@ys)
iter([1, x) — []
iter(y : ys, x) — x : iter(ys, x)
dcons(x,[]) — []
R= dcons(x,y : ys) — (x : y) : dcons(x, ys)
vm([]) — []
vm(x : xs) > (x: xs) :
dcons(x, vm(xs))
itvm([], z, ys) — ys
itvm(x : xs,z,ys) = itvm(xs,z,z : ys)

The function iter(ys, x) replaces each element in ys with x.
The function dcons(x, ys) replaces each element y in ys with
x : y. The function vm(xs) replaces each element in xs with
xs, that is, it is the same as iter(xs, xs).

The itvm function is an iterative definition of the vm
function. In the following conjectures, the first two con-
jectures represent the correctness of the iterative definition
and the last four conjectures are lemmas needed for proving
them.

itvm(xs, xs, []) = iter(xs, xs)
vm(xs) = iter(xs, xs)
xs@[] = xs
dcons(x, iter(ys, 7)) = iter(ys, x : z)
itvm(xs, z, ys) = iter(xs, 2) @ys
iter(xs, y)@(y : zs) =y : iter(xs, y)@zs

&=

When we want to prove these theorems, we have 20 ways
of possible combinations of orientation. However, only one
of them, which orients all conjectures from left to right, can
lead to a successful proof.

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.5 MAY 2010

Example 3.3: We show an example [10] where the reduc-
tion strategy plays an important role.

[1@ys — ys
(x:x5)@ys — x: (xs@ys)
r([D — [1
r(x : xs) - r(xs)@[x]
R b([D) — []
b(x: xs) = b1(x, xs) : b2(x, xs)
b1(x,[]) — x
b1(x,y :ys) — b1(y,ys)
b2(x, (1) — (I
b2(x,y : ys) — b(x : b(b2(y, ys)))

In this example, we denote the singleton list x : [] by
[x]. Since both functions r and b calculate the reverse of the
given list, the following two equations are inductive theo-
rems in R.

&= r(xs) = b(xs)
1 b(b(xs)) = xs

These conjectures are proved in a mutually inductive way.
By expanding both equations with left-to-right orientation
and applying the simplification as much as possible, we have
the following two conjectures

b1(x, xs) : b2(x, xs) = b(xs)@[x],
b1(b1(x, xs),b2(x, x5)) : b2(b1(x, x5), b2(x, X5))
=Xx:Xxs

and two hypotheses {r(xs) — b(xs), b(b(xs)) — xs}. Expan-
sion of the first conjecture from left to right at u = b1(x, xs)
followed by four steps of simplification with R-rules yields
the equation

b1(y, ys) : (b(b(b2(y, ys)))@[x])
= (b1(y, ys) : b2(y, ys)) @[]
and the third hypothesis
b1(x, xs) : b2(x, xs) — b(xs)@[x].

Moreover, simplification of this equation with the second
hypothesis yields the following equation

b1(y, ys) : (02(y,ys)@[x])
= (b1(y, ys) : b2(y, ys))@[x].

At this point, if we reduce the whole term of the right-hand
side with the second rule of R, we will succeed in proving
the conjecture. However, if we apply the third inductive hy-
pothesis to the underlined part, the procedure will diverge.
Some people might think that when they want to apply a
rewrite rule in the simplification, it is better to select the rule
from the inductive hypotheses (in #) than the axiomatic
rules (in R). In our example, however, the strategy failed.
Other people might think that, for example, the outermost
reduction strategy may be effective. Anyway, R U H is not
confluent in general, and no one knows a correct strategy of
simplification. Therefore, it is a non-trivial task to choose
appropriate simplification rules to apply.

SATO and KURIHARA: MULTI-CONTEXT REWRITING INDUCTION WITH TERMINATION CHECKERS

3.2 Branching Processes

As we have seen in the previous section, it is important but
difficult to choose appropriate contexts for obtaining suc-
cessful results. Some contexts lead to failure, and others to
divergence. Therefore, it makes sense to pursue multiple
contexts in parallel. In order to do it efficiently, we adapt the
idea of the multi-completion to the rewriting induction. The
most basic idea is inherited without difficulty: we can reuse
the node structure (s : ¢, Hy, H,, E) and represent the state
of n multiple RI processes (&, H1), . .., {E,, H,) by a set of
nodes. Then we define the inference rules which simulate a
lot of RI-inferences made in different processes.

The difference from the standard multi-completion pro-
cedure is that we cannot decide the number of processes and
strategies statically (before running the procedure), while in
the multi-completion the number is decided by the size of
the given set of reduction orders. In the multi-completion,
we were only concerned about the way of orientation and it
was simple enough to represent it by a predetermined, single
object, i.e., a reduction order. Meanwhile, in the rewriting
induction, we also have to deal with strategies such as how
we simplify a term, as shown in Example 3.3. Compared
with the orientation, such strategies are not easily enumer-
ated beforehand.

For this reason, we do not fix the number of pro-
cesses in the new procedure, and allow it to dynami-
cally change. When a process encounters n nondetermin-
istic choices, we will have it fork into n different pro-
cesses, with each process associated with one of the choices.
Stated in terms of the tree-search algorithms, each pro-
cess explores one of the possible n branches. To distin-
guish such processes, we represent the identifier of each
process (called index) as a sequence of natural numbers
aia, ...ax, which can be interpreted as a position in a tree.
If the process with the index p = aja;...a; have n pos-
sible choices of contexts, we have it fork into n processes:
ajay...ax l,ayaz ... a4 2,...,aia;y...arn. Based on the la-
bel representation, we can simulate the fork operation by
replacing the label p in the labels of all nodes with the set of
n identifiers pl,..., pn.

For the purpose of formal treatment, we introduce the
fork function. Let us define the set I of all indexes as the
prefix-closed subset of N* such that pn € I implies pj € [
for all jin {1,...,n — 1}. We do not distinguish between a
process and its index.

Definition 3.4: Fork function : I — N maps each pro-
cess index to a natural number which represents the number
of processes to be created from the given process by the fork
operation. The fork function over a given set P of processes,
denoted by ¢p : I — P(I), is defined as follows:

_JAp.Lp2,...,py(p)} ifpeP
Yr(p) = { {p} otherwise

where P(I) denotes the powerset of /. This function will

947

be used to fork all processes in P, while remaining other
processes untouched. The domain of the function is lifted to
labels, nodes, and sets of nodes as follows:

we(L) = |_Jur(p)

peL
wp((s :t,Hi, Hy, E)) = (s : t,yp(H1), Yp(H>2), Yp(E))

wp(N) = {yp(n) | n € N}

3.3 Multi-Context Rewriting Induction

In this section, we present a new procedure, the multi-
context rewriting induction procedure with termination
checkers (MRIt), which simulates execution of multiple RIt
processes based on the framework of MKB. Like MKB,
MRIt is represented by an inference system working on a
set of nodes. A node is a 4-tuple (s : t, H|, H>, E) consisting
of an ordered pair of terms s : ¢, three sets of indexes of pro-
cesses Hi, H,, E, where each index is a sequence of natural
numbers. Note that the set of possible indexes / is infinite
in MRIt, while it was finite in MKB because the number of
processes was fixed beforehand, given the number of reduc-
tion orders. In MRIt, the number of running processes is not
fixed: the procedure starts with one (root) process and in the
course of the execution, adds new processes created by fork-
ing existing processes if necessary, when we have nondeter-
ministic choices in applying inference rules. Intuitively, E
represents all processes containing s = ¢ as a conjecture to
be proved, and H; (resp. H,) represents all processes con-
taining s — ¢ (resp. t — s) as an inductive hypothesis.

Definition 3.5 (&- and H-projections): Let n = (s
t,Hy, Hy, E) be a node, and p be an index. The &- and H-
projections of n onto p are defined as follows:

B {s = t}, lfp € E,
&ln, p] = { 0, otherwise.
{S—)[}, ifPEHls
Hin,pl =4 {t—s), ifpeH,
0, otherwise.

The definitions are extended for a set N of nodes as follows:

EIN, pl = |_J&In, pl. HIN, p1 = | JHIn, p]

neN neN

&[N, p] is interpreted as a set of conjectures the process
p holds in the state represented by N. Similarly, H[N, p]
is interpreted as a set of inductive hypotheses held in the
process p.

Based on the intended interpretation described above,
we have developed inference rules of MRIt as shown in
Fig. 5. In the inference rules, I(N) denotes the set of all pro-
cesses that appear in a label of a node in N and sub(N, L) =
{(s:t, H{\L,H,\L,E\L)|{(s:t,H|,H>, E) € N}.

Let us elaborate on the Expanp and sIMPLIFY-R rules,
which are characteristic of MRIt. The expanp rule focuses

948

DELETE: NU{(s:s,Hi,Hs,E)} - N

EXPAND: NuU{(s:t,H1,Hy, EWE)} -
NU{(s:t,Hi UE',Hy, E)}U
{(s":¢,0,0,E") | s =¢ € Expd,(s,t)}
if B/ #0,u € B(s) and H[N,i] URU

{s — t} terminates for all i € E’

SIMPLIFY-R: N U{(s:t,Hi,Hy, E)} I

(s:t,Hy, Ha, D)
NU{ (s" :,0,0, E)
if E#0and s > s
SmMPLIFY-H: N U{(s:t,H,Hs, E)} I
(s:t,Hy,Ho, E\ H)
NU{ (s':t,0,0, E N H)
ifENH#0,{l:r,H,...,...) €N,

and s — gy 8,

FoRK: N Fp(N)
for some fork function 1 and a set P of
processes in NV

Ge: NU{(s:t,0,0,0)} F N

(s:t,Ho, Hi, E)
NU{ ("t Hy HEY [

NU{(s:t,HoUH{},H UH{,E")}
if s:tand s’ : ¢’ are variants and

E" = (E\ (H)UH})) U (E'\ (HoUH,))

SUBSUME:

SUBSUME-P: N F sub(N, L)
ifvpe L, Ip’ € I(N)\ L:
(E[N, pl, H[N, p]) = (E[N, P}, H[N,p'])

Fig.5 Inference rules of MRIt.

onanoden =(s:t Hy,H,, EWE"), and applies the EXPAND
rule of RI in all processes of E’ that can orient the equation
s = t from left to right. The set £’ is moved from the third
label to the first in n since in each process in E’ the conjec-
ture s = t is removed and the new hypothesis s — ¢ is added
after the expansion. In addition, for each new conjecture
s’ =t in Expd,(s,?), a new node (s’ : #',0,0, E") is created
in order to store the conjecture in the processes of E’.

Example 3.6: If we continue the reasoning of Exam-
ple 3.3, we will reach a state N @ {n}, where

n=<(s:10,0,E"),

s = b(b2(x, xs5))@[b1(x, xs)],
t=x:xs,

E =1{1,2}.

By applying the expanD rule with
u = bi(x, xs)

and the rules

b1y, [—y
b1(y,z: zs) = b1(z,zs)

we obtain the following set of nodes:

(s:t, E’, 0,
Nul (s:¢, 0, 0, E
¢ s, 0, 0, E

~ ~ ~

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.5 MAY 2010

where

’

s = b(b2(y, [))@[y],

7 =[yl,

s” = b(b2(y,z: z5))@[b1(z, z5)]
" =y:(z:2z9).

The siMpLIFY-R rule applies the siMpLIFY rule of RI using
a rewrite rule in the equational axiom R, which is common
to all processes. E is the set of all processes that have s = ¢
as a conjecture. Since this equation is transformed to an
equation s* = f, the set E is removed from the original node,
and a new node (s’ : t,0,0, E) is created.

Example 3.7: We consider the state after the inference in
Example 3.6. Let the current set of nodes be N W {n}, where

n={(s:10,0,E),

s = b(b2(y, [@[y],
t= [yl

E={1,2).

By applying the REWRITE-R rule with the rule
b2(x, [) — (I

we obtain the following set of nodes:

(s:t, 0, 0, 0)
NU{< gir, 0, 0, E >}

where
s" =b([h@[y],
t =yl

The role of each of the remaining inference rules is as
follows. DEeLETE simulates its counterpart of RI. Gc, sus-
SUME, and SUBSUME-P are optional rules for efficiency and the
first two play the same role as in MKB. The third optional
rule stops redundant processes, which have the same state
as other existing processes. The siMpLIFY-H rule is almost
the same as siMpLIFY-R. The difference is that siMpLIFY-R ap-
plies a rule of R, which is common to all processes, while
siMpLIFY-H applies an inductive hypothesis of , which may
exist only in some distinguished processes. This makes the
third labels of the original node and the new node E \ H and
E N H, respectively. Fork, newly introduced in this system,
enables us to produce new copies of existing processes to
make nondeterministic choices in parallel. In the next sub-
section, we will show some strategies to exploit this rule
in connection with other inference rules involving nondeter-
minism.

Let N and N’ be two sets of nodes. We write N + N’ if
the latter is obtained from the former by one application of
an inference rule of MRIt. Given a set &y of equations and
a quasi-reducible terminating TRS R, MRIt starts from the
initial set of nodes Ny = {(s : 1,0, 0, {€}) | s = t € &y}, since
we want to start with the single (root) simulated process de-
noted by the empty sequence €. MRIt generates a sequence
NoFNyF---

SATO and KURIHARA: MULTI-CONTEXT REWRITING INDUCTION WITH TERMINATION CHECKERS

Finally, we state the soundness of MRIt. The following
proposition claims the soundness of Fork, that is, the fork
function itself has virtually no effect on the semantics of our
procedure, as it only generates copies of existing processes.

Proposition 3.8: Let N and N’ be two sets of nodes and
P be a set of indexes such that N’ = yp(N). If p € I and
q € Yp(p), then (E[N, p], H[N, pl) = (EIN’, q], HIN', q1).

Let 1z, be = U rg;. The following proposition states that
other inference rules either simulate RI rules or have no ef-
fect for RI processes.

Proposition 3.9: If N’ is obtained from N by apply-
ing inference rules in MRIt other than Fork, then
(EIN. pl.HIN, p)) +5; (EIN', pl, HIN', p]) for all p € I.

3.4 Strategies Based on Process Fork

In MRIt, we introduced a new inference rule rFork, which
enables us to try multiple contexts in parallel. However, the
rule only generates copies of existing processes. In order
to fully exploit the rule, we need to combine it with other
inference rules which involve nondeterminism; that is, we
need to identify nondeterministic choices, set the fork func-
tion ¥ accordingly, and commit each process generated by
FORK to one of the choices. As shown in Sect. 3.1, important
nondeterminism is involved in the expansion and simplifi-
cation operations. In this section, we present a strategy for
combining ForK with those two operations.

3.4.1 Expansion

We present a way of making all nondeterministic choices
in the expansion. It involves (1) the direction of orien-
tation and (2) the choice of the basic subterm to be ex-
panded. Let us assume that the current set of nodes is
Nw{n = (s : t,H;,H,, E)} and we choose the node n as
the target of expansion. Let L;,L,; C E be two sets such
that

e RUHI[N, p]lU {s — t} terminates for all p € L,
e RUHI[N, p]lU {t — s} terminates for all p € L,

Since each process p in L = L;, N L,; has two nondetermin-
istic choices in the direction of orientation, we have a fork
function with

Y(p) =2

Let L;r =L, \L;U{p.l|p e L} and L;l =Ly\ L,V
{p2|pelL) If B(s) ={s1,...,s;} and B@) = {t1,..., 4},
all processes p’ € L; have j choices and ¢’ € L/, have k
choices with respect to which subterm to expand. Thus we
have a fork function satisfy

forall p € L.

W(p)=j forallpel,
W(p)=k forallpel,.
Let ' = L), UL, L ={pi|lpelL}forl <ic<j

949

L, ={pilpelLl) for1 <i <k H| = H U< L
and H} = Hy U ;<< L;;- Intuitively, L; (resp. L)) is the
set of all processes which orient the equation s = ¢ from
left to right (resp. right to left). Lj (resp. L!) is the set of
processes which expand the ith basic term of the left-hand
(resp. right-hand) side of the equation.

Example 3.10: Let (s : 1,0,0,{1,2}) be the target of ex-
pansion, and let B(s) = {s1,5},8() = {t1,0,3}, L, =
{1,2}, and L,; = {2}. From the above definitions, we can
calculate the labels as follows:

L={2},L, = (1,21}, L, = {2.2},
= {1,2.1,2.2),
L, ={1.1,2.1.1}, L2
= (221}, L% = {222}, 1}, =
H) ={1.1,1.2,2.1.1,2.1.2}, and
Hj ={2.2.1,22.2,2.2.3).

={1.2,2.1.2},
{2.2.3},

Let

= Y5, (YL(N))
U{(s 1 1, H], Hy, E\ (Liy U L))}
U(s" 1 7,0,0, L) |1 <i<j,
s" =1t € Expd, (5,0}
U« s 00LZ)|1<1<k
V=45 € Expd, (¢, 5)}.

Then it is not hard to verify the following proposition.

Proposition 3.11: Nw {(s:t,H|,Hy, E)} -* N'.

3.4.2 Simplification

Let us now present a way of making nondeterministic
choices in the simplification for obtaining a normal form
of the target term. We denote by NFg(s) the set of nor-
mal forms of a term s with respect to a terminating TRS R.
We call a pair (s, L) of a term s and a label L, which is a
set of processes, a labeled term and a pair (! — r,L) of a
rule and a label a labeled rule. Intuitively, L represents a
set of processes which have the term s, or the rule [— r.
We denote a labeled term by 5 = (s, L), its term and label
fields by s = term(’s’) and L = label(s") respectively. The
term set projection terms(T, p) of a set T of labeled terms
onto a process p is defined by terms(T p) = {term(s)|s€e
T, p € label(’s)} The label of T, denoted by label(T) is de-
fined by label(T) = UseT label(’s™). The rule set projection
rules(R p) of a set R of labeled rules onto p is defined by
rules(R p={{-r|{l->rlL)e R p € L}. We introduce
the rewrite relation on labeled terms defined by the labeled
rules R as follows:

(s, Ly =5z (s", L")
if {{ - r, L”)e’ﬂ?, s >yusny sand L' = LNL" # 0

The set of labeled normal forms NF§('S\) of a labeled
term s'is defined by

950

NFx(3) = U NFZ(5") U {rest(5,SRz(3))

FIESRR()
where
SRz(5)={5"15—>% 5} and
rest({t,L),T) = (t, L\ label(T)).

We can interpret this definition as follows. Suppose
s =(s,L) =5 (s',L’) = 5, meaning that s is reducible to
s’ in the processes of L’ € L. We find all such pairs (s’, L")
in all possible ways, using the labeled rules of R. Let L*
be the union of all such L’s. Then s cannot be reduced in
any processes of L \ L*. Therefore, s is a normal form in
the processes of L\ L*, meaning that (s, L \ L") is a labeled
normal form of s = (s, L). Additional labeled normal forms
of s can be obtained by applying this definition recursively
to each s/ = (s’, L") found above.

We can verify the following proposition.

Proposition 3.12: For any labeled termsand p € label(s"),
terms(NFx(s), p) = Nlees@p)(term(’s\)).

We can define the projection NFz(’s, p) of normal forms of
s'onto a process p as follows:

NFR(5,p) = {3/ 15" € NFR(¥), p € label(5")).

Now we construct the set of nodes N’ obtained by all possi-
ble ways of simplification for a node n at the current state
N @ {n}. Let us assume that the current set of nodes is
Nw{n = (s : t,H, Hy, E)} and we choose the node n as
the target of simplification.

Let

s={(s,E),

R={(l = r,Ey |l - r e R\l = r, H]), (r — I, H}) |
(I:r,H|,H},E'y € N},

NFZ(s) = {5s1,...,5,}, and

w(p) = INFz(s, p)| forall p € E.

Let
N =yp(N)U{(s : t,H,, H>,0)}
U {(term(7s;) : 1,0,0,E;)) |1 <i < n}
where
E; ={p.j| p € label(s;), NFz(’s, p) = {5k, .-
kh<---< k,/,(p),TS‘\i =TS'\kj}.

B sk,,,(],) }’

When the ith element 7s; of the set of labeled normal forms
NF%(’s") appears as the jth element of the set of labeled nor-
mal forms NF (s, p) of a process p, we have the process
p.J take care of the normal form zerm(’s;). E; is the set of all
processes which take care of the ith normal form term(s;).

Example 3.13: Let 5 = (s5{1,2,3}) and NFﬁ(’s\) _
{51,752, 753} where

TS‘\l = <S1,{1,3}>,

5 = (52, {1}),
53 =(s3,{2,3).

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.5 MAY 2010

Then NFz(’s, 1) = {’s1,’s2}, because the index 1 in the sec-
ond argument belongs to the labels of 57 and 3, meaning
that s; and s, are normal forms in the process 1. Similarly,
we have

NF(52) = {5)
and
NFR(5,3) = (5, 53).

Now let us calculate E; for i = 1: which processes
will take care of s;? Since label(s7) = {1, 3}, we have to
consider the cases p = 1 and p = 3. For p = 1,s; appears as
the first (j = 1) element of NF3(’s, 1) = {’1,%2}. For p = 3,
’s1 appears as the first (j = 1) element again in NFz(’s,3) =
{s1,53}. Therefore, E; = {1.1,3.1}. Similarly, E; = {1.2},
because p = 1 is the only element of label(’s;) and 7, is
the second (j = 2) element of NFﬁ(’s‘, 1). For E3, we have
to consider p = 2 and p = 3; for p = 2, we have j = 1
as s3 is the first element of NF3(’s,2); for p = 3, we have
J = 2 as’s3 is the second element of NFz(’s, 3); Therefore,
E; ={2.1,3.2}.

In summary, the process 1 is forked to 1.1 and 1.2 to
take care of s and s,, respectively; the process 3 is forked
to 3.1 and 3.2 to take care of s; and s3, respectively.

We can verify the following proposition.

Proposition 3.14: NW{(s:t,H\,Hy,E)}+* N'.

4. Experiments

In this section, we report some experimental results. In
the implementation of MRIt, we used a built-in termination
checker (developed by ourselves) based on the dependency-
pair method [3], [8], [9]. Moreover, in order to find reduc-
tion orders for ensuring termination, we used the combina-
tion of polynomial interpretation and SAT solving, as pro-
posed in [7]. All experiments were performed on a work-
station equipped with Intel Xeon 2.13 GHz CPU and 1 GB
system memory.

In the implementation, we used the following strategy
for applying inference rules of MRIt.

(1) First, choose a node n with the smallest size, where
the size of a node (s : t,...) is defined as the sum of
the sizes of s and ¢, and the size of a term is defined
as the number of symbols constituting the term. Then
apply ExpanD rule (combining Fork rule in the way of
Sect.3.4.1)

(2) Next, normalize all nodes by applying siMpLIFY-R and
siMPLIFY-H rules (combining Fork rule in the way of
Sect.3.4.2)

(3) Finally, apply DELETE, Gc, SUBSUME, and SUBSUME-P
rules as much as possible, and (if no process succeeds)
go back to the step (1)

SATO and KURIHARA: MULTI-CONTEXT REWRITING INDUCTION WITH TERMINATION CHECKERS

Table1 Computation time for examples in Sect. 3.1.
Problem | Total | Term | Simplify # of proc.
Ex.3.1 | 0.009 | 0.002 0.005 3@3,3)
Ex.3.2 | 0357 | 0.255 0.079 | 20(20, 20)
Ex.3.3 | 0.233 | 0.129 0.092 | 10(16, 19)
Table2 Computation time of Dream Corpus examples.

Problem | Total | Term | Simplify | # of proc.

109 | 0.347 | 0.281 0.043 6(7,11)

301 | 0.305 | 0.244 0.044 6(7,7)

115 | 0.042 | 0.026 0.010 1(1, 1)

1018 | 0.028 | 0.014 0.009 3(3,3)

216 | 0.014 | 0.003 0.010 2(2,2)

total | 0.876 | 0.627 | 0.169 |

4.1 Effectiveness in Trying Various Strategies

In order to discuss the effectiveness of MRIt in choosing
appropriate inference steps for obtaining successful proofs,
we experimented with examples discussed in Sect. 3.1. The
results are shown in Table 1. The “Total” column shows
the total time (in seconds), the “Term” column shows the
time consumed by the termination checking in the ExpaND
rule, and the “Simpilfy” column shows the time consumed
by the simpLIFY-H and siMpLIFY-R rules. The “# of proc” col-
umn shows the number of processes which existed when one
of the processes succeeded in proving all conjectures. The
numbers in the parenthesis are the maximum and the total
number of processes during the computation.

In all examples, only one process was in a successful
state when the whole system stopped. Moreover, when we
continued to run the remaining processes not yet in a suc-
cessful state, almost no processes (precisely no process in
the case of Example 3.2) succeeded because of the diver-
gence. In example 3.3, the number of processes kept in-
creasing (by forking) and among them, less than 20% were
those which eventually led to success, and the others seemed
to be diverging. From the results, we can see that MRIt is
effective in choosing appropriate contexts for obtaining suc-
cessful proofs.

4.2 Efficiency

We experimented with the Dream Corpus examples', which
are standard examples for inductive theorem proving. In
those examples, there were 69 unconditional equational
problems suitable for the input to our system. Among them,
35 problems were successfully solved by our system. The
results are shown in Table 2, where we only show the results
which required more than 0.01 sec computation time. The
bottommost row indicates the total time of all the 35 prob-
lems solved, including those with less than 0.01 sec CPU
time.

We can see that our system can solve those example
problems in practical time. They required a relatively small
number of contexts, but it was nice for us to be able to run

951

Table3 Comparison of simplification strategies using Ex. 3.2.
Strategy | Total | Simp | # of Simp # of proc.
(a) | 0.357 | 0.079 17681 | 20 (20, 20)
(b) | 0395 | 0.122 15493 | 20 (20, 20)

Table4 Comparison of simplification strategies using Ex. 3.3.
Strategy | Total | Simp | # of Simp # of proc.
(a) | 0.233 | 0.092 27434 | 10(16,19)
(b) | 0.197 | 0.076 10001 4(5,7)

the system efficiently enough without any care of reduction
orders and sophisticated strategies.

Next, in order to know the efficiency of MRIt, we com-
pare the following two strategies in normalization of the
nodes:

(a) SimpLIFY with FOrRk: calculates the set of all normal
forms, and forks the processes accordingly in the way
of Sect.3.4.1.

(b) SmvpLiFy without FORK: calculates only one of the nor-
mal forms using specific reduction strategy (leftmost
outermost) for SIMPLIFY operation.

The results of experimentation with the Example 3.2 and
Example 3.3 are shown in Table 3 and 4, respectively. The
“# of Simp” column shows the number of simplification.
We can see that the number of simplification was reduced
in both examples by using the leftmost outermost strategy.
Moreover, all 35 examples in Dream Corpus, solved with-
out fixing a reduction strategy, were also solved with the
leftmost outermost strategy. Although the time for simplifi-
cation is not proportionally reduced, it is because our imple-
mentation of MRIt was not optimized for outermost strategy.
From these results, we can expect that the leftmost outer-
most strategy is useful in various cases. However, of course,
the strategy does not always work successfully in general.
Moreover, the result of the experiments shows that the cost
for trying all possibilities in normalization without fixing a
reduction strategy is not extremely expensive. Therefore,
we can say that it makes sense to use the SIMPLIFY with FORK
strategy as an initial selection.

5. Conclusion

In this paper, we have presented MRIt, the multi-context
rewriting induction procedure, which simulates parallel exe-
cution of rewriting induction procedures. We have reported
that MRIt was effective in trying various strategies for ob-
taining successful proofs efficiently. As future work, we
are planning to study extensions for handling non-orientable
equations and automated generation of lemmas.

"The examples are available at: http://kussharo.complex.
eng.hokudai.ac.jp/"haru/mrit/ (modified from the originals created
by the Mathematical Reasoning Group, University of Edinburgh).

952

Acknowledgements

This work was partially supported by JSPS Grant-in-Aid for
Scientific Research (C), No.19500020. We are very grateful
to Takahito Aoto for helpful comments and providing orga-
nized Dream Corpus datasets.

References

(1]

[2]
(3]
(4]

[3]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

T. Aoto, “Dealing with non-orientable equations in rewriting induc-
tion,” Proc. 17th International Conference on Rewriting Techniques
and Applications, vol.4098 of Lecture Notes in Computer Science,
pp-242-256, 2006.

T. Aoto, “Rewriting induction using termination checker,” JSSST
24th Annual Conference, 3C-3, 2007.

T. Arts and J. Giesl, “Termination of term rewriting using depen-
dency pairs,” Theor. Comput. Sci., vol.236, pp.133-178, 2000.

F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge
University Press, 1998.

H. Comon and J. Florent, “Ground reducibility is EXPTIME-
complete,” J. Information and Computation, vol.187, no.1, pp.123—
153, 2003.

N. Dershowitz and J.-P. Jouannaud, “Rewrite systems,” in Hand-
book of Theoretical Computer Science, ed. J. van Leeuwen, vol.B,
pp.243-320, MIT Press, 1990.

C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann,
and H. Zankl, “SAT solving for termination analysis with polyno-
mial interpretations,” Proc. 10th International Conference on The-
ory and Applications of Satisfiability Testing (SAT 2007), vol.4501
of Lecture Notes in Computer Science, pp.340-354, 2007.

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke, “Mecha-
nizing and improving dependency pairs,” J. Automated Reasoning,
vol.37, no.3, pp.155-203, 2006.

N. Hirokawa and A. Middeldorp, “Tyrolean termination tool: Tech-
niques and features,” Inf. Comput., vol.205, no.4, pp.474-511, 2007.
G. Huet and J.-M. Hullot, “Proofs by induction in equational theo-
ries with constructor,” J. Comput. Syst. Sci., vol.25, no.2, pp.239-
266, 1982.

J.-P. Jouannaud and E. Kounalis, “Automatic proofs by induction in
theories without constructors,” Inf. Comput., vol.82, no.1, pp.1-33,
1989.

D. Kapur, P. Narendran, and H. Zhang, “Automating inductionless
induction using test sets,” J. Symbolic Computation, vol.11, no.1,
pp.81-111, 1991.

J.W. Klop, “Term rewriting systems,” in Handbook of Logic in Com-
puter Science, ed. S. Abramsky et al., pp.1-116, Oxford University
Press, 1992.

D.E. Knuth and P.B. Bendix, “Simple word problems in universal
algebras,” in Computational Problems in Abstract Algebra, ed. J.
Leech, pp.263-297, Pergamon Press, 1970.

M. Kurihara and H. Kondo, “Completion for multiple reduction or-
derings,” J. Automated Reasoning, vol.23, no.1, pp.25-42, 1999.
D. Plaisted, “Semantic confluence tests and completion methods,” J.
Information and Control, vol.65, pp.182-215, 1985.

U. Reddy, “Term rewriting induction,” 10th Int. Conf. on Automated
Deduction, vol.814 of Lecture Notes in Computer Science, pp.162—
177, 1990.

H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp, “Multi-
completion with termination tools (system description),” Proc. 4th
International Joint Conference on Automated Reasoning, vol.5195
of Lecture Notes in Artificial Intelligence, pp.306—312, 2008.

H. Sato, M. Kurihara, S. Winkler, and A. Middeldorp, “Constraint-
based multi-completion procedures for term rewriting systems,”
IEICE Trans. Inf. & Syst., vol.LE92-D, no.2, pp.220-234, Feb. 2009.
Terese, Term Rewriting Systems, Cambridge University Press, 2003.

Fd 5
1 o~
—

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.5 MAY 2010

[21] I. Wehrman, A. Stump, and E. Westbrook, “Srorhrop: Knuth-

Bendix completion with a modern termination checker,” Proc. 17th
International Conference on Rewriting Techniques and Applica-
tions, vol.4098 of Lecture Notes in Computer Science, pp.287-296,
2006.

Haruhiko Sato received a BS, a MS, and
a Ph.D. in information engineering from Hok-
kaido University in 2005, 2007, and 2008 re-
spectively. He is currently a assistant profes-
sor of information science at Hokkaido Univer-
sity. His research interests include term rewrit-
ing systems, automated theorem proving, and
software engineering. He is a member of IPSJ,

Masahito Kurihara received a BS in elec-
trical engineering, and a MS and a Ph.D. in in-
formation engineering from Hokkaido Univer-
sity, in 1978, 1980 and 1986 respectively. He
is currently a professor of information science
at Hokkaido University. His research interests
include mathematical logic and automated rea-

soning in computer science and artificial intelli-
/
) gence.

A

=

<)

