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Starting from the Dyson-Beliaev and generalized Gross-Pitaevskii equations with an extra nonlocal poten-
tial, we derive an exact expression of the two-particle Green’s function K� for an interacting Bose-Einstein
condensate in terms of unambiguously defined self-energies and vertices. The formula can be a convenient
basis for approximate calculations of K� . It also tells us that poles of K� are not shared with �i.e., shifted from�
those of the single-particle Green’s function, contrary to the conclusion of previous studies.
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The realization1 of Bose-Einstein condensation �BEC�
with an atomic gas in 1995 has revived intense theoretical
interests on interacting condensed Bose systems. One of their
unique features is that the gapless Nambu-Goldstone boson2

of the broken U�1� symmetry, i.e., the Bogoliubov mode,3

emerges as a pole of the single-particle Green’s function Ĝ to
dominate thermodynamic properties. It also seems to have
been widely accepted that poles of Ĝ are shared with those of
the two-particle Green’s function K� , as first claimed by Ga-
voret and Nozières4 in 1964 and reproduced by the dielectric
formalism.5–7 These theories have provided a support to uti-

lize Ĝ for describing collective modes of condensed atomic

gases. Indeed, the sharing of common poles between Ĝ and
K� has been regarded as one of the most spectacular features
of condensed Bose systems.

However, the theory by Gavoret and Nozières4 is based
on an analysis of the structures of simple perturbation expan-

sions performed separately for Ĝ and K� . Thus, it may suffer
from ambiguity as to how to define self-energies and vertices
in the presence of an “improper” interaction having only a
single quasiparticle channel inherent in BEC. Since BEC is a
prototype of broken symmetry, it will be well worth reinves-
tigating the fundamental issue with a different method and
viewpoint.

As is well known in normal systems,8–10 a two-particle
Green’s function can be generated from a single-particle
Green’s function by a functional differentiation with respect
to an additional potential. This method enables us to derive a
formally exact expression of the two-particle Green’s func-
tion in terms of unambiguously defined self-energies and
vertices. Moreover, it can be used in practical calculations of
the two-particle Green’s function with Baym’s �-derivable
approximation.10 The approximation has a great advantage
that the whole series of thermodynamic, single-particle, and
two-particle properties can be discussed in a unified way
based on a single functional �, even beyond equilibrium.11

We here apply the functional-differentiation method to an
interacting Bose-Einstein condensate to obtain an exact ex-
pression of K� . The formula can also be used for practical
calculations of K� with the self-consistent �-derivative ap-
proximation of condensed Bose systems developed
recently.12 Our derivation is based solely on rigorous results
of the previous paper.12 It will thereby be shown that poles of

K� are not shared with those of Ĝ, contrary to the previous

conclusion.4–7 Unlike the previous studies for homogeneous
systems using the momentum conservation,4–7 our formula-
tion will be carried out in the coordinate space so that it is
applicable to trapped atomic gases.

We consider identical Bose particles with mass m and
spin 0 described by the Hamiltonian,

H =� d3r1�†�r1�K1��r1� +
1

2
� d3r1� d3r2�†�r1�

� �†�r2�V�r1 − r2���r2���r1� . �1�

Here �† and � are field operators satisfying the Bose com-
mutation relations, K1�−�2�1

2 /2m−� with � the chemical
potential and V is the interaction potential. Though dropped
here, the effect of a trap potential can be included easily in
K1. Let us introduce the Heisenberg representations of the
field operators by

�1�1� � e�1H��r1�e−�1H, �2�1� � e�1H�†�r1�e−�1H �2�

with 1��r1 ,�1�, where 0��1�T−1 with T the temperature
in units of �=kB=1. The operators �1�1� and �2�1� were

denoted previously12 by ��1� and �̄�1�, respectively. We next
express �i�1� as a sum of the condensate wave function
	i�1����i�1�� and the quasiparticle field 
i�1� as

�i�1� = 	i�1� + 
i�1� �i = 1,2� �3�

with �¯ � the grand-canonical average in terms of H. Note:
�i� �
i�1��=0 by definition and �ii� 	1�1�=	2

��1�=	�r1� in
equilibrium with the superscript � signifying complex conju-
gate. Using 
i, we introduce our Matsubara Green’s function
in the 2�2 Nambu space by12

Gij�1,2� � − �T�
i�1�
3−j�2���− 1� j−1, �4�

where T� denotes the “time”-ordering operator.13 They
satisfy12

Gij�1,2� = �− 1�i+j−1G3−j,3−i�2,1� = �− 1�i+jGji
� �r2�1,r1�2� .

�5�

Let us recapitulate exact results on the matrix Ĝ= �Gij�
and the vector 	� = �	1	2�T; see Sec. II of Ref. 12 for details.
First of all, they obey the Dyson-Beliaev equation and the
generalized Gross-Pitaevskii equation �or generalized
Hugenholtz-Pines relation� given by
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Ĝ−1�1,3̄�Ĝ�3̄,2� = �̂0��1,2� , �6a�

Ĝ−1�1,2̄��̂3	� �2̄� = 0� , �6b�

respectively. Here summations over barred arguments are
implied, �̂0 and �̂3 denote the 2�2 unit matrix and the third
Pauli matrix, respectively, ��1,2�����1−�2���r1−r2�, and

Ĝ−1 is defined by

Ĝ−1�1,2� � 	− �̂0
�

��1
− �̂3K1
��1,2� − ̂�1,2� �7�

with ̂ the self-energy matrix. We point out that the first
component of Eq. �6b� in equilibrium is written explicitly as

−K1	�r1�=11�1, 2̄�	�r̄2�−12�1, 2̄�	��r̄2�. By approxi-
mating 11�1,2�=2g��1,2��	�r1��2 and 12�1,2�
=g��1,2��	�r1��2 for V�r1−r2�=g��r1−r2�, it reduces to the
standard Gross-Pitaevskii equation.14–16 Setting 	→�n0 and
K→−� with n0 the condensate density in the same equation,
we also obtain the Hugenholtz-Pines relation for the homo-
geneous system.12,17

It has been shown12 that the elements of ̂ satisfy the
same relations as Eq. �5�. Moreover, all of them can be ob-

tained from a single functional �=��G ,F , F̄ ,	1 ,	2� as Eq.

�21a� of Ref. 12 with G=G11, F=G12, and F̄=−G21. Using
Eq. �5�, we here write every G in � as G�1,2�= �G11�1,2�
−G22�2,1�� /2. Then the relevant relations can be put into the
single expression,

ij�1,2� = −
2

T

��

�Gji�2,1�
. �8a�

The functional � also satisfies Eq. �21b� of Ref. 12, i.e.,

1

T

��

�	3−i�1�
= i j̄�1,2̄��− 1� j̄−1	 j̄�2̄� . �8b�

With these preliminaries, we now study the two-particle
Green’s function,

Kij,kl�12,34� � �T��i�1��k�3��3−l�4��3−j�2���− 1� j+l

− �T��i�1��3−j�2���T��k�3��3−l�4���− 1� j+l.

�9�

Collective modes correspond to the poles of this Green’s
function. To derive the equation for K, we follow a standard
procedure to produce the two-particle Green’s function from

Ĝ.8,9 Let us add an extra perturbation described by the S
matrix,

S��� � T� exp−
1

2
�ī�1̄��3− j̄�2̄��− 1� j̄−1Uj̄ī�2̄, 1̄�� �10�

with ��T−1. The full Matsubara Green’s function in the

presence of the nonlocal potential Û��Uij� is defined by13

Gij�1,2� � −
�T�S����i�1��3−j�2��

�S����
�− 1� j−1

= − �T�S����i�1��3−j�2��c�− 1� j−1, �11a�

where the subscript c denotes contribution of those Feynman
diagrams connected with �i�1� and/or �3−j�2�. Noting that
there may be the finite average 	i�1���T�S����i�1��c, we
can transform Eq. �11a� into

Gij�1,2� = Gij�1,2� − 	i�1�	3−j�2��− 1� j−1 �11b�

with Gij�1,2��−�T�S���
i�1�
3−j�2��c�−1� j−1; this quantity

reduces to Eq. �4� as Û→ 0̂. It may be seen easily that two-
particle Green’s function �9� is obtained from Eq. �11a� by

Kij,kl�12,34� = 2
�Gij�1,2�
�Ulk�4,3�

, �12a�

where the limit Û→ 0̂ is implied after the differentiation; we
will use this convention below. A substitution of Eq. �11b�
into Eq. �12a� yields

Kij,kl�12,34� = 2
�Gij�1,2�
�Ulk�4,3�

− 2	i�1�
�	3−j�2�
�Ulk�4,3�

+
�	i�1�

�Ulk�4,3�
	3−j�2���− 1� j−1. �12b�

Equation �12b� tells us that we only need to know the linear

responses of Ĝ and 	� to Û for writing K down explicitly.
To carry it out, we start from Eq. �6�. Differentiations of

Gij�1,2��−�T�S���
i�1�
3−j�2��c�−1� j−1 and 	i�1�
��T�S����i�1��c with respect to �1 tell us8,9 that perturba-
tion, Eq. �10�, adds to the right-hand side of Eq. �7� an extra

term −Û��1,2� with

Uij� �1,2� �
Uij�1,2� + �− 1�i+j−1U3−j,3−i�2,1�

2
. �13�

Varying Û→ Û+�Û and subsequently setting Û=0̂ in result-
ant Eq. �6�, we obtain the first-order equations,

Ĝ−1�1,3̄��Ĝ�3̄,2� = ��Û��1,3̄� + �̂�1,3̄��Ĝ�3̄,2� ,

�14a�

Ĝ−1�1,2̄��̂3�	� �2̄� = ��Û��1,2̄� + �̂�1,2̄���̂3	� �2̄� .

�14b�

At this stage, it is convenient to introduce the following
quantities:

�ij,kl
�4� �12,34� � −

1

2

�ij�1,2�
�Glk�4,3�

=
1

T

�2�

�Gji�2,1��Glk�4,3�
,

�15a�

�ij,k
�3� �12,3� �

1

2
�− 1�k−1�ij�1,2�

�	k�3�

= 2�− 1�k+l̄�
ij,3−kl̄

�4� �12,34̄�	l̄�4̄� , �15b�
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�̃i,jk
�3� �1,23� � 2�− 1�l̄−1�

il̄,jk

�4� �14̄,23�	l̄�4̄� = �− 1�i� jk,3−i
�3� �23,1� ,

�15c�

�ij
�2��1,2� � 2�− 1�k̄−1�

ik̄,j

�3� �13̄,2�	k̄�3̄� , �15d�

where Eq. �8� has been used to derive the second expression
of ��4,3�. These are “irreducible” vertices of our condensed
Bose system, as seen below, and can be expressed diagram-
matically as Fig. 1. It follows from Eq. �5� and ��=� that
they satisfy various symmetry relations, e.g., �ij,kl

�4� �12,34�
=�kl,ij

�4� �34,12�= �−1�i+j−1�3−j,3−i,kl
�4� �21,34�. The quantities ��4�

and ��3� correspond to I and J of Gavoret and Nozières,4

respectively. Our definitions may be advantageous over
theirs because the vertices can be obtained explicitly from a
single functional � with clear relations among them.

Using ��4,3� above, we can express �̂ in Eq. �14� as

�ij�1,2� = − 2�
ij,l̄k̄

�4� �12,4̄3̄��Gk̄l̄�3̄, 4̄� + 2�
ij,k̄

�3� �12,3̄�

��− 1�k̄−1�	k̄�3̄� . �16�

It enables us to transform Eq. �14� into a closed set of equa-

tions for �Ĝ and �	� . Indeed, multiplying Eq. �14� by Ĝ from
the left, substituting Eq. �16�, and using Eqs. �15c� and �15d�,
we obtain

�Gij�1,2� = Gil̄�1,4̄�Gk̄j�3̄,2��U
l̄k̄
� �4̄, 3̄�

− 2Gil̄�1,4̄�Gk̄j�3̄,2��
l̄k̄,n̄m̄

�4� �4̄3̄, 6̄5̄��Gm̄n̄�5̄, 6̄�

+ 2Gil̄�1,4̄�Gk̄j�3̄,2��
l̄k̄,m̄

�3� �4̄3̄, 5̄��− 1�m̄−1�	m̄�5̄� ,

�17a�

�− 1�i−1�	i�1� = Gik̄�1,3̄��− 1� j̄−1	 j̄�2̄��U
k̄j̄
� �3̄, 2̄�

− Gij̄�1,2̄��̃
j̄,l̄k̄

�3� �2̄, 4̄3̄��Gk̄l̄�3̄, 4̄�

+ Gij̄�1,2̄��
j̄k̄

�2��2̄, 3̄��− 1�k̄−1�	k̄�3̄� .

�17b�

Note

Gil̄�1,4̄�Gk̄j�3̄,2��U
l̄k̄
� �4̄, 3̄�

= 1
2 �Gil̄�1,4̄�Gk̄j�3̄,2� + �− 1�k̄+l̄−1Gi,3−k̄�1,3̄�G3−l̄,j�4̄,2��

��Ul̄k̄�4̄, 3̄�

from Eq. �13�. Using

�ij,kl
�4� �12,34� = �− 1�i+j−1�3−j,3−i,kl

�4� �21,34� ,

we can also transform Gil̄�1, 4̄�Gk̄j�3̄ ,2��
l̄k̄,mn

�4� �4̄3̄ ,56�

= �−1�k̄+l̄−1Gi,3−k̄�1, 3̄�G3−l̄,j�4̄ ,2��
l̄k̄,mn

�4� �4̄3̄ ,56�.
To provide Eq. �17� with a compact expression, let us

introduce the vectors �G� and �U� by

�12ij��G� = �Gij�1,2�, �12ij��U� = �Uij�1,2� , �18�

together with the matrices K� , �� �4�, ��
�0�, 1� , �� �3�, �̃�

�3�, 	� �3�,

	̃�
�3�, and �̂�2� by

�12ij�K� �43lk� � Kij,kl�12,34� , �19a�

�12ij��� �4��43lk� � �ij,kl
�4� �12,34� , �19b�

�12ij��� �0��43lk� � Gil�1,4�Gkj�3,2� + �− 1�k+l−1

� Gi,3−k�1,3�G3−l,j�4,2� , �19c�

�12ij�1� �43lk� � �il�kj��1,4���3,2� , �19d�

�12ij��� �3��3k� � �ij,k
�3� �12,3� , �19e�

�1i��̃� �3��32kj� � �̃i,jk
�3� �1,23� , �19f�

�12ij�	� �3��3k� � �− 1� j+k�	i�1��k,3−j��3,2�

+ �ki��3,1�	3−j�2�� , �19g�

�1i�	̃� �3��32kj� � �− 1� j−1��ik��1,3�	 j�2�

+ �i,3−j��1,2�	3−k�3�� , �19h�

�1i��� �2��2 j� � �ij
�2��1,2� . �19i�

The quantity ��
�0� describes independent propagation of two

particles.
Using Eqs. �18� and �19� and noting the comments below

Eq. �17b�, we can express Eq. �17� as �G� = 1
2��

�0��U�

−��
�0��� �4��G� +��

�0��� �3��̂3�	� and �̂3�	� = 1
2Ĝ	̃�

�3��U�

− Ĝ�̃�
�3��G� + Ĝ�̂�2��̂3�	� . They are further transformed into

�G� =
1

2
��

�4��U� + ��
�4��� �3��̂3�	� , �20a�

�̂3�	� =
1

2
�̂�2�	̃�

�3��U� − �̂�2��̃�
�3��G� , �20b�

where ��
�4� and ��

�0� are defined by

��
�4� � �1� + ��

�0��� �4��−1��
�0� = ��� �0�−1 + �� �4��−1, �21a�

�̂�2� � �1̂ − Ĝ�̂�2��−1Ĝ = �Ĝ−1 − �̂�2��−1. �21b�

It is also convenient to introduce

��
�q� � ��� �4�−1 + �� �3��̂�2��̃�

�3��−1, �21c�

Γ(4) Γ(3) Γ(3)∼ Γ(2)

FIG. 1. Irreducible vertices of Eq. �15�.
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�̂�c� � ��̂�2�−1 + �̃�
�3���

�4��� �3��−1 = �Ĝ−1 − �̂�2� + �̃�
�3���

�4��� �3��−1,

�21d�

where the superscripts q and c denote “quasiparticle” and
“condensate,” respectively. Figure 2 expresses Eqs.
�21a�–�21d� diagrammatically. Now, we can write down the
solution to Eq. �20� in terms of ��

�q� and �̂�c� as

�G� =
1

2
��

�q��1� + �� �3��̂�2�	̃�
�3���U� , �22a�

�	� =
1

2
�̂3�̂�c��	̃� �3� − �̃�

�3���
�4���U� . �22b�

Let us substitute Eq. �22� into Eq. �12b� and make use of Eq.
�19� as well as ��

�q��� �3��̂�2�=��
�4��� �3��̂�c� in Eq. �21�. We

thereby obtain K� defined by Eq. �19a� as

K� = ��
�q� + ��

�4��� �3��̂�c�	̃�
�3� + 	� �3��̂�c��̃�

�3���
�4� − 	� �3��̂�c�	̃�

�3�.

�23�

This expression clearly tells us that collective modes are de-
termined as poles of ��

�q� and �̂�c�. Note in this context that
poles of ��

�4� in Eq. �23� are cancelled by those of ��
�4� in the

denominator of �̂�c�, as seen from Eq. �21d�. It also follows
from Eq. �21d� that the poles of �̂�c� are generally not iden-

tical to those of the single-particle Green’s function Ĝ due to

the additional contribution �̂�2�− �̃�
�3���

�4��� �3�, in contradiction
to the statement by Gavoret and Nozières.4 This point will be
discussed in more detail below.

Equation �23� with Eqs. �15�, �19�, and �21� is the main
result of the present paper. The expression is formally exact,
clarifies the structure of the two-particle Green’s function K�
in terms of unambiguously defined vertices, and enables us
to carry out practical calculations of K� for a given approxi-
mate � on the same footing as thermodynamic and single-
particle properties.12 The last point may be regarded as a
definite advantage of the present formalism over the dielec-
tric one.5–7

Equation �23� in the coordinate representation can be used
to investigate two-particle correlations of general inhomoge-
neous systems, including homogeneous ones. For the latter

cases, however, it is far more convenient to adopt the
“energy”-momentum representation. To be specific, vertices,
Eq. �15�, in those cases can be expanded as

�ij,kl
�4� �12,34� = �

p�p��q�

�ij,kl
�4� �p� ,p��,q��ei�p�+q��·r�1−ip� ·r�2

� eip��·r�3−i�p��+q��·r�4, �24a�

�ij,k
�3� �12,3� = �

p�q�
�ij,k

�3� �p� ,q��ei�p�+q��·r�1−ip� ·r�2−iq� ·r�3, �24b�

�̃i,jk
�3� �1,23� = �

p��q�

�̃i,jk
�3� �p� ,q��eiq� ·r�1+ip� ·r�2−i�p�+q��·r�3, �24c�

�ij
�2��1,2� = �

q�
�ij

�2��q��eiq� ·�r�1−r�2�, �24d�

where r�1��r1 ,−�1�, p� ��p ,�n� with �n�2n�T
�n=0, �1, . . .�, and the summation over p� denotes
T�n�d3p / �2��3. Other quantities in Eq. �19� can be ex-
panded similarly. The Fourier coefficients of Eqs. �19c�,
�19d�, �19g�, and �19h� are thereby obtained as

�ij,kl
�0� �p� ,p��,q�� = �p��p�Gil�p� + q��Gkj�p�� + �− 1�k+l−1

� �p��,−p�−q�Gi,3−k�p� + q��G3−l,j�p�� , �25a�

1ij,kl�p� ,p��,q�� = �il�kj�p��p� , �25b�

	ij,k
�3� �p� ,q�� = �− 1� j+k�n0��k,3−j�p� ,−q� + �ki�p� ,0�� , �25c�

	̃i,jk
�3� �p� ,q�� = �− 1� j−1�n0��ik�p� ,0� + �i,3−j�p� ,−q�� , �25d�

respectively, where �p��p� ��2��3T −1��p�−p��n�n and n0 de-
notes the condensate density. It then follows that Eqs. �21�
and �23� hold as they are in terms of the Fourier coefficients.
For example, Eq. �21c� can be written explicitly as an inte-
gral equation for �ij,kl

�q� �p� , p�� ,q�� as

��
�q��p� ,p��,q�� = ��

�4��p� ,p��,q�� − �
p�1p�2

��
�4��p� ,p�1,q���� �3��p�1,q��

��̂�2��q���̃� �3��p�2,q���� �q��p�2,p��,q�� , �26�

where ��
�q�, etc., are now matrices only in terms of the

Nambu indices i , j , . . ., which may be defined explicitly as
Eq. �19� without space-time arguments.

We now compare Eqs. �21� and �23� with the results for
the two-particle Green’s function K� by Gavoret and
Nozières.4 Apparently, they found the same structure for K�
as Eq. �23� above. They subsequently identified the quantity

corresponding to ̂+ �̂�2�− �̃�
�3���

�4��� �3� in �̂�c� of Eq. �21d�
with the single-particle self-energy as Eq. �3.4� of their pa-

per, where M̃ and JGGP on the right-hand side correspond to

̂+ �̂�2� and −�̃�
�3���

�4��� �3�, respectively. However, they did not
provide detailed reasoning to the crucial statement. In this
context, we would like to point out that their analysis of K�
was carried out separately from that of Ĝ by only investigat-

Γ(4)χ(4) = χ(0) χ(0)− χ(0) + ...

Γ(2)χ(2) = + + ...

χ(q) = χ(4) − + ...

χ(c) = − + ...

Γ(3) χ(2) Γ(3)∼

χ(2) Γ(3)∼ χ(4) Γ(3)

χ(4) χ(4)

χ(2) χ(2)

FIG. 2. Diagrammatic representation of Eq. �21�. Every long

straight line in the second equation denotes Ĝ.
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ing its diagrammatic structure in the simple perturbation ex-

pansion, where �̂�2�, for example, may be mistaken easily for
a part of the single-particle self-energy, as seen from the
second diagram of Fig. 2. This may be the reason why they

concluded erroneously that the quantity corresponding to ̂

+ �̂�2�− �̃�
�3���

�4��� �3� is the single-particle self-energy. In con-
trast, our investigation of K� has been performed on the basis

of Eq. �6� for Ĝ and 	� , where the self-energy ̂ is defined
unambiguously at the single-particle level. It is thereby

shown that the term �̂�2�− �̃�
�3���

�4��� �3� should be regarded as
additional contribution distinct from the single-particle self-
energy.

Thus, of fundamental importance will be to clarify how

the extra “self-energy” �̂�2�− �̃�
�3���

�4��� �3� in �̂�c� shifts its

poles from those of Ĝ. In the weak-coupling limit,
we can show �ii

�2�=0 and �12
�2��1,2�=−�21

�2���1,2�=−2V

�r1−r2�	�r1�	�r2� by using Eqs. �25� and �26� of Ref. 12
and Eq. �15� above. Combined with 12�1,2�=V
�r1−r2��	�r1�	�r2�− �
�1�
�2��� from the lowest-order
gapless �-derivable approximation,12 we thereby obtain
12�1,2�+�12�1,2�=V�r1−r2��−	�r1�	�r2�− �
�1�
�2���.
Thus, at the mean-field level, �̂�2� merely changes the sign of
the condensate �i.e., dominant� contribution to the off-
diagonal self-energy. It hence follows that, to the leading-

order in the interaction, poles of �Ĝ−1− �̂�2��−1 are the same

as those of Ĝ. However, they are not exactly identical due to
the presence of �
�1�
�2��. Beyond the weak-coupling re-

gime where the polarization contribution −�̃�
�3���

�4��� �3� also
becomes relevant in �̂�c�, therefore, it is reasonable to expect

that poles of �̂�c� and Ĝ are generally different. Further in-
vestigation needs to be carried out on the similarity or dif-
ference between the single-particle and collective
excitations.
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