e
ol

x‘

\%f} HOKKAIDO UNIVERSITY
¥

Design of easily synchronizable oscillator networks using the Monte Carlo optimization method

Title
Author(s) Yanagita, Tatsuo; Mikhailov, Alexander S.
Citation Et%:if/ﬂo?g\rlg/%E’l%%(/g)ﬁ;)ssgezfé.sl.056204
Issue Date 2010-05
Doc URL http://hdl.handle.net/2115/43112
Rights ©2010 The American Physical Society
Type article

File Information

PRES1-5_056204.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP



https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

PHYSICAL REVIEW E 81, 056204 (2010)

Design of easily synchronizable oscillator networks using the Monte Carlo optimization method
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Starting with an initial random network of oscillators with a heterogeneous frequency distribution, its
autonomous synchronization ability can be largely improved by appropriately rewiring the links between the
elements. Ensembles of synchronization-optimized networks with different connectivities are generated and

their statistical properties are studied.
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I. INTRODUCTION

In the last decade, much interest has been attracted to
studies of complex networks consisting of dynamical ele-
ments involved in a set of interactions [1,2]. Particular atten-
tion has been paid to problems of synchronization in
network-organized oscillator systems [3,4]. Synchronization
phenomena are ubiquitous in various fields of science and
play an important role in the functioning of living systems
[5]. Investigations focused on understanding the relationship
between the topological structure of a network and its col-
lective synchronous behavior [2]. Recently, synchronization
properties of systems formed by phase oscillators on static
complex networks, such as small-world networks [6] and
scale-free networks [7,8], have been considered. It has also
been shown that the ability of a network to give rise to syn-
chronous behavior can be greatly enhanced by exploiting the
topological structure emerging from the growth processes
[9.10]. However, full understanding of how the network to-
pology affects synchronization of specific dynamical units is
still an open problem.

One possible approach is to use evolutionary learning
mechanisms in order to construct networks with prescribed
dynamical properties. Several models have been explored,
where dynamical parameters were modified in response to
the selection pressure via learning algorithms, in such a way
that the system evolved toward a specified goal [11-16]. In
our study, this approach is employed to design phase oscil-
lator networks with synchronization properties. We consider
adaptive evolution of a network of coupled heterogeneous
phase oscillators [17,18]. In such systems, heterogeneity of
oscillator frequencies competes with the coupling which fa-
vors emergence of coherent dynamics [3,17]. The question is
how to connect a set of phase oscillators with given natural
frequencies, so that the resulting network would exhibit the
strongest synchronization, under the constraint that the total
number of available links is fixed.

Previously, a related but different problem of synchroni-
zation optimization in a network with the fixed topology
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through the modification of connection weights was consid-
ered [19]. Assuming that the system was in a phase-locked
state, the deterministic steepest-descent method was used to
determine the coupling strengths between elements which
lead to the best possible phase synchronization. In contrast,
we consider the systems which stay in partially synchronized
states (that is, are not fully phase-locked) and ask what
should be the optimal topology of connections, with each
link having the same strength.

To design optimal networks, stochastic Markov chain
Monte Carlo (MCMC) method with replica exchange is used
by us. Large ensembles of optimal networks are constructed
and their common statistical properties are analyzed. As we
observe, the typical structure of a synchronization-optimized
network is strongly dependent on its prescribed connectivity.
Sparse optimal networks, with a small number of links, tend
to display a structure with relatively high clustering, similar
to that found for the networks of chaotic maps [20,21]. As
the connectivity is increased, synchronization-optimized net-
works show a transition to (approximately) bipartite architec-
tures.

The paper is organized as follows. In Sec. II, we present a
model of heterogeneous phase oscillators occupying nodes of
a directionally coupled network and define the synchroniza-
tion measure for this system. The optimization method is
also presented in this section. Construction of the optimized
networks and their statistical analysis are performed in Sec.
III. The results are finally discussed in Sec. IV

II. MODEL AND THE OPTIMIZATION METHOD

We consider N oscillators with different natural frequen-
cies placed onto the nodes of a network. The evolution of
this system is given by

N
a6 A .
E = w; + NE ai,_i Sln(aj - 01), (l)

where w; is the natural frequency of oscillator i and A is the
coupling strength. The weights a; ; define the adjacency ma-
trix a of the interaction network: a; ;=1 if oscillator i inter-
acts with oscillator j and a; ;=0 otherwise. The adjacency
matrix is generally asymmetric.
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To quantify synchronization of the oscillators, the Kura-
moto order parameter

(2)

|
r(t)=— exp(if;
(0= | 2 expli6)
is employed. Under perfect synchronization, we have r=1,
whereas r~O(N~"?) in absence of coupling for randomly
drawn natural frequencies. A second-order transition takes
place at some critical coupling strength A, from the desyn-
chronized to the synchronized states [17].

To measure the degree of synchronization, we numeri-
cally integrate Eq. (1) for given initial conditions 6,(r=0)
€[0,27) and calculate the average modulus of r(f) over a

long time 7,
1 (7
R(a) = }fo r(t)dt . (3)

where (...);,; represents an average over many realizations
with different initial conditions 6,(0).

Our aim is to determine the network a which would ex-
hibit the highest degree of synchronization, provided that the
total number of links is fixed and a set of natural frequencies
is given. The network construction can be seen as an optimi-
zation problem. The optimization task is to maximize the
order parameter and, possibly, bring it to unity by changing
the network a. An approximate standard approach to the
problems of complex combinatorial optimization, such as the
traveling salesman problem, is provided by the method of
simulated annealing (see, e.g., [11]). However, we are inter-
ested in the statistical properties of the synchronization-
optimized networks rather than in a search for the best-
optimized network. If multiple samples are generated using
conventional optimization methods such as simulated an-
nealing, it is difficult to control the probability of the re-
peated appearance of the same (or similar) items in the ob-
tained set of samples.

To study statistical ensembles of optimized networks, the
MCMC method [22-24], which has previously been applied
to dynamical systems [25-32], will be used. The canonical
ensemble average of a network function f(-) is introduced as

> fla)exp[ BR(a)] , @)
w Z(B)

where Z(B)=2,,exp[ BR(a)] is the partition function and the
parameter S plays the role of the inverse temperature.

Hence, the problem is reduced to sampling from the en-
semble with the Gibbs distribution exp[BR(a)]. Such en-
semble can be generated, for example, by using the Metropo-
lis algorithm [33], which is the simplest implementation of
the MCMC method. The Metropolis algorithm, which we
use, is essentially standard. The only important difference is
that we should simulate the dynamics with a network a at
each iterated trial.

This Metropolis algorithm appears to provide a simple
and universal way of generating the Gibbs network distribu-
tion. However, the efficiency of such algorithm gets worse
when S increases, particularly in the case of a highly jagged
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landscape R(a). This deficiency can be eliminated by using
instead the replica exchange Monte Carlo (REMC) algo-
rithm, which provides an efficient method to investigate sys-
tems with rugged free-energy landscapes, specifically at low
temperatures [34-36].

In a REMC simulation, a number of replicas {a,,} with
different inverse temperatures 3,, are evolved in parallel. At
regular evolution time intervals, the performances of a ran-
domly selected, adjacent pair of replicas are compared. The
running configurations of the two selected replicas are ex-
changed with the probability min[1,exp(ABAR)], where
AB=B,.+1— B, is the difference of the inverse temperatures
of the pair and AR=R(a,,,;)—R(a,,) is the difference of their
performances. The exchange of replicas with different tem-
peratures effectively imitates repeated heating and annealing,
thus preventing trapping in the local performance optima.
Note that such stochastic exchange algorithm preserves the
joint probability distribution I1,, exp[8,,R(a,,)]/Z(B,), so
that the unbiased set of samples is generated for all inverse
temperatures.

Explicitly, the algorithm is defined as follows:

(1) The states of replicas {a&} are initialized by random
networks (which is chosen as a random Erdds-Rényi net-
work).

(2) The candidate for the next network a’ at iteration step
n is obtained from the current network ag’ by rewiring one
of its links. A randomly chosen link is moved to a randomly
chosen link vacancy, so that the total number of links re-
mains conserved.

(3) The evolution equations (1) for the network a,, are
integrated using the standard Euler algorithm. The order pa-
rameter is then calculated and averaged over the time inter-
val 1 € [0,T] and over a fixed number of realizations starting
from different random initial conditions. Thus, the synchro-
nization property R(a,) of the candidate network is deter-
mined.

(4) Next, a random number x € [0, 1] is uniformly drawn.
If

exp[ BR(a})]
exp[ BR(a™)]’

the candidate is accepted and taken as a
nothing is changed, so that a®+*D=a",

(5) At regular evolution time intervals, the performances
of a randomly selected, adjacent pair of replicas are com-
pared. The running configurations of the two selected repli-
cas are exchanged with the probability

min[ 1,exp{(By..1 — B R[] - R[al* V1.

(6) Return to step (2) until the statistical average Eq. (4)
converges.

(n+1) _
m

. .
a,; otherwise

III. NUMERICAL ANALYSIS

To determine the synchronization degree of a given net-
work at each iteration step of the optimization procedure, Eq.
(1) was numerically integrated with the time increment At
=0.05. Averaging over five independent realizations started
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FIG. 1. (Color online) Evolution of order parameters of coupled
oscillator networks during the optimization process. Blue solid, red
broken, and yellow dotted lines are for 8=/, B5, and 3, respec-
tively. Note that the blue solid line is for 8,=0 and, therefore, it
corresponds to the networks generated by only random rewiring.
The parameters are p=0.2, N=20, A=1.0, y=03, M=21, 8
=10.

from different random initial conditions has been further-
more performed at each iteration step. Oscillator ensembles
of sizes N=10 and 20 were considered. Natural frequencies
of the oscillators were always chosen as w;=—7y+2vi/N, so
that they uniformly distributed within the interval [—1y, ]
[40].

Initial phases 6,(0)=2mf;,;({)/ N uniformly distributed in-
side the interval [0,27), where f;,;(i) is a random one-to-
one mapping between {1, ...,N}. Hence, the order parameter
at t=0 always zero. To construct initial random networks
with a given number K of connections and, thus, the connec-
tivity p=K/N(N-1), K off-diagonal elements of the adja-
cency matrix were randomly and independently selected and
set equal to unity.

For time averaging, intervals of length 7=100 and 200
were typically used. The results did not significantly depend
on T when sufficiently large lengths 7" were taken. Using the
order parameter, graphs a were sampled by the REMC opti-
mization method. In parallel, evolution of M replicas with
the inverse temperatures 3,,=0Bm, m=0,1,...,M was per-
formed (with M =21 and 6B8=10). At each five Monte Carlo
steps (mcs), the performances of a randomly chosen pair of
replicas were compared and exchanged, as described above.
For display and statistical analysis, sampling at each every
50 mcs after a transient of 5000 mcs has been undertaken.

A. Optimization at different temperatures

Synchronization-optimized networks were obtained by
running the evolutionary optimization. In this process, the
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order parameter was progressively increasing until a station-
ary state has been achieved. Figure 1 displays the optimiza-
tion processes at different temperatures. As clearly seen,
when using replicas with the larger inverse temperature S,
the larger values of the order parameter could be reached,
although the optimization process was then slower. After the
transients, statistical averaging of the order parameter over
the ensemble with the Gibbs distribution has been per-
formed, according to Eq. (4).

In Fig. 2(a), the averaged order parameter R is displayed
as a function of the connectivity p for several different in-
verse temperature 3. The blue solid circle symbols show the
averaged order parameter corresponding to the replica with
Bo=0, i.e., for an infinitely high temperature. We see that the
averaged order parameter increases with the network connec-
tivity p even if the networks are produced by only random
rewiring. The red open circles show the average order pa-
rameters for the ensemble corresponding to the replicas with
the lowest inverse temperature [3,,. Generally, greater order
parameters are obtained by running evolution at higher in-
verse temperatures 3 at any network connectivity p. At each
connectivity p, the order parameter is gradually increased
with increasing 8 and is approximately saturated at 3,,. This
means that, even if one further increases (3, only slight im-
provements of the averaged order parameter can be expected.
Thus, the networks sampled by the replica with the largest
inverse temperature (3, are already yielding a representative
optimal ensemble.

Figure 2(b) shows, depending on the network connectivity
p, the ratio R s,/ R, of the averaged order parameters
sampled by the optimal network ensemble with B, to those
obtained for the ensemble with purely random rewiring.
Since there is no room for the improvement of the order
parameter when the number of links is small, the ratio tends
to unity as the connectivity p is decreased. On the other
hand, when p=1, global coupling is realized, for which, un-
der the chosen coupling strength, full synchronization oc-
curs. As evidenced by this figure, the difference between the
synchronization capacities of the optimized and random net-
works is most pronounced at the intermediate connectivities
p- R

In Fig. 2(c), the mean variance Var[R] /3=R?3—R32 of the
order parameters at different connectivities p is displayed. It
can be observed that this mean variance for the
synchronization-optimized ensemble decreases with an in-
crease in the number of links, while the respective mean

(b) 1.0x1072

1.0x1073

Var[Rg]

1.0x107*

1.0x107>

0.2 04
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FIG. 2. (Color online) Average order parameters as functions of the network connectivity p. Blue filled circles are for the replica By, i.e.,
the ensemble of randomly rewired networks. Red squares, yellow diamonds, green triangles, blue inverted triangles, and red open circles are
for replicas with 8=40, 80, 120, 160, and 200, respectively. (b) Ratio of the average order parameters for the synchronization-optimized
ensemble with the inverse temperature B,; and for B;=0. (c) Variance of the order parameters. Red squares are for the random rewired
ensemble and blue circles are for the synchronization-optimized ensemble. The same parameters as in Fig. 1
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FIG. 3. (Color online) (a) Time-averaged frequencies (winding
numbers) of the oscillators in a synchronization-optimized network.
(b) Statistical ~distribution of winding numbers for the
synchronization-optimized ensemble. The parameters are p=0.2,
B=Py; others are the same as in Fig. 1.

variance for the random rewired ensemble has a maximum at
p=0.4. Note that, since the transition from the connected to
the disconnected random graphs occurs at p.=1/N [1,2], this
behavior is not directly related to the topological transition in
the network itself.

To further analyze the behavior of oscillators in
synchronization-optimized networks, we calculated time-
averaged frequencies, i.e., winding numbers ();
=(1/T)f g 0,(t)dr of all oscillators i. Histograms of distribu-
tions over the winding numbers were constructed by count-
ing the numbers of oscillators with the winding number in-
side a fixed bin interval, H,={Q;|néQ<Q,<(k+1)8Q},
where k=0,1,...,K—1, K=10 is the number of bins, and
60 =2v/K is the bin size. The winding number as a function
of the natural frequency is shown in Fig. 3(a). The blue
circles show the entrained cluster with the winding number
approximately equal to zero. The cluster consists of the ele-
ments whose natural frequencies are near the mean natural
frequency ()=0. While the specific elements of the cluster
and its size depend on a particular network in the
synchronization-optimized ensemble, there is a statistical
trend that the entrained cluster consists of the oscillators in
the neighborhood of the zero frequency. This is demonstrated
by the histogram of winding numbers for the
synchronization-optimized ensemble in Fig. 3(b). Note that
the oscillators are always ordered according to their natural
frequencies w;=—vy+2vi/N which monotonously increase
with i. We see that all elements get divided into two groups,
in which Q;=~0 or where the winding number is relatively
high. For each particular network realization, there should be
a peak at the frequency of the entrained cluster. The position
of this peak depends however on the realization and, as a
result, the histogram of the winding numbers for the entire
ensemble shows a broad maximum. This behavior is charac-
teristic for relatively low connectivities. The broad peak
gradually sharpens when the connectivity is increased be-
cause the size of the cluster increases and fluctuations of the
winding number become smaller.

B. Architectures of synchronization-optimized networks

Typical structures of synchronization-optimized networks
are shown in Fig. 4. When the connectivity p is small, such
networks usually represent chain fragments. At a higher con-
nectivity, the network becomes more complexly organized,
as shown in Fig. 4(b).

PHYSICAL REVIEW E 81, 056204 (2010)

FIG. 4. (Color online) Two typical realizations of the
synchronization-optimized network at different connectivities (a)
p=0.05 and (b) p=0.2. Blue (gray) nodes indicate entrained oscil-
lators. Numbers in the nodes are indexes of the oscillators. Param-
eters are N=10, 8=, M=11, and 5B8=10.

To statistically characterize the architecture of constructed
networks, ensemble averages of their adjacency matrices
over the Gibbs ensemble, i.e.,

a;=> aexp[BR)VZ(P). (5)

for different connectivities p were computed for 8=, as
shown in Fig. 5. Clearly, the optimal network structure is
changing with the number of links. When the number of
links is small, the elements of the mean adjacency matrix,
obtained by averaging over many realization from the
synchronization-optimized ensemble, are large near the diag-
onal. Hence, elements with close natural frequency tend to
connect and form a chain fragment. Moreover, oscillators
with the natural frequencies near the center of the interval are
often connected. Increasing the number of links, the network
becomes more complicated and off-diagonal elements begin
to dominate instead. The network with the larger p tends to
have interlaced structures, seen in Figs. 5(b) and 5(c), where
the oscillators with roughly opposite natural frequencies are
coupled. A similar trend toward anticorrelations for the os-
cillators with opposite frequencies has been noticed in
[15,16], where a transition from local to global synchroniza-
tion under an increase of the coupling strength has been ob-
tained using a different optimization method [16].

This structural transition can be understood as follows.
When connectivity is small, a limited small number of avail-
able links is better used to connect oscillators with frequen-
cies in the middle of the frequency interval, where the col-
lective synchronization frequency would lie. Indeed, such
oscillators can be easily entrained and even a single link may
be sufficient to synchronize them. If connectivity is increased
and some further links may be used, it would not however be
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FIG. 5. (Color online) Upper panels show adjacent matrices averaged over the Gibbs ensemble of synchronization-optimized networks
[see Eq. (5)]. Darker color of a matrix element indicates the higher probability of the respective connections between the elements. Lower
panels display the corresponding network averaged over the Gibbs ensemble. Numbers in the circles show indexes of the oscillators. The
thickness of the lines connecting the nodes is proportional to the frequency of links between them. The network connectivities are (a) p

=0.05, (b) 0.2, and (c) 0.3. Other parameters are same as in Fig. 1.

efficient to put them into the middle region: the oscillators
there are already synchronized and bringing more connec-
tions would not increase the performance. This means that
the additional available links should be rather connected to
the elements in the periphery, outside of the central fre-
quency region. If predominantly local connections between
the elements on each side are established, this would how-
ever lead to the formation of two clusters, each on a different
side from the center. Within each cluster, oscillators may get
synchronized, but oscillations of the two clusters will still
then be incoherent. Therefore, a better solution would consist
in establishing pairwise connections between the elements on
both sides of the center, i.e., in linking preferentially the
opposite oscillators. This is exactly what we observe in Fig.
5 at the higher connectivity p=0.3.

C. Degree distributions and cluster organization

To statistically investigate architectures of designed net-
works, ingoing and outgoing degrees of their nodes have
been considered and averaged over the ensemble. Since the
network is colored, i.e., each of its node has a different natu-
ral frequency, the mean in-degree and out-degree of the
nodes can be plotted as a function of their natural frequency
(Fig. 6). When connectivity p is small, both in-degree and
out-degree averaged over the ensemble have a maximum at
=0, i.e., oscillators having smaller magnitudes of the natu-
ral frequency tend to be mutually connected. This unimodal
degree distribution is consistent with the linear-chain struc-
ture shown in Fig. 5(a). As p is increased, the mean in-degree
distribution becomes bimodal and oscillators having larger
magnitudes of the natural frequency tend to have larger out-

. ‘__,,0

‘0._.‘. ,--"“.. (C)
ha

LN A

w -
. -
-
-03 0.0 03
w w

FIG. 6. (Color online) Degrees, averaged over the Gibbs ensemble of synchronitaion-optimized networks, as functions of the natural
frequency of the oscillator. The in-degree k;M, out-degree k;,M, and degree kgM are plotted by the blue circles, red squares, and yellow
diamonds. N=10, B=p,,. The network connectivities are (a) p=0.1, (b) p=0.2, and (c) p=0.3. Other parameters the same as in Fig. 1.
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FIG. 7. (Color online) Ratio of the number of isolated nodes,
averaged over the replicas with By, (synchronization-optimized net-
works) to that averaged over the replicas with B, (randomly rewired
networks) as a function of the connectivity p. Data for the nodes
isolated with respect to incoming (blue circles) and outgoing (red
squares) connections, as well as for the completely isolated nodes
(yellow diamonds), are shown. The same parameters as in Fig. 1.

degrees. This tendency becomes stronger when p increases
[Figs. 6(b) and 6(c)].

Furthermore, we calculated the mean numbers of isolated
nodes as a function of p. The isolated nodes have been clas-
sified into three categories, as those which have no in-
coming, no out-going, and neither in-coming nor out-going
connections. The numbers of such isolated nodes are, respec-
tively,

N N
sta)=> A(E ai,,»),

=1 \j=1

N N
sT(a)=2> A(E ai,j),

j=1 i=1

N N N
S+(a)=2A<2 ai,k"'zak,j)’ (6)
=1 \i=l j=1

where A(w) is the Kronecker symbol, A(w)=1 for w=1, and
A(w)=0 otherwise. We averaged these numbers over the
Gibbs ensemble for S=f, and 3, and determined the ratio
s;jM/ S;o of the average number of isolated nodes in the
synchronization-optimized networks to that in the networks
obtained by random rewiring (see Fig. 7).

The results do not depend on the choice of B,, qualita-
tively. When p is small, the ratio of completely isolated
nodes is larger than 1. This comes from the fact that the links
are used intensively between the nodes having smaller mag-
nitudes of the natural frequency at the cost of connections of
periphery oscillators. Thus, the number of isolated nodes is
large. Starting from p=0.23, this ratio becomes however
less than 1, so that the optimized networks tend to have less
completely isolated nodes as their random counterparts. We
can also notice that the relative number of nodes without
ingoing connections becomes high at about p =0.23 and then
sharply drops down. The number of nodes without the out-
going connections in the optimized networks remains always
larger than in the random networks.

PHYSICAL REVIEW E 81, 056204 (2010)
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FIG. 8. (Color online) Ratio of interconnections to intraconnec-
tions as a function of the connectivity p for 8= Bs (blue circles), B
(red squares), B;s (yellow diamonds), and B, (green triangles). N
=10. The same other parameters as in Fig. 1.

As already suggested by Figs. 5(b) and 5(c),
synchronization-optimized network with larger connectivi-
ties may be similar to bipartite graphs. A bipartite graph is a
graph whose nodes can be divided into two disjoint sets A
and B, so that every link connects a node in A to a node in B
and vise versa [37]. To demonstrate that our optimized net-
works are indeed similar to bipartite graphs, we divide all
oscillators into two groups A and B with the negative and
positive natural frequencies. An intraconnection is defined as
a link between nodes belonging to the same group, while an
interconnection is a link between the nodes in A and B. Thus,
the number of intraconnections is given by

NI2,N N,N/2
ninlra(a) — ( E + E )ai,j

i=1, j=NI2  i=N/2, j=1

and the number of interconnections is

NI2,N/2 N.N
inter, _
n"(a) = E + E a .
i=1, j=1  i=N/2, j=NI2
inter ; intra
/nB

The mean ratio n B of interconnections to intracon-
m m

nections in the synchrony-optimized ensemble for Bs, B,
Bis, and By as a function of the connectivity p is shown in
Fig. 8. This ratio is smaller than unity when connectivity p is
small. It increases with p and reaches a maximum in the
vicinity of the transition point, where the bipartitelike struc-
ture emerges. Further above the transition point, the ratio
gradually decreases to unity, since the number of links in-
creases until all-to-all connections are established [41].

D. Closeness, betweenness, and clustering

To characterize network structure quantitatively, we cal-
culated the closeness, betweenness, and clustering coefficient
[2,38]. Again, averaging was performed over many realiza-
tions of synchronization-optimized networks, sampled with
the Gibbs distribution [Eq. (4)].

The betweenness centrality of a node is the number of
geodesics (i.e., shortest paths) going through it. If there is
more than one geodesic between two nodes, the number of
geodesics which connect these two nodes via a considered
node is divided by the total number of geodesics that connect
the two nodes. The betweenness centrality is thus defined by
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FIG. 9. (Color online). Statistical properties of synchronization-optimized networks as functions of the connectively p. (a) The ratio of
closeness, averaged over the replicas with 3,, to that averaged over the replicas with 3, (b) the ratio of betweenness, and (c) the ratio of
transitivity, for different 3,,, where m=10 (blue circles), m=15 (red squares), and m=20 (yellow diamonds). The same parameters as in Fig.

1.

) =3 3 7,

st s#t Osyt

where o is the number of shortest paths from node s to node
t and oy ,(v) is the number of shortest paths from s to ¢ that
pass through node v.

The closeness centrality of a node specifies how easily
other nodes can be reached from it (or, in other words, how
easily it can be reached from the other nodes). It is defined as
the sum of the lengths of all geodesics leading to or from the
given node, divided by the total number n of nodes minus 1

1
C(v) = —— 2 dy(v,1),
n—1%

where d,(u,v) is geodesic distance between the nodes « and
v (i.e., the length of the shortest path connecting them).

The clustering coefficient of a node specifies the number
of neighbors of this node which are in turn mutual neighbors.
It is defined as

o) =4
C2U
where k, is the degree of a node v, #, is the number of links
between its neighbors, and c’ﬁv is the number of pairs that can
be made by using k, neighbors.

The above properties are defined for each node. To char-
acterize the entire network, we average them over all nodes.
In order to quantify differences between synchronization-
optimized networks and networks generated by random re-
wiring, ratios CX(a) g,/ CK(a) p, can be used, where CX is the
respective property of network, such as closeness, between-
ness, or clustering, B,, is inverse temperature, and 5,=0. In
Fig. 9, we show these ensemble-averaged network properties
depending on the connection probability p for several inverse
temperatures. Obviously, these ratios should approach unity
at p=0 or at p=1 because the difference in synchronization
of optimized and random networks vanishes in these two
limits. The ratios for the closeness have pronounced minima
in the transition region. The ratio in the vicinity of the tran-
sition point decreases when the performance of optimized
network increases, i.e., the network ensemble with higher
inverse temperature.

On the other hand, the betweenness and clustering coeffi-
cient gradually increase with the connectivity p and reach a

maximum in the transition region. Note that in recent work
[39], it was found that, both in random and scale-free net-
works, increase the clustering coefficient favors formation of
oscillator subpopulations synchronized at different frequen-
cies.

IV. CONCLUSIONS

We have designed synchronization-optimized networks
with a fixed number of links for a heterogeneous oscillator
population. This has been done by using the Markov chain
stochastic Monte Carlo method complemented by the replica
exchange algorithm. A transition from the linear to bipartite-
like networks has been found under increasing the number of
links. At low connectivity, synchronization-optimized net-
works typically represent small chains connecting oscillators
with close natural frequencies. As the number of links in-
creases, the networks become interlaced and oscillators with
opposite natural frequencies tend to be connected. Therefore,
synchronization-optimized network begin to resemble bipar-
tite graphs. This structural change of synchronion-optimized
network is clearly revealed through the analysis of intercon-
nections and intraconnections.

Thus, we have shown that the efficient design of oscillator
networks with the improved synchronization properties is
possible. The architectures of such optimal networks strongly
depend on the constraints, such as the total number of links
available. Through the appropriate rewiring of a network, a
strong gain in the synchronization signal can be achieved.

Although our study has been performed for a simple sys-
tem of phase oscillators, similar evolutionary optimization
methods can be applied to construct networks of different
origins, where the dynamics of individual oscillators may be
significantly more complex.
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