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planar microcavity

Hisaki Oka,1,a� Hideki Fujiwara,2 Shigeki Takeuchi,2,3 and Keiji Sasaki2
1Photon Pioneers Center, Osaka University, Suite Osaka 565-0871, Japan
2Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
3The Institute for Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan

�Received 10 October 2009; accepted 20 January 2010; published online 5 March 2010�

We investigate the nonlinear optical phase shift obtained from a thin atomic layer confined in a
distributed Bragg reflector �DBR� microcavity with reflection geometry. The optical response of the
atom-cavity system is numerically analyzed using finite-difference time-domain method with the
optical Bloch equations. The optimal position of atomic layer, at which a maximal phase shift of �
is realized, drastically changes with the quality factor Q of the cavity. We show that for high Q the
maximal phase shift of � can be obtained anywhere in the cavity field independently of atomic layer
position. This result is in contrast to that obtained from a one-dimensional atom model in the limit
of bad cavity, where a maximal phase shift of � is obtained only at the antinode of the cavity field.
We also show that the independence of phase shift on atom position realized in high-Q regime is due
to an interference effect in the surface layers of the DBR cavity. © 2010 American Institute of
Physics. �doi:10.1063/1.3327411�

I. INTRODUCTION

The strong optical nonlinearities realizable in cavity
quantum electrodynamics �cavity QED� have attracted much
attention because of their potential applications in optical
quantum information and communication technologies, e.g.,
in the realization of photonic quantum phase gates �QPG� or
quantum controlled-NOT gates.1–4 One way of realizing a
photonic QPG is to utilize single-atom nonlinearity enhanced
by cavity QED effect.2,5 In particular, one-dimensional atom
model �1D atom� is one of strong candidates for photonic
QPG, which can be realized by confining a single atom in a
microcavity with reflection geometry so that dipole emission
from the atom can be restricted to a 1D beam profile.6,7 The
nonlinear optical response of 1D atom has been theoretically
analyzed in terms of the response to one-photon and two-
photon input pulses,8,9 the effects of decoherence on the non-
linear phase shifts,10 and optimal cavity QED parameters.11

These results indicate that a 1D atom has a potential not only
for a photonic QPG but also for other optical quantum infor-
mation devices.8,12

A scenario to utilize 1D atom as a photonic QPG is
summarized as the realization of strong nonlinear photon-
photon interaction mediated by a single atom. Since a single
atom is fully saturated by one-photon absorption, the atom
saturation induces a relative phase shift between two ab-
sorbed photons. The final goal is to realize a relative phase
shift of � between the two photons, being qubits �e.g., their
polarizations�. This is achieved when � phase shift is real-
ized for one-photon input because a subsequent input photon
is unaffected by a fully-saturated atom. Although rigorous
evaluation of the performance as a photonic QPG requires a
fully quantum-mechanical analysis using spatiotemporal

photon wavefunctions,9 if we focus only on the amount of
phase shift, we can evaluate it by calculating overall nonlin-
ear phase shift using a semiclassical method,6,10 which is the
total phase shift obtained by varying incident light intensity
�mean photon number� from zero to infinity. Since the fully
quantum-mechanical analysis is often complicated, the semi-
classical approach is quite useful to discriminate whether a
target atom-cavity system is suitable for the above QPG sce-
nario using 1D atom.

Owing to the recent development of semiconductor mi-
crocavities, a 1D atom is expected to be realized in low-
dimensional semiconductor systems. This could be achieved,
e.g., by using a quantum dot in a photonic crystal or a mi-
cropost cavity.13 However, studies based on 1D atom could
not be directly applied to above systems because cavity fields
are adiabatically eliminated by considering the limit of bad
cavity; cavity damping rate is much larger than atom-cavity
coupling rate. In practice, solid-state microcavities achieve
strong light-matter coupling and therefore the bad cavity
limit no longer holds true. As a result, cavity-mode profiles
and position of atoms within them should be properly con-
sidered. In fact, in previous work, we have shown that over-
all nonlinear phase shift is strongly affected by atom position
in an electromagnetic-field profile.14 Thus, atom position
would be an important parameter characterizing the overall
nonlinear phase shift, in particular when a 1D atom is imple-
mented by a solid-state microcavity realizing strong light-
matter coupling.

In this study, we therefore investigate atom-position ef-
fects on the overall nonlinear phase shift obtained from a 1D
atom beyond the bad cavity limit. Generally, theoretical
analyses of the light-matter interaction including atom-
position dependence are complicated because calculations of
cavity-mode functions are required. Further it is difficult to
calculate mode functions of a cavity having a complex struc-
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ture and therefore numerical calculation is necessary. We
adopt the finite-difference time-domain �FDTD� method
coupled with the optical Bloch equations as used in Refs. 14
and 15. This method has the advantage that we can directly
calculate the dynamics of interaction between light and a
single atom including atom-position dependence for micro-
cavities with arbitrary shape. As a first step, we analyze the
optical response of an atom-cavity system consisting of a
thin infinite atomic layer of two-level atoms and a distributed
Bragg reflector �DBR� microcavity with reflection geometry.
The optical response of this system can be reduced to a 1D
problem and corresponds to that of 1D atom. We will show
that optimal position of atomic layer, yielding a overall non-
linear phase shift of �, varies with cavity quality factor Q. In
particular, for low-Q cavities, optimal position is not corre-
sponding to the antinode of cavity field, where electric
cavity-field strength is maximal, but is instead slightly
shifted toward the surface of the cavity. As Q factor in-
creases, however, overall nonlinear phase shift of � can be
obtained anywhere in the cavity field independently of
atomic layer position. This result is contrast to the result
obtained in the bad cavity limit, where overall nonlinear
phase shift of � is obtained at the antinode.14 We show that
this change in position dependence is due to interference
effects in surface DBR layers.

The rest of this paper is organized as follows. In Sec. II,
we formulate the dynamics of the Maxwell–Bloch equations
in terms of the FDTD method and provide a definition of the
overall nonlinear phase shift. In Sec. III, we analyze the ef-
fects of the atomic layer position on the overall nonlinear
phase shift. In Sec. IV, we summarize our results.

II. MODEL AND NUMERICAL SETUP

We consider a DBR microcavity with reflection geom-
etry, as depicted in Fig. 1�a�, where the DBR cavity is de-
scribed in terms of refractive-index distribution. The DBR
cavity consists of alternate refractive indices of n=3.4 and
n=1, assuming GaAs and air, respectively. In order to realize
a cavity with reflection geometry, the second layer of n
=3.4 from the left end is removed �an air defect�, so that the
DBR cavity is formed by left-side and right-side mirrors,
consisting of 1 and 20 pairs of layers, respectively. The cen-
ter of the defect is set to the origin of the x-axis.
Transmission- and defect-mode spectra are shown in Fig.
1�b�. The transmission spectrum �solid line� is obtained for
an incident temporal Gaussian pulse with a width of 10 fs
and a central frequency of 3.5�1014 Hz. At the frequency
range from 2.5�1014–3.6�1014 Hz, the transmittance is
zero �a stop band� and the DBR behaves as a perfect mirror.
The defect-mode spectrum �dotted line� is obtained at the
origin, where the intensity of the cavity field is maximal. The
resultant defect mode is a single monopole and the central
frequency is in the stop band. Thus, a single-mode cavity
with reflection geometry is realized simply by using a DBR
with a near-surface defect. A high-Q microcavity can be
achieved by adding a few layers at the left end of the DBR.
An atomic layer will be inserted in the defect-cavity region.
If the length of the atomic and DBR layers in the y and z

directions is much larger than the width of the layers, the
atom-cavity system can be reduced to a 1D problem without
optical losses, because dipole emission from the atomic layer
is restricted to a 1D input-output field.14 In terms of the
cavity QED parameters, this reduction corresponds to an
atom-cavity system with a spontaneous emission factor of
�=1, which is defined as the fraction of spontaneous emis-
sion through a specific cavity mode to the total spontaneous
emission.13

The nonlinear optical response of the atom-cavity sys-
tem can then be analyzed simply as a 1D Maxwell–Bloch
system, where the optical Bloch equations are coupled to the
Maxwell’s equations through a dipole current. The 1D Max-
well’s equations with a dipole current jz are given by

�Ez�x,t�
�t

=
1

��x��0
� �Hy�x,t�

�x
− jz�x,t�� , �1a�

�Hy�x,t�
�t

=
1

�0

�Ez�x,t�
�x

, �1b�

where ��x� is the relative dielectric constant. Note that in a
1D system the divergence of the electromagnetic field is al-
ways zero because only electromagnetic fields orthogonal to
the x-axis are allowed. The Bloch equations for a two-level
atom with a ground state �g� and an excited state �e� can be
expressed in terms of the complex dipole operators, �̂−

= �g�	e� and �̂+= �e�	g�, and the inversion operator �̂z= ��e�
�	e�− �g�	g�� /2 as16

d

dt
	�̂−� = �− �
 − i�0�	�̂−� − i2		�̂z� , �2a�

FIG. 1. �a� Refractive-index distribution of a DBR cavity with reflection
geometry. �b� Transmission and defect-mode spectra. The incident light is a
temporal Gaussian pulse with a width of 10 fs and a central frequency of
3.5�1014 Hz.
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d

dt
	�̂+� = �− �
 + i�0�	�̂+� + i2		�̂z� , �2b�

d

dt
	�̂z� = − 2�
�	�̂z� +

1

2
� − i	�	�̂−� − 	�̂+�� , �2c�

where �
 is the dipole decay rate due to spontaneous emis-
sion, �0 is the resonant frequency between the two atomic
levels, and 	 is the Rabi frequency given by

	 =
degEz�xa,t�



, �3�

where deg is the dipole moment of the atom and xa denotes
the position of the atomic layer. Since the dipole current
arises from the induced polarization Pz of the atoms, it can
be expressed in terms of the polarization dynamics. Using
the density of polarized atoms in the atomic layer, Natom, the
dipole current jz can be described as

jz�x,t� = Natomdeg��x − xa�
d

dt
�	�̂−� + 	�̂+�� , �4�

showing how the coherent dipole emission from the two-
level atoms in the atomic layer is coupled to Maxwell’s
equations through the dipole current jz. If Natom is chosen so
that one polarized atom is in each volume enclosed by the
atomic cross section A of a single atom and the thickness �
of the atomic layer,

Natom =
1

A�
with A =

2�c2

�0
2 , �5�

equation �4� corresponds to dipole emission from a single
atom. The optical response of the 1D Maxwell–Bloch system
can thus be reduced to that of a 1D atom with no optical
losses.

The overall nonlinear phase shift �
 is defined as the
total change of the phase difference 
�n̄in� obtained by vary-
ing input photons n̄in from zero to infinity6,10

�
 = lim
n̄in→�


�n̄in� − lim
n̄in→0


�n̄in� , �6�

where 
�n̄in� is the phase difference between the input and
output photons at n̄in, with reference to that obtained from an
empty cavity; 
�n̄in�=0 means the response of an empty cav-
ity. n̄in is the time-averaged input photons defined as n̄in

= S̄A /
��
, where S̄ is the time-averaged Poynting vector

component given by S̄=EzHy. In the limit of high-intensity
input field �n̄in→��, the atoms are completely saturated and
the inversion is 	�̂z�s=0. The saturation of 	�̂z�s also affects
the atomic dipole, so that 	�̂−�s goes to zero and the optical
response of the atom-cavity system is the same as that of an
empty cavity. As a result, 
���=0 and �
 is therefore equal
to the negative phase difference obtained for intensities close
to zero, that is, �
=−
�0�. When an atom-cavity system
with ��1 /2 is realized, a maximal phase shift of �, i.e.,
��
�=�, can be achieved.6,10

The Maxwell–Bloch Eqs. �1� and �2� can be numerically
solved by transforming them into spatiotemporal finite-
difference equations and by using the FDTD method coupled

to the optical Bloch equations �see Ref. 14 for details�. In the
following FDTD calculation, we use a cell size of �x=7.5
�10−9 m and a time step of �t
2.499�10−17 s. For the
DBR cavity parameters, the relative dielectric constant is
��x�=11.56, corresponding to a refractive index of n=3.4.
The lattice constant of DBR and the layer width are 25 and
15 cells, respectively. Three DBR cavities of different Q are
used, where the Q values are obtained by changing the num-
ber of left-sided DBR layers between 1, 3, and 5. An ex-
ample for one layer is shown in Fig. 1, where the central
frequency of the defect-cavity mode is �c /2��3.564
�1014 Hz and the full width at half maximum is 1.5
�1013 Hz, corresponding to Q=24. The resonant transition
frequency of atoms is the same as the frequency of the
defect-cavity mode, �0=�c, and the density of polarized at-
oms is Natom=1.172�1021 m−3. For the purpose of shorten-
ing computational time, the dipole moment is set to a large
value, deg=8.0�10−28 C m. The spontaneous emission rate
is calculated from

2�
 =
�deg�2�0

3

��0
c3 , �7�

where it is assumed that all the atoms in the atomic layer are
oriented in the same direction as the polarization of input
field ��
 /2�
1010 Hz for the present parameters�. The
thickness of atomic layer is �=�x �i.e., one cell�. For n̄in

�1, �
 can be obtained by comparing the output from an
atomic layer to that from an empty cavity.17 Throughout this
work, we use n̄in�0.0036, corresponding to 	 /2�

109 Hz, so that the system is always in the weak coupling
regime ��=�c /Q��
 �	�.

III. NUMERICAL RESULTS

In this section, we numerically analyze the nonlinear op-
tical phase shift obtained from an atomic layer coupled to a
defect-cavity field. First, we analyze the dependence of over-
all nonlinear phase shift on the atomic layer position for
low-Q and high-Q DBR cavities in the weak coupling re-
gime. Then, we discuss in detail the atom-position depen-
dence for high-Q cavities.

Figure 2 shows a snapshot of electric-field profile calcu-

FIG. 2. Snapshot of the electric-field profile for n̄in
0.0036 at t
=0.1247615 ns. The atomic layer is located at the antinode of the cavity
field. In order to clearly show the electric field at the atomic layer and the
output field, we omit the range from �14 to �0.375 on the x-axis.
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lated by 1D FDTD method, where an atomic layer is placed
at x=0, corresponding to the antinode of a defect-cavity
mode. A rightward traveling continuous wave resonant with
the defect-cavity mode is emitted from an input source �in-
dicated by arrow� and is incident on the atom-cavity system.
Output from the atom-cavity system is obtained on the left of
the input source, where the output consists only of the light
reflected by the atom-cavity system.18 In order to eliminate
back reflections into the computational domain, we use
Mur’s first-order absorbing boundary condition at both ends
of the computational domain. By comparing the output from
the atomic layer �solid line� to that for an empty cavity �dot-
ted line�, one can find that they are almost in antiphase,
��
���. This phase shift occurs owing to interference be-
tween the input field and coherent dipole emission from the
atomic layer. For nin�1 on resonance, dipole emission from
the atomic layer is in antiphase with a local electric field at
the atomic layer position,19 and the electric field for x�0 is
therefore attenuated by destructive interference between the
input light and the emitted light from the atomic layer toward
x�0. This effect can be seen for x�0 in Fig. 2. As a result,
only the reflected component consisting of the light emitted
from the atomic layer toward x�0, can be measured in the
output field.20 Thus, the atomic layer acts as a perfect mirror.
This leads to optical path difference from an empty cavity,
and the phase shift corresponding to the optical path differ-
ence, e.g., ��
��� at the antinode, can be observed.14

Therefore ��
� is expected to be strongly affected by atomic
layer position.

Figure 3 shows ��
� as a function of atomic layer posi-
tion for three Q factors. The dotted curve is the normalized
electric-field strength. For low Q of Q=24, ��
� has a simi-
lar atom-position dependence to that in the bad cavity limit.
However, optimal position yielding ��
�=� is not at the
antinode of the cavity field but is instead slightly shifted
toward the surface of the cavity ��50 nm for present param-
eters�. As Q increases to Q=90, the values of ��
� are el-
evated overall and the optimal position further shifts toward
the surface. For further increase to Q=500, ��
��� can be
obtained anywhere independently of the atomic layer posi-
tion.

Thus, �
 depends on atomic layer position and this de-
pendence changes with increase in Q factor. Figure 4 shows
the electric-field profiles of 1-surface-layer and 5-surface-
layer DBR cavities for four different positions of atomic

layer, xa=−112.5, �45, 0, and 90 nm. The electric fields for
x�xa are reduced to almost zero owing to destructive inter-
ference, and thus the atomic layer acts as a perfect mirror.
For the 1-surface-layer DBR cavity, this process is almost the
same as the bad-cavity-limit model, except that the dipole
emission is slightly modified by the surface DBR layer. Ac-
cording to the bad-cavity-limit model, a maximal phase shift
of � is obtained when optical path difference between the
outputs for an empty cavity and for the atomic layer is equal
to half a wavelength. In particular, in the bad cavity limit, it
occurs when the atomic layer is at the antinode of electric
field �x=0�. However, when the surface DBR layer is
present, multiple reflection of light between the surface DBR
layer and the atomic layer modifies output phase, and this
leads to a shift in optimal position. In fact, in the absence of
surface DBR layer, no shift in optimal position occurs and
the maximal phase shift of � is obtained at the antinode of
electric field as in the bad cavity limit. Thus, for low-Q cavi-
ties, the multiple reflection induces only a shift in optimal
position.

For a 5-surface-layer DBR cavity, however, phase differ-
ence due to change in xa almost disappears. As the number of
surface layer increases, reflectance of the surface DBR layers
increases. As a result, in contrast to 1-surface-layer DBR,
two standing waves are formed between the surface DBR
and the atomic layer and between the atomic layer and the
back-surface DBR so that the atomic layer acts as a node for
these standing waves. This leads to amplitude attenuation of
the latter standing wave, especially for high-Q cavities. Fur-
thermore, the optical waves penetrating the surface DBR be-
come in phase owing to phase matching by multiple reflec-
tion in the surface DBR, as can be seen in Fig. 4�b�. Once the
atomic layer acts as a node �like a perfect mirror�, the back-
surface DBR has no effect on �
. Instead a new mechanism

FIG. 3. ��
� as a function of the atomic layer position for three DBR
cavities with Q=24, 90, and 500. The dotted curve is the normalized
electric-field strength.

FIG. 4. Electric-field profiles of �a� a 1-layer DBR cavity and �b� a 5-layer
DBR cavity for four different positions of the atomic layer.
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for altering �
 appears, governed by the surface DBR. This
can be explained by using a simple multiple reflection prob-
lem with a fixed end, as depicted in Fig. 5�a�, where � is the
complex amplitude of output field and an atomic layer is
assumed to be a perfect mirror. Figure 5�b� shows depen-
dence of the output phase �arg���� on atom position l for three
N-surface-layer DBRs, N=1, 3, and 5. For N=1, �arg����
widely changes in l and has a local maximum. As N in-
creases, however, this local maximum disappears and depen-
dence of �arg���� on l becomes gradual, similar to the depen-
dence of ��
�. Note that the value of �arg���� is not equal to
��
� because �
 is defined with reference to the phase shift
obtained from an empty cavity. The position independence of
�
 is thus specific to high-Q cavities.

The realization of ��
�=� independent of xa is helpful
for device applications because high-accuracy positioning of
atoms within a microcavity is not that easy. Note, however,
that the results obtained in the present work are for a mono-
pole mode �a � /2 cavity�. In contrast, a � cavity has a node
within the cavity field. If one misaligns the atomic layer
position near a node, the transmission component �for x�0�
does not completely vanish and the overall nonlinear phase
shift drastically decreases. One then needs to take into ac-
count for reabsorption and re-emission of atoms due to the
transmission component.14 In general, the reabsorption-re-
emission process is complicated because the re-emission
component is reflected by the cavity mirror, inducing subse-
quent re-emission. Consequently, the analysis of the nonlin-
ear phase shift for a � cavity is rather involved. However, the
FDTD analysis would be useful for analyzing such processes
in the presence of a surface interference effect, even for sys-
tems with a complex device structure.

IV. CONCLUSIONS AND DISCUSSION

Using the FDTD method with the optical Bloch equa-
tions, we have investigated the nonlinear optical phase shift
obtained from a thin, infinite atomic layer of two-level atoms
confined in a DBR cavity with reflection geometry. We have

shown that the optimal position of the atomic layer, yielding
a maximal phase shift of �, varies according to the quality
factor Q of the cavity. For low-Q cavities, the optimal posi-
tion is not at the antinode of the cavity field but is instead
slightly shifted toward the surface of the DBR cavity. As the
Q value increases, however, a maximal phase shift of � can
be obtained anywhere in the cavity field independently of
atomic layer position. This result is in contrast to the result
for the bad cavity limit, for which the maximal phase shift of
� is obtained only at the antinode. We have also shown that
the change in the atom-position dependence for Q factor is
due to interference effects in the surface of the DBR cavity.
In particular, for high-Q cavities the surface interference
compensates the phase lag due to the atomic layer position.

In this analysis, we have investigated the nonlinear op-
tical phase shift for a coherent cw input field and have re-
stricted the calculation to the atom-cavity system with �=1
in order to compare the results with the previous work. How-
ever, it is straightforward to extend the analysis to a system
driven by pulsed input lights. It would be interesting to con-
sider the two-photon nonlinearity discussed in Ref. 21. For
atom-cavity systems with ��1, we can analyze the optical
phase shift by introducing a dipole current multiplied by �,
�jz�x , t�, in Eq. �1�. In this case, according to Refs. 6 and 10,
a maximal phase shift of � is obtained only for ��1 /2. For
��1 /2, the maximal phase shift cannot exceed � /2.

Finally, FDTD calculation is useful for evaluating the
performance of optical cavities with higher dimensions and
more complicated structures. We hope that the results pre-
sented in this paper help to identify practical requirements
for implementing efficient nonlinear devices.
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